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1. Topological Groups

We shall need a few results about topological groups which we compile here.

Definition 1: A topological group is a group G with a topology such that the multiplication
map G×G→ G and the inverse map G→ G are continuous. A homomorphism φ : G→ H of
topological groups is a group homomorphism which is also continuous.

We shall only consider abelian topological groups and we denote the group operation always by
+ and the group identity by 0. Note that a topological space X is hausdorff if and only if the
diagonal in X ×X is a closed subset.

Proposition 2. A topological group G is hausdorff if and only if 0 is a closed point in G.

Proof. The map α : G×G→ G given by α(x, y) = x− y is continuous and α−1(0) is precisely
the diagonal. Hence if {0} is closed in G, G is hausdorff. The other side is standard. �

By our assumption, for any x ∈ G, the map y 7→ y + x is continuous with continuous inverse
y 7→ y − x, hence it is a homeomorphism. Similarly x 7→ −x is also a homeomorphism of G.
Thus U ⊂ G is open if and only if U + x is open. Similarly U is open if and only if −U is open.

Exercise (i). Let G be a topological group. Show that any open neighbourhood V of x ∈ G is
of the form U + x where U is an open neighbourhood of 0.

Hence by this exercise the open neighbourhoods of 0 determine the topology of G.

Proposition 3. Let H be the intersection of all the open neighbourhoods of 0 in a topological
group G. Then

(a) the set H is a subgroup of G,
(b) the subgroup H is the closure of {0} in G,
(c) the group G/H with the quotient topology is hausdorff.
(d) the group G is hausdorff if and only if H = {0}.

Proof. For part (a) it is enough to show that for any x, y ∈ H, x − y ∈ H. Let U be any open
neighbourhood of 0, then V = U ∩ (−U) is also an open neighbourhood of 0. Thus y ∈ V , which
means −y ∈ U . Thus 0 ∈ U + y and U + y is of course open. Thus x ∈ U + y ⇒ x − y ∈ U .
Hence x− y ∈ H.

Let x ∈ H, and K ⊂ G be a closed set containing 0. Suppose x 6∈ K, then x ∈ U = G − K.
Thus x − U is an open neighbourhood of 0 that does not contain x which contradicts the fact
that x ∈ H. Similarly if x ∈ {0}, suppose there is an open neighbourhood U of 0 not containing
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x. Then x ∈ K = G−U and x−K is a closed set containing 0 but not x, contradicting x ∈ {0}.
This completes the proof of (b).

Parts (c) and (d) follow immediately from Proposition 2. �

Example 1. The groups Z,Q,R are all hausdorff topological groups, Z is discrete. The quotient
group R/Q is not hausdorff (what is the topology here?).

Example 2. Let (Gi, gj,i) be an inverse system of finite groups with discrete topology indexed
by some infinite set I. Then lim

←−
Gi can be realised as a subgroup of

∏
i∈I Gi. It thus inherits

the subspace topology of the product topology. Such a group is called a profinite group. We
may take I = N and Gn = Z/(pn) for some prime p. Then gn,m is the natural quotient map.
The inverse limit lim

←−
Z/(pn) is usually denoted by Zp. This is a compact hausdorff group.

2. Completion

From here on we shall assume our topological groups are all first countable. Let us recall the
definition of Cauchy sequences.

Definition 4: A sequence (xn) = x1, x2, . . . of elements of G converges to x ∈ G if for any open
neighbourhood U of x there is an integer N(U) such that xn − x ∈ U for all n ≥ N(U). Such a
sequence is called convergent and we write x = limxn.

A sequence (xn) is called Cauchy if for any neighbourhood U of 0, there is an integer N(U) such
that xn − xm ∈ U for all m,n ≥ N(U).

Exercise (ii). Show that the sequence (xn) converges to x if an only if (xn−x) converges to 0.
Show that any convergent sequence is Cauchy.

Theorem 5 (Completion). The set of all Cauchy sequences of G forms a group G̃ under the

addition (xn)+(yn) = (xn+yn). The subset K ⊂ G̃ consisting of sequences that converge to 0 is

a subgroup and we define the completion of G to be Ĝ = G̃/K. We have a group homomorphism

ı : G→ Ĝ which maps any x ∈ G to the class of the constant sequence (x).

Exercise (iii). Prove Theorem 5.

Definition 6: The group G is called complete if ı : G→ Ĝ is an isomorphism.

