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Abstract. Given a fixed Siegel cusp form of genus two, we consider a family of linear
maps between the spaces of Siegel cusp forms of genus two by using the Rankin-Cohen
brackets and then we compute the adjoint maps of these linear maps with respect to
the Petersson scalar product. The Fourier coefficients of the Siegel cusp forms of genus
two constructed using this method involve special values of certain Dirichlet series
of Rankin type associated to Siegel cusp forms. This is a generalization of the work
due to W. Kohnen (Math. Z., 207, 657-660 [1991]) and S. D. Herrero (Ramanujan J.,
36, 529-536 [2015]) in case of elliptic modular forms to the case of Siegel cusp forms
which is also considered earlier by M. H. Lee (Complex Var. Theory Appl. 31, 97-103
[1996]) for a special case.

1. Introduction

Using the existence of adjoint linear maps and properties of Poincaŕe series in [11]
W. Kohnen constructed certain linear maps between spaces of modular forms with
the property that the Fourier coefficients of the image of a form involve special values
of certain Dirichlet series attached to these forms. In fact, Kohnen constructed the
adjoint map with respect to the usual Petersson scalar product of the product map
by a fixed cusp form. This result has been generalized by several authors to other
automorphic forms (see the list [4, 5, 15, 16, 21, 23]). In particular, M. H. Lee [15] has
analogous results for Siegel modular forms, where he uses C∞ Siegel modular forms
and the holomorphic projection operator developed by A. A. Panchishkin in [18].

There are many interesting connections between differential operators and modular
forms and many interesting results have been found. In [19, 20], Rankin gave a general
description of the differential operators which send modular forms to modular forms.
In [6], H. Cohen constructed bilinear operators and obtained elliptic modular forms
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with interesting Fourier coefficients. In [24, 25], Zagier studied the algebraic properties
of these bilinear operators and called them Rankin–Cohen brackets.

The work of Kohnen in [11] has been generalized by S. D. Herrero recently in [8],
where the author constructed the adjoint map using the Rankin-Cohen brackets by a
fixed cusp form instead of the product map. Recently, we extended the work of S. D.
Herrero to the case of Jacobi forms [10] which generalise the result of H. Sakata in [21].

Rankin-Cohen brackets for Siegel modular forms of genus two were studied in [3]
explicitly and existence of recursion formula in [7] for general genus. In this article we
generalise the work of S. D. Herrero to the case of Siegel modular forms of genus two.
We follow the same exposition as given in [10].

2. Preliminaries on Sigel Modular forms

Let H2 := {Z = X + iY ∈ M2×2(C) | Zt = Z, Y > 0} be the Siegel upper half-plane.
Let Γ2 be the symplectic group Sp4(Z) of genus 2 defined as

Γ2 :=

{(
A B
C D

)
| A,B,C,D ∈M2×2(Z), ABt = BAt, CDt = DCt, ADt −BCt = I2

}
.

The group Γ2 acts on H2 via(
A B
C D

)
· Z = (AZ +B)(CZ +D)−1.

Let k be a fixed positive integer. If M =

(
A B
C D

)
∈ Γ2 and F be a complex valued

function on H2, then define

F |kM := det(CZ +D)−kF (M · Z).

A Siegel modular form of weight k and genus 2 is a holomorphic function F : H2 → C
satisfying F |kM = F, ∀M ∈ Γ2 and having a Fourier expansion of the form

F (Z) =
∑
T≥0

A(T )e2πi(tr(TZ)), (1)

where the summation runs over positive semidefinite half-integral (i.e., 2tij, tii ∈ Z)
2×2 matrices T. We denote the space of Siegel modular forms of weight k and genus 2
on Γ2 by Mk(Γ2). Further, we say F is a cusp form if and only if the summation in (1)
runs over positive definite half-integral matrices T. We denote the space of all Siegel
cusp forms by Sk(Γ2). One has the following estimate for the Fourier coefficients of
Siegel cusp forms of genus 2.

Theorem 2.1. [12, 13, 1] Let F be a Siegel cusp form of weight k and genus 2 with
Fourier coefficients A(T ). Then

A(T ) <<F,ε (det T )k/2−13/36+ε (ε > 0). (2)
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The Petersson scalar product on Sk(Γ2) is defined as

〈F,G〉 =

∫
Γ2\H2

F (Z)G(Z)(det Y )kdZ,

where Z = X+ iY and dZ = (det Y )−3dXdY is an invariant measure under the action
of Γ2 on H2. The space (Sk(Γ2), 〈, 〉) is a finite dimensional Hilbert space. For basic
theory on Siegel modular forms, we refer to [2, 17].

