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1. Krull Dimension

Recall the definition of dimension of a ring. In this lecture we shall call it the Krull dimension
and denote it by dim.

Definition 1: Let A be a ring and p a prime ideal of A. We define the height of p, denoted
by ht p, to be the supremum of lengths n of all chains p0 ⊂ p1 ⊂ . . . ⊂ pn = p of prime ideals
pi ∈ A such that pi 6= pi+1.

The Krull dimension of A is dimA = sup{ht p | p ⊂ A prime ideal}.

Clearly, ht p = 0 ⇐⇒ p is a minimal prime ideal. Moreover, the Krull dimension is in fact the
supremum over the heights of all maximal ideals of a ring.

Example 1. We have already seen that artinian rings and fields have Krull dimension 0. More-
over, Dedekind domains by definition have Krull dimension 1.

Exercise (i). Let A be a ring, p ⊂ A a prime ideal and Ap the localisation of A at p, then show
that ht p = dimAp. Infer that dimA = sup{dimAm | m ⊂ A,maximal ideal}.

Example 2 (Integral extension has same Krull dimension). If A ⊂ B are rings and B is integral
over A then dimA = dimB. Recall that if q ⊂ q′ are prime ideals of B such that q∩A = q′∩A,
then q = q′. Hence if q0 ⊂ . . . ⊂ qn is a chain of prime ideals in B, and pi = qi ∩ A, then
p0 ⊂ . . . ⊂ pn is a chain in A, thus dimA ≥ dimB. On the other hand the going up theorem
shows that dimB ≥ dimA.

Exercise (ii). Show that a principal ideal domain has Krull dimension 1.

The following result is outlined in Exercise 6 of Chapter 11 in Atiyah-MacDonald.

Theorem 2 (Krull dimension of Polynomial ring). If A is a ring with finite Krull dimension
and A[x] is the polynomial ring over A in one variable then dimA+ 1 ≤ dimA[x] ≤ 2 dimA+ 1.

Proof. First we shall show that if q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of prime ideals qi ∈ A[x] with
qi 6= qi+1, such that qi ∩A = p for all i = 0, . . . , n then the chain has length n ≤ 1.

Let S = A − p, then S is a multiplicatively closed subset of A since p is prime and qi ∩ S = ∅.
Hence S−1qi are prime ideals of S−1(A[x]) = Ap[x]. Let m = S−1p = pAp be the maximal ideal
of Ap, and let m[x] denote the ideal of polynomials in Ap[x] with coefficients in m. Then we have
an isomorphism

Ap[x]/m[x] ∼= (Ap/m)[x] where k = Ap/m is a field.

Moreover qi ∩A = p⇒ S−1q ∩Aq = m⇒ S−1q ⊃ m[x]. Hence we have a chain of prime ideals

S−1q0/m[x] ⊂ . . . ⊂ S−1qn/m[x] (strict inclusions)
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of length n in k[x]. By Exercise (ii) k[x] has Krull dimension 1, hence n ≤ 1.

Now suppose p ⊂ A is a prime ideal. As before we denote by p[x] = pA[x] the ideal consisting of
polynomials with coefficients in p. We also have the ideal (p, x) generated by p and x, this ideal
consists of all polynomials which the constant term in p. Both of these ideals are prime since

A[x]/p[x] ∼= (A/p)[x] and A[x]/(p, x) ∼= A/p.

Moreover p[x] ⊂ (p, x) is a strict inclusion.

Let d = dimA and p0 ⊂ . . . ⊂ pd be a maximal chain of prime ideals in A, then

p0[x] ⊂ . . . ⊂ pd[x] ⊂ (pd, x)

is a chain of length d+ 1 in A[x], hence dimA[x] ≥ d+ 1.

Finally if q0 ⊂ . . . ⊂ qn is a chain of prime ideals of length n in A[x], let pi = A ∩ qi. The
fact that for any i the three primes pi−1, pi, pi+1 can not all be the same gives the desired upper
bound. We may argue as follows. Let

S = {i | i = 0 or 1 ≤ i ≤ n and pi−1 6= pi}.
Let i0 < . . . < ik be the elements of S then pi0 ⊂ . . . ⊂ pik is a chain of prime ideals in A, hence
k ≤ d and is+1 − is ≤ 2. Since i0 = 0 this gives ik ≤ 2k and n ≤ ik + 1 ≤ 2k + 1 ≤ 2d+ 1. �

Exercise (iii). Search literature to find out whether the upper bound of Theorem 2 is achieved
by some ring.

