Commutative Algebra Completion 13 May 2020

1. ToroLOGICAL GROUPS

We shall need a few results about topological groups which we compile here.

Definition 1: A is a group G with a topology such that the multiplication
map G x G — G and the inverse map G — G are continuous. A homomorphism ¢ : G — H of
topological groups is a group homomorphism which is also continuous.

We shall only consider abelian topological groups and we denote the group operation always by
+ and the group identity by 0. Note that a topological space X is hausdorff if and only if the
diagonal in X x X is a closed subset.

Proposition 2. A topological group G is hausdorff if and only if 0 is a closed point in G.

Proof. The map a : G x G — G given by a(x,y) = x — y is continuous and a~1(0) is precisely
the diagonal. Hence if {0} is closed in G, G is hausdorff. The other side is standard. t

By our assumption, for any z € G, the map y — y + x is continuous with continuous inverse
y — y — x, hence it is a homeomorphism. Similarly x — —z is also a homeomorphism of G.
Thus U C G is open if and only if U 4 z is open. Similarly U is open if and only if —U is open.

Exercise (i). Let G be a topological group. Show that any open neighbourhood V of x € G is
of the form U + x where U is an open neighbourhood of 0.

Hence by this exercise the open neighbourhoods of 0 determine the topology of G.

Proposition 3. Let H be the intersection of all the open neighbourhoods of 0 in a topological
group G. Then

(a) the set H is a subgroup of G,

(b) the subgroup H is the closure of {0} in G,

(c) the group G/H with the quotient topology is hausdorff.
(d) the group G is hausdorff if and only if H = {0}.

Proof. For part (a) it is enough to show that for any z,y € H, x —y € H. Let U be any open
neighbourhood of 0, then V' = UN(—U) is also an open neighbourhood of 0. Thus y € V', which
means —y € U. Thus 0 € U +y and U + y is of course open. Thusz e U+y =z —y € U.
Hence z —y € H.

Let x € H, and K C G be a closed set containing 0. Suppose x ¢ K, then x € U = G — K.
Thus z — U is an open neighbourhood of 0 that does not contain x which contradicts the fact

that « € H. Similarly if z € {0}, suppose there is an open neighbourhood U of 0 not containing
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z. Then z € K = G—U and 2 — K is a closed set containing 0 but not x, contradicting = € {0}.
This completes the proof of (b).

Parts (c) and (d) follow immediately from Proposition O

Example 1. The groups Z, Q, R are all hausdorff topological groups, Z is discrete. The quotient
group R/Q is not hausdorff (what is the topology here?).

Example 2. Let (G;,g;,) be an inverse system of finite groups with discrete topology indexed
by some infinite set I. Then lim G; can be realised as a subgroup of [[,.; G;. It thus inherits
%

the subspace topology of the product topology. Such a group is called a profinite group. We
may take I = N and G,, = Z/(p") for some prime p. Then g, is the natural quotient map.
The inverse limit 1<£nZ/ (p™) is usually denoted by Z,. This is a compact hausdorff group.

2. COMPLETION

From here on we shall assume our topological groups are all first countable. Let us recall the
definition of Cauchy sequences.

Definition 4: A sequence (z,) = x1, z2, ... of elements of G converges to = € G if for any open
neighbourhood U of z there is an integer N(U) such that z,, —z € U for all n > N(U). Such a
sequence is called and we write x = lim x,,.

A sequence (x,,) is called if for any neighbourhood U of 0, there is an integer N(U) such
that x,, — x,, € U for all m,n > N(U).

Exercise (ii). Show that the sequence (z,) converges to z if an only if (z, — x) converges to 0.
Show that any convergent sequence is Cauchy.

Theorem 5 ( ). The set of all Cauchy sequences of G forms a group G under the
addition (x,)+ (yn) = (vn+yn). The subset K C G consisting of sequences that converge to 0 is
a subgroup and we define the completion of G to be G=0G /K. We have a group homomorphism
v: G — G which maps any = € G to the class of the constant sequence (z).