2.1. Poincaŕe series.

Definition 2.2. Let k > 6 be a fixed positive integer and T be a fixed symmetric
positive definite half-integral 2 × 2 matrix. Then the T -th Poincaŕe series of weight k
and genus 2 is defined as

Pk,T (Z) :=
∑

M∈∆\Γ2

e2πi(tr(TZ))|kM. (3)

Here ∆ :=

{(
I2 S
0 I2

)
| S ∈M2×2(Z), St = S

}
is a subgroup of Γ2. It is well known

that Pk,T ∈ Sk(Γ2).

The Poincaŕe series has the following property.

Lemma 2.3. [14] Let F ∈ Sk(Γ2) with Fourier expansion

F (Z) =
∑
T>0

A(T )e2πi(tr(TZ)).

Then

〈F, Pk,T 〉 = ck(det T )−k+ 3
2A(T ), (4)

where

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2).

2.2. Rankin-Cohen Brackets for Siegel modular forms of genus 2. Let k, l
be positive integers and ν ≥ 0 be an integer. Let F and G be two complex valued
holomorphic functions on H2. Let D be the differential operator defined by

D := 4
∂

∂τ

∂

∂τ ′
− ∂2

∂z2
, for Z =

(
τ z
z τ ′

)
∈ H2.

Define the ν-th Rankin-Cohen bracket of F and G by

[F,G]ν :=
∑

r+s+p=ν

Cr,s,p(k, l) Dp(Dr(F )Ds(G)), (5)

where

Cr,s,p(k, l) =
(k + ν − 3/2)s+p

r!

(l + ν − 3/2)r+p
s!

(−(k + l + ν − 3/2))r+s
p!

,
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and
(x)m =

∏
06i6m−1

(x− i).

Remark 2.1. The 0-th Rankin-Cohen bracket is the usual product i.e., [F,G]0 = FG.

Remark 2.2. One has the following relation

[F |kM,G|lM ]ν = [F,G]|k+l+2νM, ∀M ∈ Γ2. (6)

Theorem 2.4. [3, 7] Let k and l are positive integers and ν > 0 be an integer. Let
F ∈Mk(Γ2) and G ∈Ml(Γ2). Then

[F,G]ν ∈Mk+l+2ν(Γ2).

If ν > 0, then
[F,G]ν ∈ Sk+l+2ν(Γ2).

2.3. Certain Dirichlet series associated to Siegel modular forms. Let F ∈
Sk(Γ2) and G ∈ Sl(Γ2) with Fourier coefficients A(T ) and B(T ) respectively, then for a
fixed positive definite 2× 2 matrix S and a non-negative integer m, the Dirichlet series
LF,G;S,m is defined as

LF,G;S,m(σ) =
∑
T>0

det (T )mA(T + S)B(T )

(det (T + S))σ
. (7)

The above series converges for Re(σ) > k+l
2
−m + 5

18
. Using the special values of the

above series for m = 0, M. H. Lee [15] constructed Siegel cusp forms using the adjoint
w.r.t. the Petersson scalar product of the product map by a fixed Siegel cusp form,
which generalises the work of Kohnen in case of elliptic cusp forms [11]. The series
for m = 0, also appeared [5] in the study of mixed Siegel modular forms. We use the
Rankin-Cohen bracket of Siegel modular forms of genus 2 and generalize the work of
M. H. Lee, and hence the work of S. D. Herrero [8] in the case elliptic modular forms.
Now we state the main theorem.

3. Statement of the Theorem

For a fixed G ∈ Sl(Γ2) and an integer ν ≥ 0, consider the map

TG,ν : Sk(Γ2)→ Sk+l+2ν(Γ2)

defined by
TG,ν(F ) = [F,G]ν .

Then TG,ν is a C-linear map between finite dimensional Hilbert spaces and therefore
has an adjoint map T ∗G,ν : Sk+l+2ν(Γ2)→ Sk(Γ2) given by

〈F, TG,ν(H)〉 = 〈T ∗G,ν(F ), H〉, ∀F ∈ Sk+l+2ν(Γ2) and H ∈ Sk(Γ2).