2. Dimension of a Noetherian Local Rings

As we saw in Exercise (i), the height of a prime ideal of a ring is the same as the Krull dimension
of the local ring obtained by localising at that prime so it is important to be able to calculate
the dimension of local rings. We shall demonstrate that three different definitions all match up
for noetherian local rings, so we restrict our attention to noetherian local rings.

In this section let us assume that A is a noetherian local ring and m is its maximal ideal.

We defined the Hilbert dimension of A to be dHilb(Gm(A) which is in fact the same as the degree
of the characteristic polynomial for m, that is

dHilb(A) = dHilb(Gm(A)) = degχA
m,

where χA
m(n) = l(A/mn) for all sufficiently large n.

Definition 3: We denote by δ(A) the minimal number of generators for any m-primary ideal
q ⊂ A.

Remark. Our goal for this lecture is to show that δ(A) = dHilb(A) = dimA. In particular
the Krull dimension is the same as the Hilbert dimension. We shall achieve this by showing
δ(A) ≥ dHilb(A) ≥ dimA ≥ δ(A).

Proposition 4. δ(A) ≥ dHilb(A).
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Proof. This immediately follows from Corollary 13 and Proposition 14 of the lecture on Hilbert
polynomials. �

Next up we shall show that dHilb(A) ≥ dimA. For this we need the following lemma.

Lemma 5. If x ∈ A is not a unit or a zero-divisor then dHilbA/(x) ≤ dHilbA− 1.

Proof. Let N = (x) and M = A/(x) which are both A modules. Let Nn = mn ∩ N , then we
have an exact sequence

0→ N/Nn → A/mn →M/mnM → 0.

Hence we have

l(M/mnM) = l(A/mn)− l(N/Nn) for all n > 0.

Since l(A/mn) = χA
m(n) and l(M/mnM) = χM

m (n) are both polynomials, hence so is g(n) =
l(N/Nn).

By the Artin-Rees lemma, Lemma 5 in the lecture on Graded rings and its corollary, Corollary
6 there is an integer n0 such that

Nn+n0 = mnNn0 ⊂ mnN for all n ≥ 0.

On the other since N is an ideal in A we have

mnN ⊂ mn ∩N = Nn.

Hence for all n ≥ 0

g(n+ n0) ≥ l(N/mnN) = χN
m (n) ≥ g(n).

Since g and χN
m are both polynomials this means

lim
n→∞

g(n)

χN
m (n)

= 1.

Thus g and χN
m have the same degree and same leading coefficient. Moreover, since x is not a

zero divisor we have N ∼= A as an A module. Hence χN
m = χA

m, and since g and χA
m have the

same leading terms and χM
m = χA

m − g we have degχM
m < degχA

m. �

Proposition 6. dHilb(A) ≥ dimA and in particular dimA is finite.

Proof. We shall prove this by induction on d = dHilb(A). If d = 0, then l(A/mn), (length as
A module), is constant for all n sufficiently large. This means mn = mn+1 for large n, so by
Nakayama’s lemma mn = 0. Hence, A is artinian and dimA = 0.

Now assume d > 0. We shall show that for any chain p0 ⊂ . . . ⊂ pr of prime ideals in A of length
r, we must have r ≤ d which will prove the proposition. Let x ∈ p1 such that x 6∈ p0. Consider
the integral domain A′ = A/p0. Let m′ = m/p0, then since A′/(m′)n is a quotient of A/mn, so
l(A′/(m′)n) ≤ l(A/mn) for all n > 0. Thus dHilb(A′) ≤ dHilb(A) = d.

The image x′ of x in A′ is not a zero divisor or a unit. Hence

dHilb(A′/(x′)) ≤ dHilb(A′)− 1 ≤ d− 1.

Hence by the inductive hypothesis dimA′/(x′) ≤ d− 1. But the chain p1 ⊂ . . . ⊂ pr descends to
a chain of prime ideals in A′/(x′) of length r − 1, hence r − 1 ≤ d− 1. �
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Remark. The height of any prime ideal in a noetherian ring is finite. If R is a noetherian ring
and p ⊂ R a prime ideal, then ht p = dimRp. Since Rp is a noetherian ring the result follows
from the previous proposition.

Proposition 7. Let dimA = d then there is an m primary ideal generated by d elements, thus
dimA ≥ δ(A).