Exercise (iii). Prove Theorem [j]

Definition 6: The group G is called if1:G — G is an isomorphism.

The homomorphism ¢ is not injective in general. In fact ker(z) = {0}, thus ¢ is injective if and
only if G is hausdorff.

Proposition 7. An abelian topological group G is complete if and only if G is a hausdorff and
all Cauchy sequences in G converge.
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Proof. If G is complete + : G — G is an isomorphism hence in particular injective so G is
hausdorff. Moreover 1 is surjective so for any Cauchy sequence (z,,) there is z € G such that
lim x,, — x = 0. Hence lim x,, = x. This proves the forward implication.

Now for the converse. Since G is hausdorfl a convergent sequence converges to a unique element.
Thus we define a map ¢ : G — G given by ¢((zy,)) = limx,. This map is clearly a group
homomorphism and K = ker(¢) so it induces an isomorphism G — G with inverse 1. O

Remark. Completion is a functor. That is if f : G — H is a homomoprhism of topological
groups then since it is continuous it takes Cauchy sequences to Cauchy sequences. Thus it
induces a group homomorphlsm f G — H. Moreover is g : H — K is another homomorphism

o~

of topological groups then g o f =gof.
Example 3. We may take G = Q then G =R. Of course R and Z are complete.
Exercise (iv). Phrase and prove the universal property of completion.

Example 4. We have already seen that with the usual topology on QQ the completion @ = R.
However for any prime p € Z there is the p-adic norm on Q defined as follow: For any rational

a
number r # 0 we can write r = p"g where n € Z and p does not divide a, b then let

n

Irllp =",
and let ||0|[, = 0. This is a norm on Q and thus defines a metric. In this metric Q is not
complete. For instance it is not trivial but can be checked that the sequence

an=14+p+p*>+...4+p"

is Cauchy but it does not converge to any rational number. The completion Q, = @ with respect
to this metric is called the field of p-adic numbers and is of much interest in number theory.

3. COMPLETION AS INVERSE LIMIT

For this part we need the topology on the group G to be a bit special.

Definition 8: An abelian topological group G is said to have if a countable
sequence of subgroups G = Gg D G1 D G2 D G ... form a system of open neighbourhoods of 0.

Thus for a group G with linear topology a set U C G is open for any z € U, z + G,, C U for
some n. The subgroups G,, are both open and closed. In fact any coset of GG, is also open and
G — G, is a union of cosets of GG, hence also open.

For abelian groups with a linear topology the completion can be obtained purely algebraically
as an inverse limit. Note that the groups G/G,, form a of Z modules
indexed by N. The map gnm : G/G,, — G /Gy, is just the quotient map since G, O G, for
m < n.

Proposition 9. We have lim G/G,, = G.
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Proof. Since G,, C G is both open and closed G/G,, has discrete topology hence by Proposition
it is complete. Thus the quotient map G — G/G,, induces a group homomorphism =, :

G — G/G,,. Basically any Cauchy sequence in G/G,, must be eventually constant, so a Cauchy

sequence in G becomes eventually constant after reducing mod G,, and =, is the limit of that
sequence.

Moreover it is clear that gy, © vn = Vm. Hence we get a induced homomorphism
v:G— l(in G/Gy.

This map is injective because y((zx)) = Y((yx)) = Y ((zx)) = 7 ((yr)) for all n. Then lim[zy]| =
lim[yx] € G/G,, for each n which means lim(z; — yx) =0 € G. Thus [(zx)] = [(yx)] € G.

Now recall that lenG/G" is the subgroup of the product [], .y G/Gr. In fact a tuple (§,) €
@G/Gn if for each n > m we have g, 1m(§,) = &m. Let (&) € {iLnG/Gn and pick z,, € G such

that [x,] = &, € G/G,. Then (x,) is a Cauchy sequence in G and v((zy)) = (£,). Hence v is
also surjective. O

Proposition 10. Let

0-G -G5G" =0
be an exact sequence of abelian topological groups with each group having a linear topology.
Moreover assume that the topologies on G’ and G” are induced by G. That is if G,, C G are the
open neighbourhoods of 0 in G then those in G’ are G’ N G,, and those in G” are ¢(G,). Then
the induced sequence

002G >GLG" >0

is also exact.