Now we compute the Fourier coefficients of T ∗G,ν(F ) in terms of the special values of
Dirichlet series defined in (7).
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Theorem 3.1. Let k > 6, l be natural numbers and ν ≥ 0 be a fixed integer. Let
G ∈ Sl(Γ2) with Fourier expansion

G(Z) =
∑
T1>0

A(T1)e2πi(tr(T1Z)).

Then the image of any cusp form F ∈ Sk+l+2ν(Γ2) with Fourier expansion

F (Z) =
∑
T2>0

B(T2)e2πi(tr(T2Z)),

under T ∗G,ν is given by

T ∗G,ν(F )(Z) =
∑
T>0

C(T )e2πi(tr(TZ)),

where

C(T ) = α(k, l, ν)
∑

r+s+p=ν

Cr,s,p(k, l)(det T )k+r−3/2 LF,G;T,s(k + l + 2ν − (p+ 3/2)),

with

α(k, l, ν) =
(−1)νΓ2(k + l + 2ν − 3

2
)

2
√
πΓ(k − 3

2
)Γ(k − 2)(4π)2(l+ν)

,

and the Gamma function Γ2(σ) is defined as

Γ2(σ) =

∫
Y
e−trY (det Y )σ−3/2dY, for Re(σ) > 3/2, (8)

where Y = {Y ∈M2×2(C) | Y t = Y > 0} .

Remark 3.1. Using the estimate given in Theorem 2.1, one can show that the above
series converges absolutely.

Remark 3.2. Fixing G(Z) ∈ Sl(Γ2) and suppose that Sk(Γ2) is the one dimensional
space generated by F (Z), then applying the above theorem we get T ∗G,ν(H)(Z) =
αGF (Z) for some constant αG and for all H ∈ Sk+l+2ν(Γ2). Now equating the T -th
Fourier coefficients both the sides, we get a relation among the special values of the
associated Dirichlet series LH,G;T,m (7) with the T -th Fourier coefficients of F (Z). For
example taking G = χ10 the Igusa cusp form of weight 10 (see [9]) and H = χ2

10,
then T ∗χ10,0

(χ2
10) = αχ10χ10 for some constant αχ10 and then equating the T -th Fourier

coefficients on both sides, we get a relation among the special values of the associated
Dirichlet series Lχ2

10,χ10;T,0 with the T -th Fourier coefficients of χ10. Similarly taking

G = χ10 and H = Υ20 (the Hecke-eigen form of weight 20, see [22]) then T ∗χ10,0
(Υ20) =

βχ10χ10 for some constant βχ10 and then equating the T -th Fourier coefficients on both
sides, we get a relation among the special values of the associated Dirichlet series
LΥ20,χ10;T,0 with the T -th Fourier coefficients of χ10.
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4. Proof of Theorem 3.1

We need the following lemma to proof the main theorem.

Lemma 4.1. Using the same notation as in Theorem 3.1, the sum∑
M∈∆\Γ2

∫
Γ2\H2

|F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2ν |dZ

converges.

Proof. One can follow the same method as given in Lemma 1 in [8] or Lemma 4.1 in
[10] to get a proof. �

Now we give a proof of Theorem 3.1. Write

T ∗G,ν(F )(Z) =
∑
T>0

C(T )e2πi(tr(TZ)).

Using Lemma 2.3, we have

〈T ∗G,νF, Pk,T 〉 = ck(det T )−k+ 3
2C(T ),

where
ck = 2

√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2).

On the other hand, by definition of the adjoint map we have

〈T ∗G,νF, Pk,T 〉 = 〈F, TG,ν(Pk,T )〉 = 〈F, [Pk,T , G]ν〉.
Hence we get

C(T ) =
(det T )k−

3
2

ck
〈F, [Pk,T , G]ν〉. (9)

By definition,

〈F, [Pk,T , G]ν〉 =

∫
Γ2\H2

F (Z)[Pk,T , G]ν (Z) (det Y )k+l+2νdZ

=

∫
Γ2\H2

F (Z)[
∑

M∈∆\Γ2

e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ

=

∫
Γ2\H2

F (Z)
∑

M∈∆\Γ2

[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ

=

∫
Γ2\H2

∑
M∈∆\Γ2

F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ.