Proof. First note that dimA = htm = d. Moreover for any prime ideal p ⊂ A, we have
ht p ≤ htm and equality holds only if p = m. We shall choose elements x1, . . . , xd ∈ A such that
for 1 ≤ i ≤ d any prime ideal containing (x1, . . . , xi) has height at least i.

We shall do this by induction. So assume i > 0 and that we have already chosen x1, . . . xi−1 sat-
isfying this property. Let p1, . . . , ps be the minimal prime ideals containing ai−1 = (x1, . . . , xi−1)
such that ht pj = i− 1. Since i− 1 < d we must have m 6= pj . Thus m 6= p1 ∪ . . . ∪ ps. Choose
xi ∈ m such that xi 6∈ p1 ∪ . . . ∪ ps. Note that if i = 1 we take a0 = (0).

Now consider the ideal ai = (x1, . . . , xi). If q is a prime ideal containing ai then it must contain a
minimal prime ideal p containing ai−1. Then by the inductive hypothesis ht p ≥ i−1. If ht p ≥ i
then clearly ht q ≥ i. So assume ht p = i− 1, which means p = pj for some j ∈ {1, . . . , s}. But
xi 6∈ pj so q 6= pj , thus ht q > ht pj = i− 1.

In this way me choose x1, . . . , xd and claim that ad = (x1, . . . , xd) is m-primary. To see this note
that is p is any prime ideal containing ad then ht p = d, thus p = m. Hence m is the only prime
ideal containing ad thus m =

√
ad. �

We have now proved the following theorem.

Theorem 8 (Dimension theorem). Let A be a noetherian local ring with maximal ideal m, then
the following integers are all same:

(a) the maximal length of chains of prime ideals in A, that is the Krull dimension of A,
(b) degree of the characteristic polynomial of m, that is the degree of χA

m(n) = l(A/mn),
(c) the least number of generators of an m-primary ideal of A.

Remark. If the local ring A is not noetherian, the three numbers of Theorem 8 may not neces-
sarily be the same.

Example 3. Let A = k[x1, . . . , xn] be the polynomial ring over a field k and m = (x1, . . . , xm).
We denote the localisation of A at the maximal ideal m by Am and let n = mAm. It is easy to

see that Gn(Am) ∼= k[x1, . . . , xn], which has Poincaré series
1

(1− t)n
. Thus

htm = dimAm = dHilb(Am) = n.

Remark. Let k be a field then we denote as usual the dimension of a k vector space by dimk.
This is not to be confused with the Krull dimension of a ring.
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Corollary 9. Let k = A/m be the residue field then dimA ≤ dimk m/m
2.

Proof. If x1, . . . , xd ∈ m are such that their images x1, . . . , xd form a basis of m/m2 as a k
vector space, then it is easy to see that x1, . . . , xd generate the ideal m. Thus dimk m/m

2 = d ≥
dimA. �

Proposition 10. If Â is the m-adic completion of A, then dim Â = dimA.

Proof. We have A/mn ∼= Â/m̂n for all n > 0 by (see proof of Proposition 11 in the lecture on

graded rings). Hence χA
m = χÂ

m̂. �

3. Dimension of Noetherian Rings

Now that we have three different techniques for calculating the height of a prime ideal in a
noetherian ring, we shall use them to prove some useful results about dimension of noetherian
rings.

Remark. A noetherian local ring always has finite dimension. However in general a noetherian
ring may not have finite dimension. An example due to Nagata is given in Exercise 4 of Chapter
11 in Atiyah-MacDonald.

Theorem 11. Let R be a noetherian ring and x1, . . . , xn ∈ R. If p ⊂ R is a minimal prime
ideal containing a = (x1, . . . , xn), then ht p ≤ n.

Proof. Consider the ring A = Rp and let m = pRp be its maximal ideal. Since m is the only
prime ideal in A containing aA we infer that aA is an m-primary ideal. Moreover ht p = dimRp

and since aA is an m-primary ideal generated by n elements, the images of x1, . . . , xn in A, we
have dimA ≤ n. �

We have a strong converse to the previous theorem.

Proposition 12. Let R be a noetherian ring and p be a prime ideal in R of height h, then there
are elements x1, . . . , xh ∈ p such that p is a minimal prime ideal containing (x1, . . . , xh).

Proof. We shall inductively choose elements x1, . . . , xi ∈ p for i ≤ h such that the minimal prime
ideals containing ai = (x1, . . . , xi) and contained in p have height i.

