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In this lecture we shall finally prove that if A is noetherian the a-adic completion Â is also
noetherian for any ideal a. First we need to make some more definitions.

Definition 1: Let A be a ring and a ⊂ A an ideal then the associated graded ring Ga(A) is
defined as

Ga(A) =

∞⊕
n=0

an

an+1

with the notation that a0 = A. On the face, it is just an abelian group, but it has a natural
multiplication which makes it a graded ring. Let xi ∈ ai for i = m,n and let xi denote their
images in ai/ai+1 then we define

xnxm = xnxm ∈ am+n/am+n+1.

It is easy to check that this is well defined.

Similarly if M is an A module and (Mn)n≥0 an a-filtration, we can define the associated graded
module

G(M) =

∞⊕
n=0

Mn

Mn+1
.

This has a natural graded Ga(A) module structure, if r ∈ an and x ∈ Mk let r ∈ an/an+1 and
x ∈Mk/Mk+1 then we define

r x = rx ∈Mn+k/Mn+k+1.

It is easy to check that this is well defined.

We need to establish a few easy results about associated graded rings.

Proposition 2. Let A be a noetherian ring a an ideal. Then

(a) Ga(A) is noetherian;

(b) if Â is the a-adic completion then, Ga(A) and Gâ(Â) are isomorphic as graded rings;
(c) if M is a finitely generated A module and (Mn)n≥0 a stable a-filtration of M , then G(M) is

a finitely generated graded Ga(A) module.

Proof. For part (a) note that A is noetherian, a is fintitely generated, hence let

a = (x1, . . . , xn)

and let xi ∈ a/a2, then Ga(A) is generated by x1, . . . , xn as an algebra over A/a. Now since
Ga(A) is a finitely generated algebra over the noetherian ring A/a, henceGa(A) is also noetherian
by the Hilbert basis theorem.

Part (b) follows from the isomorphisms an/an+1 = ân/ân+1 (see Exercise (iii) of the lecture on
graded rings).

Since (Mn)n≥0 is a stable a-filtration there is an j such that akMi = Mj+k. Hence G(M) is
clearly generated by the subgroup

n0⊕
j

Mn

Mn+1
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as a Ga(A) module. Each Mn/Mn+1 is finitely generated over A and annihilated by a, hence it
is finitely generated over A/a. Choosing generators x1,n, . . . , xkn,n it is easy to see that G(M)
is generated by x1,1, . . . , xk1,1, . . . , x1,j , . . . , xkj ,j as a Ga(A) module. �

Remark. Let A be a ring and a ⊂ A an ideal. Let M and N be A modules with a-filtrations
(Mk)k≥0 and (Nk)k≥0.

Suppose φ : M → N is an A module homomorphism such that φ(Mk) ⊂ Nk, then we have
the homomorphisms φn : Mk/Mk+1 → Nk/Nk+1 thus producing an induced Ga(A) module
homomorphism

G(φ) : G(M)→ G(N).

Similarly by passing to the inverse limit of the homomorphisms M/Mk → N/Nk we obtain an

induced Â module homomorphism of the completions

φ̂ : M̂ → N̂ .

Proposition 3. With the notations as in the preceding remark, we have the following results

relating G(φ) and φ̂:

(a) G(φ) is injective ⇒ φ̂ is also injective,

(b) G(φ) is surjective ⇒ φ̂ is also surjective.

Proof. Consider the following commutative diagram where the rows are exact:

0 // Mk/Mk+1
//

G(φ)

��

M/Mk+1
//

αk+1

��

M/Mk
//

αk

��

0

0 // Nk/Nk+1
// N/Nk+1

// N/Nk
// 0

hence, using snake’s lemma we get an exact sequence

0→ ker(G(φ))→ ker(αk+1)→ ker(αk)→ coker(G(φ))→ coker(αk+1)→ coker(αk)→ 0.