Proof. We have an exact sequence of inverse systems
0—G/(G'NG,) = G/GntoG" /q(Gy) — 0.

and since G'/(G'NG,,) is a surjective system the proposition follows from the exactness properties
of the inverse limit. O

Remark‘ Note that if G has linear topology then the homomorphism+ : G — G induces inclusions
G - G. Thus G can be given a linear topology where the open neighbourhoods of 0 are the

subgroups Gn. The next corollary says that in case of an abelian group with linear topology the
completion is complete.

Corollary 11. Let GG be an abelian group with linear topology then G~G.

Proof. The exact sequences 0 — G,, - G — G /G, — 0 induce an exact sequence
0— é; NS RN G//G\n — 0.

However G/G,, has discrete topology so G/G, = G//CTn Hence G / Gn =G /Gr. Now taking
inverse limits we get the desired isomorphism. ([l



4. COMPLETION OF RINGS AND MODULES

Definition 12: A ring R with a topology is called a topological ring if the ring operations are
continuous in that topology. So in particular it is also a topological abelian group.

Definition 13: Let R be a ring then it is of course an abelian group with respect to addition.
Let a € R. be an ideal. The topology on R is the linear topology where the open
neighbourhoods of 0 are a™.

In this topology the ring multiplication u : R x R — R is also continuous. Let U C R be open
and consider (r,s) € u~1(U). Then rs € U and there is an n such that rs+a® C U. Then clearly
(r+a") x (s+a") C p=1(U) hence p~(U) is open. Hence in this topology R is a topological
ring. The topology is hausdorff if and only if [, a” = {0}.

We can then form the completion Rof R by the construction using Cauchy sequences or as
the direct limit R = hm R/a™. Both the constructions are isomorphic and R has a natural ring
structure. The product of Cauchy sequences is again a Cauchy sequence since multlphcatlon is

continuous. We have a continuous ring homomorphism 2 : R — R. This ring R is called the
a-adic completion of R.

Similarly when M is an R module and a C R is an ideal there is a an a-adic topology on M,
where the open neighbourhoods or 0 are a” M. This mzilies M into a where
R and M both have a-adic topology. The completion M with respect this topology is called the
a-adic completion of M.

Exercise (v). Show that Misa topological R module. Moreover if f : M — N is an R module
homomorphism then f is continuous in the a-adic topologies on M and N and f: M — N is a
continuous R module homomorphism.

Example 5. If R = k[z] the polynomial ring over a field k and a = (z) then as we have already
seen that a-adic completion of R is R = k[[z]].

Example 6. If R = Z and a = (p) for some prime p € Z, then Z, = R is the ring of p-adic
integers. In fact if we have the p-adic norm on Q then the induced topology on Z is the p-adic
topology and Z, C Q,. In fact Q, is the field of fractions of Z,.

5. FILTRATIONS

Definition 14: Let R be a ring and M an R module. A filtration of M is a sequence of
submodules

M= My>D M DMy;D...
Such a filtration will be denoted by M,, and defines a linear topology on M.

If a C R is an ideal, the filtration (M,,) is called an if aM,, C M,,+1 and called
if further there is an integer ng > 0 such that aM,, = M, ;1 for all n > ng.
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Proposition 15. The linear topology defined by any stable a-filtration is the a-adic topology
on M.

Proof. If is enough to show that the open neighbourhoods of 0 are the same in both the topolo-
gies. Since aM,, C M,,1 we have a"M C M, for all n. Which shows M,, are open in the a-adic
topology. Conversely aM,, = M, for n > ng, thus My,4, = a"M,, C a”M. This completes
the proof. O
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