For i = 1, let q1, q2, . . . , qs be the minimal prime ideals of R contained in p. Then ht qi = 0, so
p 6= qi ⇒ p 6= ∪si=1qi. Choose x1 ∈ p − ∪si=1qi. Then any minimal prime ideal containing (x1)
and contained in p has height 1 by the previous theorem.
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Suppose we have already chosen x1, . . . , xi and i < h. Let the minimal prime ideals containing
ai and contained in p be q′1, . . . , q

′
t. Then ht q′i = i < ht p so p 6= q′i ⇒ p 6= ∪ti=1q

′
i. Hence we

may choose xi+1 ∈ p − ∪ti=1q
′
i. Then any minimal prime ideal containing ai+1 = (x1, . . . , xi+1)

and contained in p must have height i + 1 because it strictly contains a minimal prime ideal
containing ai.

Continuing in this way we can choose x1, . . . , xh. If q is a minimal prime ideal containing ah
and contained in p, then ht q = ht p = h so p = q. �

Corollary 13 (Krull’s Principal Ideal Theorem). Let R be a noetherian ring and x ∈ R be an
element which is not a unit or a zero-divisor. Then every minimal prime ideal p containing (x)
has height 1 and dimR/(x) ≤ dimR− 1.

Proof. By the previous corollary ht p ≤ 1. If ht p = 0, then p is a minimal prime ideal of R. Since
R is noetherian it has only finitely many minimal prime ideals (since the ideal (0) has primary
decomposition). Let q1, . . . , qs be the other minimal prime ideals of R then the nilradical is the
intersection √

(0) = p ∩ q1 ∩ . . . ∩ qs ⊃ pq1 · · · qs.
This shows that xy is nilpotent for some y ∈ q1 · · · qs which implies that x is a zero-divisor.
Thus ht p = 1. The second statement now follows from the correspondence between prime ideals
of R/(x) and those of R containing (x). �

Corollary 14. Let A be a noetherian local ring with maximal ideal m and let x ∈ m be an
element which is not a zero-divisor. Then dimA/(x) = dimA− 1.

Proof. From Lemma 5 it follows that dimA/(x) ≤ dimA − 1. Let d = dim dimA/(x) and
n = m/(x) be the maximal ideal of A/(x). Let x1, . . . , xd ∈ m be such that their images
generate an n-primary ideal a in A/(x). The nr ⊂ a ⊂ n for some positive integer r. It is
easy to see that mr ⊂ (x, x1, . . . , xd) ⊂ m. Thus (x, x1, . . . , xd) is an m-primary ideal. Hence
dimA/(x) + 1 ≥ dimA completing the proof. �

Remark. The next proposition shows that if A is a noetherian ring of finite dimension and
A[x1, . . . , xn] is the polynomial algebra in n variables over A then dimA[x1, . . . , xn] = dimA+n.
Hence, in particular if A = k is a field then dim k[x1, . . . , xn] = n. Using Corollary 9 and
Proposition 10 we also see that k[[x1, . . . , xn]] has dimension n.

Theorem 15. If A is a noetherian ring of finite dimension and A[x] is a polynomial ring over
A in one variable, then dimA[x] = dimA+ 1.

Proof. By Theorem 2 dimA[x] ≥ dimA+ 1. If p is a prime ideal of A, then it follows from the
proof of Theorem 2 that p[x] is a prime ideal of A[x] and ht p[x] ≥ ht p.

Let h = ht p then by Proposition 12 there are a1, . . . , ah ∈ p such that p is a minimal prime
ideal containing a = (a1, . . . , ah). Let q ⊂ A[x] be a prime ideal such that a[x] ⊂ q ⊂ p[x], then
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a ⊂ q∩A ⊂ p, and q∩A is prime so q∩A = p. This shows the reverse inclusion q ⊃ p[x]. Thus
p[x] is a minimal prime ideal containing a[x].

Now a[x] is also generated in A[x] by a1, . . . , ah hence ht p[x] = h. Moreover from the proof of
Theorem 2 we see that if q0 ⊂ . . . pn is a chain of prime ideals in A[x] with qi ∩ A = p, then
n ≤ 1. Moreover qi ⊂ p[x]. Since p[x] is prime the only possibility for the length of the chain to
be 1 is when q0 = p[x].