The homomorphism ı is not injective in general. In fact ker(ı) = {0}, thus ı is injective if and
only if G is hausdorff.

Proposition 7. An abelian topological group G is complete if and only if G is a hausdorff and
all Cauchy sequences in G converge.
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Proof. If G is complete ı : G → Ĝ is an isomorphism hence in particular injective so G is
hausdorff. Moreover ı is surjective so for any Cauchy sequence (xn) there is x ∈ G such that
limxn − x = 0. Hence limxn = x. This proves the forward implication.

Now for the converse. Since G is hausdorff a convergent sequence converges to a unique element.

Thus we define a map φ : G̃ → G given by φ((xn)) = limxn. This map is clearly a group

homomorphism and K = ker(φ) so it induces an isomorphism Ĝ→ G with inverse ı. �

Remark. Completion is a functor. That is if f : G → H is a homomoprhism of topological
groups then since it is continuous it takes Cauchy sequences to Cauchy sequences. Thus it

induces a group homomorphism f̂ : Ĝ→ Ĥ. Moreover is g : H → K is another homomorphism

of topological groups then ĝ ◦ f = ĝ ◦ f̂ .

Example 3. We may take G = Q then Ĝ = R. Of course R and Z are complete.

Exercise (iv). Phrase and prove the universal property of completion.

Example 4. We have already seen that with the usual topology on Q the completion Q̂ ∼= R.
However for any prime p ∈ Z there is the p-adic norm on Q defined as follow: For any rational

number r 6= 0 we can write r = pn
a

b
where n ∈ Z and p does not divide a, b then let

||r||p = p−n,

and let ||0||p = 0. This is a norm on Q and thus defines a metric. In this metric Q is not
complete. For instance it is not trivial but can be checked that the sequence

an = 1 + p+ p2 + . . .+ pn

is Cauchy but it does not converge to any rational number. The completion Qp = Q̂ with respect
to this metric is called the field of p-adic numbers and is of much interest in number theory.

3. Completion as Inverse limit

For this part we need the topology on the group G to be a bit special.

Definition 8: An abelian topological group G is said to have linear topology if a countable
sequence of subgroups G = G0 ⊃ G1 ⊃ G2 ⊃ G3 . . . form a system of open neighbourhoods of 0.

Thus for a group G with linear topology a set U ⊂ G is open for any x ∈ U , x + Gn ⊂ U for
some n. The subgroups Gn are both open and closed. In fact any coset of Gx is also open and
G−Gn is a union of cosets of Gn hence also open.

For abelian groups with a linear topology the completion can be obtained purely algebraically
as an inverse limit. Note that the groups G/Gn form a surjective inverse system of Z modules
indexed by N. The map gn,m : G/Gn → G/Gm is just the quotient map since Gm ⊃ Gn for
m ≤ n.

Proposition 9. We have lim
←−

G/Gn
∼= Ĝ.
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Proof. Since Gn ⊂ G is both open and closed G/Gn has discrete topology hence by Proposition
7 it is complete. Thus the quotient map G → G/Gn induces a group homomorphism γn :

Ĝ→ G/Gn. Basically any Cauchy sequence in G/Gn must be eventually constant, so a Cauchy

sequence in Ĝ becomes eventually constant after reducing mod Gn and γn is the limit of that
sequence.

Moreover it is clear that gn,m ◦ γn = γm. Hence we get a induced homomorphism

γ : Ĝ→ lim
←−

G/Gn.

This map is injective because γ((xk)) = γ((yk))⇒ γn((xk)) = γn((yk)) for all n. Then lim[xk] =

lim[yk] ∈ G/Gn for each n which means lim(xk − yk) = 0 ∈ G. Thus [(xk)] = [(yk)] ∈ Ĝ.

Now recall that lim
←−

G/Gn is the subgroup of the product
∏

n∈NG/Gn. In fact a tuple (ξn) ∈
lim
←−

G/Gn if for each n > m we have gn,m(ξn) = ξm. Let (ξn) ∈ lim
←−

G/Gn and pick xn ∈ G such

that [xn] = ξn ∈ G/Gn. Then (xn) is a Cauchy sequence in G and γ((xn)) = (ξn). Hence γ is
also surjective. �

Proposition 10. Let

0→ G′ → G
q−→ G′′ → 0

be an exact sequence of abelian topological groups with each group having a linear topology.
Moreover assume that the topologies on G′ and G′′ are induced by G. That is if Gn ⊂ G are the
open neighbourhoods of 0 in G then those in G′ are G′ ∩Gn and those in G′′ are q(Gn). Then
the induced sequence

0→ Ĝ′ → Ĝ
q̂−→ Ĝ′′ → 0

is also exact.