By Lemma 4.1, we can interchange the sum and the integration in 〈F, [Pk,T , G]ν〉, which
gives

〈F, [Pk,T , G]ν〉 =
∑

M∈∆\Γ2

∫
Γ2\H2

F (Z)[e2πi(tr(TZ)) |k M,G]ν(Z) (det Y )k+l+2νdZ.
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Using the change of variable Z to M−1 · Z in each integral and using (6), we get

〈F, [Pk,T , G]ν〉 =
∑

M∈∆\Γ2

∫
M ·Γ2\H2

F (Z)[e2πi(tr(TZ)), G]ν(Z) (det Y )k+l+2νdZ.

Now using the Rankin unfolding argument, we see that the above sum equals to∫
∆\H2

F (Z)[e2πi(tr(TZ)), G]ν(Z) (det Y ))k+l+2νdZ

=

∫
∆\H2

F (Z)
∑

r+s+p=ν

Cr,s,p(k, l)Dp(Dr(e2πi(tr(TZ)))Ds(G(Z))) (det Y )k+l+2νdZ

=
∑

r+s+p=ν

Cr,s,p(k, l)

∫
∆\H2

F (Z) Dp(Dr(e2πi(tr(TZ)))Ds(G(Z))) (det Y )k+l+2νdZ. (10)

The repeated action of the operator D on e2πi(tr(TZ)) gives

Dr(e2πi(tr(TZ))) = (4πi)2r(det T )re2πi(tr(TZ)),

and
Ds(G(Z)) = (4πi)2s

∑
T1>0

A(T1)(det T1)se2πi(tr(T1Z)).

Now replacing F and G by their Fourier expansions in (10), we have

〈F, [Pk,T , G]ν〉 = (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∫

∆\H2

(∑
T2>0

B(T2)e2πi(tr(T2Z))

)

×

(∑
T1>0

(det T1)s(det(T + T1))pA(T1)e−2πitr(T+T1)Z

)
(det Y )k+l+2νdZ

= (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1) B(T2)

×
∫

∆\H2

e2πi(tr(T2Z)) e−2πitr(T+T1)Z(det Y )k+l+2νdZ

= (4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1) B(T2)

×
∫

∆\H2

e2πi(tr(T2−(T+T1))X))) e−2π(tr(T2+T+T1)Y )(det Y )k+l+2ν dXdY

det (Y )3
. (11)

We know that the set F := {Z = X + iY ∈ H2 | X ∈ X, Y ∈ Y} is a fundamental
domain for the action of ∆ on H2, where

X =

{
X =

(
u x
x u′

)
| −1

2
6 u 6

1

2
,
−1

2
6 x 6

1

2
,
−1

2
6 u′ 6

1

2

}
,
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and

Y =
{
Y ∈M2×2(C) | Y t = Y > 0

}
.

Integrating over this fundamental domain, 〈F, [Pk,T , G]ν〉 equals

(4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T2>0

∑
T1>0

(det T1)s(det(T + T1))p A(T1) B(T2)

×
∫
X

∫
Y
e2πi(tr(T2−(T+T1))X))) e−2π(tr(T2+T+T1)Y )(det Y )k+l+2ν−3dXdY .

Integrating on X first, 〈F, [Pk,T , G]ν〉 equals

(4πi)2ν
∑

r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T1>0

(det T1)s(det(T + T1))p A(T1) B(T + T1)

×
∫
Y
e−4π(tr(T+T1)Y )(det Y )k+l+2ν−3dY. (12)

Now integration over Y gives∫
Y
e−4π(tr(T+T1)Y )(det Y )k+l+2ν−3dY =

Γ2

(
k + l + 2ν − 3

2

)
(det (4π(T + T1)))k+l+2ν− 3

2

. (13)

Substituting the value from (13) in (12), 〈F, [Pk,T , G]ν〉 equals

(−1)ν
Γ2

(
k + l + 2ν − 3

2

)
(4π)2(k+l+ν− 3

2
)

∑
r+s+p=ν

Cr,s,p(k, l)(det T )r
∑
T1>0

(det T1)s A(T1) B(T + T1)

(det(T + T1))k+l+2ν−(p+ 3
2

)
. (14)

Now substituting 〈F, [Pk,T , G]ν〉 from (14) in (9), we get the required expression for
C(T ) as given in Theorem 3.1.
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