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In this lecture we shall finally prove that if A is noetherian the a-adic completion A is also
noetherian for any ideal a. First we need to make some more definitions.

Definition 1: Let A be a ring and a C A an ideal then the associated graded ring Gq(A) is
defined as
[oe) an
Ga(A) =D -7
n=0

with the notation that a® = A. On the face, it is just an abelian group, but it has a natural
multiplication which makes it a graded ring. Let z; € a' for i = m,n and let 7; denote their
images in a’/a’™! then we define

TnTm = Tniy, € a1 /gm0t
It is easy to check that this is well defined.

Similarly if M is an A module and (M,,),>0 an a-filtration, we can define the associated graded
module

M
G(M) = n_
on =@,

This has a natural graded G,(A) module structure, if » € a” and x € M}, let 7 € a”/a"*! and
T € My /Mj.; then we define

TT=7TT € Mpyr/Mpypqr-
It is easy to check that this is well defined.

We need to establish a few easy results about associated graded rings.

Proposition 2. Let A be a noetherian ring a an ideal. Then

(a) Gq(A) is noetherian;

(b) if A is the a-adic completion then, Gq(A) and G5(A) are isomorphic as graded rings;

(c) if M is a finitely generated A module and (M,,),>0 a stable a-filtration of M, then G(M) is
a finitely generated graded G4(A) module.

Proof. For part (a) note that A is noetherian, a is fintitely generated, hence let
a= (1131,...,1‘71)

and let ; € a/a?, then G4(A) is generated by T1,...,T, as an algebra over A/a. Now since
G4(A) is a finitely generated algebra over the noetherian ring A/a, hence G4(A) is also noetherian
by the Hilbert basis theorem.

Part (b) follows from the isomorphisms a”/a"*! = a"/a" ! (see Exercise (iii) of the lecture on

graded rings).

Since (M,)n>0 is a stable a-filtration there is an j such that a*M; = M; ;. Hence G(M) is
clearly generated by the subgroup

no
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as a G4(A) module. Each M,,/M, is finitely generated over A and annihilated by a, hence it
is finitely generated over A/a. Choosing generators Ty, ..., Tk, n it is easy to see that G(M)
is generated by 11, ., Tp; 15+ T1js -+ Thyj @S @ Gu(A) module. O

Remark. Let A be a ring and a C A an ideal. Let M and N be A modules with a-filtrations
(Mk)kzo and (Nk)kzo.

Suppose ¢ : M — N is an A module homomorphism such that ¢(My) C N, then we have
the homomorphisms ¢, : My/Mii1 — Nj/Ngy1 thus producing an induced Gq(A) module
homomorphism

G(¢) : G(M) — G(N).

Similarly by passing to the inverse limit of the homomorphisms M /M — N/Nj we obtain an
induced A module homomorphism of the completions

¢: M N.

Proposition 3. With the notations as in the preceding remark, we have the following results
relating G(¢) and ¢:

(a) G(¢) is injective = ¢ is also injective,
G

(b)

(¢) is surjective = ¢ is also surjective.

Proof. Consider the following commutative diagram where the rows are exact:

0—— Mk/Mk+1 —_— M/Mk+1 —>M/Mk —0

lG(ab) lakﬂ lak

0 —— Ni/Niy1 — N/Ngy1 —— N/Np, —— 0
hence, using snake’s lemma we get an exact sequence

0 — ker(G(¢)) — ker(agy1) — ker(ay) — coker(G(¢)) — coker(agy1) — coker(ay) — 0.

By induction it is clear that if ker(G(¢)) = 0 then ker(ay) = 0 for all k. Similarly if coker(G(¢)) =
0 then coker(ay) = 0 for all k. Taking inverse limits we get the result. O

As usual let A be an ring a C A an ideal, M an A module and (M,,),>0 an a-filtration.

Proposition 4. Suppose A is complete in the a-adic topology and N, M,, = 0.

(1) If G(M) is a finitely generated G4(A) module, then M is a finitely generated A module.
(2) If G(M) is a noetherian G4(A) module, then M is a noetherian A module.

Proof. For part (a) choose homogeneous generators &1, . . ., & of G(M) with the degree of &; being
n(i). Hence & € M, ;) /My (i)+1, and we can choose z; € M, ;) whose image under the quotient



map is &. We assert that 1, ...,z generate M. Let F() = A with the stable a-filtration

@ _ JA, k=0;
F = A
k {an(z)-‘rk, E>o0.

Let ¢; : F() — M be given by ¢;(1) = a;, then clearly ¢;(F\") C Mj. We define F =
FOg...o FM and ¢ : F - M by ¢ = ¢ @ -+ ® ¢p. Then Fj, = @?ZlF,gl) is a stable
a-filtration of F' and ¢(F)) C M. Hence by the previous proposition we get a map of graded
G4(A) modules

G(¢) : G(F) — G(M).

Moreover, since A = A we also have F' = F and there is a map of completions gg . F — M.
Since G(¢) is surjective by construction, the previous proposition says ¢ is also surjective. The

following diagram clearly commutes
F
ZAN
13 —~

M—M

~

The kernel of g is N, M,, = 0 hence 3 is injective ¢ is surjective, therefore ¢ is also surjective.
This proves the assertion.

For part (b) we have to show that any submodule M’ C M is finitely generated. We have a
a-filtration on M’ given by M; = M, N M'. Since M, /M), is injective the homomorphism of
the associated graded modules G(M') — G(M) is also injective. Thus since G(M) is noetherian
G(M') is finitely generated. Moreover, N, M/, C N, M,, = 0, hence by part (a), M’ is also finitely
generated. Il

Finally the coveted result of this lecture turns out to be a simple corollary of this proposition.

Theorem 5. Let A be an ring a C A an ideal and A the a-adic completion. If A is noetherian
then A is also noetherian.

Proof. Consider A as a module over itself. We want to show that it is noetherian. The ideal
a defines a topology on A and since A is complete with respect to this topology it must be
hausdorff (Proposition 7 and Corollary 11 of the lecture on completions). Hence

o0

(& =o.

n=0

Hence by Proposition 4|it is enough to prove that Ga(g) is noetherian. However, by Proposition
GH(A) is isomorphic to G4(A) which is noetherian since A is. O

Exercise (i). Show that if A is a noetherian ring then the powerseries ring over A is fintely
many variables A[[x1,...,z,]] is also noetherian.

A local ring A is called complete if it is m-adically complete for its maximal ideal m. The
following result is called
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Exercise (ii). Let A be a complete local ring with maximal ideal m and residue field £ = A/m.
For any polynomial f(z) € Alx] denote by f(x) € k[z] the reduction mod m. If f € A[z] is a
monic polynomial and if there are coprime polynomials p, ¢ € k[x| such that

f=nrq
then show that there exist monic polynomials g, h € A[x] such that p =g, ¢ = h and f = gh.

Exercise (iii). With the notation of Exercise show that if f € A[x] is monic and f € k[z]
has a simple root « € k, then f has a simple root a € A such that & = a (mod m).

Exercise (iv). Show that the ring of p-adic integers have all the p — 1-th roots of unity.