Proof. We have an exact sequence of inverse systems

0→ G′/(G′ ∩Gn)→ G/GntoG
′′/q(Gn)→ 0.

and since G′/(G′∩Gn) is a surjective system the proposition follows from the exactness properties
of the inverse limit. �

Remark. Note that if G has linear topology then the homomorphism ı : G→ Ĝ induces inclusions

Ĝn → Ĝ. Thus Ĝ can be given a linear topology where the open neighbourhoods of 0 are the

subgroups Ĝn. The next corollary says that in case of an abelian group with linear topology the
completion is complete.

Corollary 11. Let G be an abelian group with linear topology then
̂̂
G ∼= Ĝ.

Proof. The exact sequences 0→ Gn → G→ G/Gn → 0 induce an exact sequence

0→ Ĝn → Ĝ→ Ĝ/Gn → 0.

However G/Gn has discrete topology so G/Gn
∼= Ĝ/Gn. Hence Ĝ/Ĝn

∼= G/Gn. Now taking
inverse limits we get the desired isomorphism. �
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4. Completion of Rings and Modules

Definition 12: A ring R with a topology is called a topological ring if the ring operations are
continuous in that topology. So in particular it is also a topological abelian group.

Definition 13: Let R be a ring then it is of course an abelian group with respect to addition.
Let a ⊂ R. be an ideal. The a-adic topology on R is the linear topology where the open
neighbourhoods of 0 are an.

In this topology the ring multiplication µ : R × R → R is also continuous. Let U ⊂ R be open
and consider (r, s) ∈ µ−1(U). Then rs ∈ U and there is an n such that rs+an ⊂ U . Then clearly
(r + an) × (s + an) ⊂ µ−1(U) hence µ−1(U) is open. Hence in this topology R is a topological
ring. The topology is hausdorff if and only if

⋂
n a

n = {0}.

We can then form the completion R̂ of R by the construction using Cauchy sequences or as

the direct limit R̂ = lim
←−

R/an. Both the constructions are isomorphic and R̂ has a natural ring

structure. The product of Cauchy sequences is again a Cauchy sequence since multiplication is

continuous. We have a continuous ring homomorphism ı : R → R̂. This ring R̂ is called the
a-adic completion of R.

Similarly when M is an R module and a ⊂ R is an ideal there is a an a-adic topology on M ,
where the open neighbourhoods or 0 are anM . This makes M into a topological R module where

R and M both have a-adic topology. The completion M̂ with respect this topology is called the
a-adic completion of M .

Exercise (v). Show that M̂ is a topological R̂ module. Moreover if f : M → N is an R module

homomorphism then f is continuous in the a-adic topologies on M and N and f̂ : M̂ → N̂ is a

continuous R̂ module homomorphism.

Example 5. If R = k[x] the polynomial ring over a field k and a = (x) then as we have already

seen that a-adic completion of R is R̂ = k[[x]].

Example 6. If R = Z and a = (p) for some prime p ∈ Z, then Zp = R̂ is the ring of p-adic
integers. In fact if we have the p-adic norm on Q then the induced topology on Z is the p-adic
topology and Zp ⊂ Qp. In fact Qp is the field of fractions of Zp.

5. Filtrations

Definition 14: Let R be a ring and M an R module. A filtration of M is a sequence of
submodules

M = M0 ⊃M1 ⊃M2 ⊃ . . .

Such a filtration will be denoted by Mn and defines a linear topology on M .

If a ⊂ R is an ideal, the filtration (Mn) is called an a-filtration if aMn ⊂Mn+1 and called stable
a-filtration if further there is an integer n0 > 0 such that aMn = Mn+1 for all n ≥ n0.
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Proposition 15. The linear topology defined by any stable a-filtration is the a-adic topology
on M .

Proof. If is enough to show that the open neighbourhoods of 0 are the same in both the topolo-
gies. Since aMn ⊂Mn+1 we have anM ⊂Mn for all n. Which shows Mn are open in the a-adic
topology. Conversely aMn = Mn+1 for n ≥ n0, thus Mn0+n = anMn0 ⊂ anM . This completes
the proof. �
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