Now let q0 ⊂ . . . ⊂ qn be a chain of prime ideals in A[x]. Let pi = qi ∩ A. If pi−1 6= pi for all i
then n ≤ d. Otherwise, let k be the largest integer between 1 and n such that pk−1 = pk. Then
pk, . . . , pn are distinct prime ideals of A, so n − k ≤ dimA − ht pk. Moreover, we must have
qk−1 = pk[x], so ht qk−1 = ht pk, hence k − 1 ≤ ht pk. Thus n ≤ dimA+ 1. �

4. Dimension of finitely generated algebras over a field

Definition 16: Let A be an integral domain which is a finitely generated algebra over a field
k. Let L = Q(A) be the field of fractions of A. Note that L is a finitely generated field
extension of k, hence L has finite transcendence degree over k which we denote by Tr degk L.
The transcendental dimension of A is defined to be this transcendence degree

dtrA = Tr degk L.

Remark. In this section we shall show that if A is an integral domains which is finitely generated
over a field k, then Krull dimension is equal to transcendental dimension. In fact in this case
all maximal ideals of A have the same heigh equal to the Krull dimension of A.

In general all maximal ideals of a ring may not have the same height even if the ring is an
integral domain. See the following thread for examples of such rings as well as some criteria for
all maximal ideals of a ring to have the same height:
https://math.stackexchange.com/questions/161937/what-conditions-guarantee-that-all-maximal-ideals-have-the-same-height

Exercise (iv). Let A ⊂ B be rings such that B is integral over A. If m ⊂ B is a maximal ideal
then n = A ∩m is also a maximal ideal of A. Show that

dimAn = dimBm.

Theorem 17. If A is an integral domain which is a finitely generated algebra over a field k,
then for any maximal ideal m ⊂ A we have,

htm = dimA = dtrA.

Proof. Let L be the field of fractions of A. By Noether normalisation theorem there are
x1, . . . , xd ∈ A which are algebraically independent over k that is A′ = k[x1, . . . , xd] is iso-
morphic to the polynomial algebra over k in d variables, and A is integral over A′. Clearly L
contains k(x1, . . . , xd) the field of fractions of A′.

Recall that: if C ⊂ D is are rings such that D is integral over A, T ⊂ D is a multiplicatively
closed subset and S = T ∩C then T−1D is integral over S−1C. Hence L is an algebraic extension

https://math.stackexchange.com/questions/161937/ what-conditions-guarantee-that-all-maximal-ideals-have-the-same-height
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of k(x1, . . . , xd). The upshot of this is that

dtrA = Tr degk L = d.

On the other hand since A is integral over k[x1, . . . , xd] so by 2

dimA = dim k[x1, . . . , xd] = d.

Finally let n = m ∩ A′ then by Exercise (iv), htm = ht n. We thus need to find the height of a
maximal ideal of k[x1, . . . , xd]. Let k be the algebraic closure of k. Then k[x1, . . . , xd] is integral
over k[x1, . . . , xd] by Exercise (v). Hence there is a maximal ideal m′ ⊂ k[x1, . . . , xd] such that
m′ ∩ k[x1, . . . , xd] = n. Again ht n = htm′. By Hilbert’s-Nullstellensatz

m′ = (x1 − a1, . . . , xd − ad) for some a1, . . . ad ∈ k.
Hence

0 ⊂ (x1 − a1) ⊂ . . . ⊂ (x1 − a1, . . . , xi − ai) ⊂ . . . ⊂ (x1 − a1, . . . , xd − ad) = m′

is a chain of prime ideals of length d. Thus htm′ = d. �

Exercise (v). Let A be a finitely generated k algebra for a field k and k be the algebraic closure
of k, then show that B = k ⊗k A is integral over A.

Example 4. In Theorem 17 if we drop the assumption that A is an integral domain then it
may not be true that htm = dimA for every maximal ideal of A. Consider

A =
C[x, y, z]

(xz, yz)
and k = C.

For any ideal a ⊂ C[x, y, z] we write the corresponding image in A as a. Then ht (x, y, z) = 2

since (z) ⊂ (x, z) ⊂ (x, y, z) is a chain of length 2. However ht (x, y, z − 1) = 1. Because the
only prime ideal of C[x, y, z] p such that (xz, yz) ⊂ p ⊂ (x, y, z − 1) such that p 6= (x, y, z − 1)
is p = (x, y). What is SpecA?

Remark. See Chapter 18 of Milne’s notes for more results on the dimension of finitely generated
algebras over a field.
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