By induction it is clear that if ker(G(φ)) = 0 then ker(αk) = 0 for all k. Similarly if coker(G(φ)) =
0 then coker(αk) = 0 for all k. Taking inverse limits we get the result. �

As usual let A be an ring a ⊂ A an ideal, M an A module and (Mn)n≥0 an a-filtration.

Proposition 4. Suppose A is complete in the a-adic topology and ∩nMn = 0.

(1) If G(M) is a finitely generated Ga(A) module, then M is a finitely generated A module.
(2) If G(M) is a noetherian Ga(A) module, then M is a noetherian A module.

Proof. For part (a) choose homogeneous generators ξ1, . . . , ξk of G(M) with the degree of ξi being
n(i). Hence ξi ∈ Mn(i)/Mn(i)+1, and we can choose xi ∈ Mn(i) whose image under the quotient
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map is ξi. We assert that x1, . . . , xk generate M . Let F (i) = A with the stable a-filtration

F
(i)
k =

{
A, k = 0;

an(i)+k, k > 0.

Let φi : F (i) → M be given by φi(1) = xi, then clearly φi(F
(i)
k ) ⊂ Mk. We define F =

F (1) ⊕ · · · ⊕ F (n) and φ : F → M by φ = φ1 ⊕ · · · ⊕ φn. Then Fk = ⊕ni=1F
(i)
k is a stable

a-filtration of F and φ(Fk) ⊂ Mk. Hence by the previous proposition we get a map of graded
Ga(A) modules

G(φ) : G(F )→ G(M).

Moreover, since A = Â we also have F̂ = F and there is a map of completions φ̂ : F → M̂ .

Since G(φ) is surjective by construction, the previous proposition says φ̂ is also surjective. The
following diagram clearly commutes

F
φ

��

φ̂

��

M
β

// M̂

The kernel of β is ∩nMn = 0 hence β is injective φ̂ is surjective, therefore φ is also surjective.
This proves the assertion.

For part (b) we have to show that any submodule M ′ ⊂ M is finitely generated. We have a
a-filtration on M ′ given by M ′k = Mk ∩M ′. Since M ′n/M

′
n+1 is injective the homomorphism of

the associated graded modules G(M ′)→ G(M) is also injective. Thus since G(M) is noetherian
G(M ′) is finitely generated. Moreover, ∩nM ′n ⊂ ∩nMn = 0, hence by part (a), M ′ is also finitely
generated. �

Finally the coveted result of this lecture turns out to be a simple corollary of this proposition.

Theorem 5. Let A be an ring a ⊂ A an ideal and Â the a-adic completion. If A is noetherian

then Â is also noetherian.

Proof. Consider Â as a module over itself. We want to show that it is noetherian. The ideal

â defines a topology on Â and since Â is complete with respect to this topology it must be
hausdorff (Proposition 7 and Corollary 11 of the lecture on completions). Hence

∞⋂
n=0

ân = 0.

Hence by Proposition 4 it is enough to prove that Gâ(Â) is noetherian. However, by Proposition

2 Gâ(Â) is isomorphic to Ga(A) which is noetherian since A is. �

Exercise (i). Show that if A is a noetherian ring then the powerseries ring over A is fintely
many variables A[[x1, . . . , xn]] is also noetherian.

A local ring A is called complete if it is m-adically complete for its maximal ideal m. The
following result is called Hensel’s lemma.
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Exercise (ii). Let A be a complete local ring with maximal ideal m and residue field k = A/m.
For any polynomial f(x) ∈ A[x] denote by f(x) ∈ k[x] the reduction mod m. If f ∈ A[x] is a
monic polynomial and if there are coprime polynomials p, q ∈ k[x] such that

f = pq

then show that there exist monic polynomials g, h ∈ A[x] such that p = g, q = h and f = gh.

Exercise (iii). With the notation of Exercise (ii) show that if f ∈ A[x] is monic and f ∈ k[x]
has a simple root α ∈ k, then f has a simple root a ∈ A such that α = a (mod m).

Exercise (iv). Show that the ring of p-adic integers have all the p− 1-th roots of unity.


