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Abstract In this paper, we find a basis for the space of modular forms of weight 2
on Γ1(48) and then use this basis to find formulas for the number of representations
of a positive integer n by certain quaternary quadratic forms which are of the form∑4

i=1 ai x2
i ,

∑2
i=1 bi(x2

2i−1+ x2i−1x2i+ x2
2i) and a1x2

1 +a2x2
2 +b1(x2

3 + x3x4+ x2
4), where

ai’s belong to {1, 2, 3, 4, 6, 12} and bi’s belong to {1, 2, 4, 8, 16}. In [1], A. Alaca et
al. considered similar problem for the quaternary forms (which are diagonal) with
coefficients 1, 2, 3, 6. Thus, our work extends their results with additional coefficients
4 and 12 and further in our work, we consider twomore types of quaternary quadratic
forms which are not diagonal. Moreover, our formulas for the diagonal quaternary
quadratic forms with coefficients in {1, 2, 3, 4, 6, 12} include explicit formulas for the
number of representations (of a natural number) by 8 of the Ramanujan’s universal
quaternary quadratic forms [19]. We also determine some of the universal quadratic
forms in the other two types of forms considered in our work.
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1 Introduction

In this paper we consider the problem of finding the number of representations of a
natural number by the following three types of quaternary quadratic forms given by

Q1 : a1x2
1 + a2x2

2 + a3x2
3 + a4x2

4,

Q2 : b1(x2
1 + x1x2 + x2

2) + b2(x2
3 + x3x4 + x2

4),

Q3 : a1x2
1 + a2x2

2 + b1(x2
3 + x3x4 + x2

4),

where the coefficients ai ∈ {1, 2, 3, 4, 6, 12}, 1 6 i 6 4 and bi ∈ {1, 2, 4, 8, 16},
i = 1, 2. Without loss of generality we may assume that a1 6 a2 6 a3 6 a4, b1 ≤ b2
and gcd(a1, a2, a3, a4) = 1, gcd(b1, b2) = 1, gcd(a1, a2, b1) = 1. Finding explicit
formula for the number of representations of n by these types of quadratic forms is a
classical problem in number theory. The classical formula of Jacobi for the sum of
four squares correspond to the quadratic form Q1 with (a1, a2, a3, a4) = (1, 1, 1, 1).
There are several works in the literature which give formulas for the representa-
tion numbers corresponding to quaternary quadratic forms with coefficients. We list
some of them here [1, 2, 3, 4, 5, 6, 7, 8, 9, 22]. In [1], A. Alaca et al. considered
35 quadratic forms of type Q1 with coefficients ai ∈ {1, 2, 3, 6}. They obtained
explicit bases for the spaces of modular forms of weight 2 on Γ0(24) with char-
acter χ0 (trivial character modulo 24) or χd =

(
d
·

)
for d = 8, 12, 24 and used

these bases to determine formulas for the number of representations of a natural
number by Q1, with ai ∈ {1, 2, 3, 6}. However, out of these 35 quadratic forms
of type Q1, formulas for 18 forms appeared in the works [2, 4, 5, 9]. More pre-
cisely, denoting the quadratic forms in Q1 by the quadruple (a1, a2, a3, a4), the
forms (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 3, 3), (1, 1, 6, 6), (1, 2, 3, 6), (2, 2, 3, 3) were consid-
ered in [2], the forms (1, 1, 1, 3), (1, 1, 2, 6), (1, 2, 2, 3), (1, 3, 3, 3), (1, 3, 6, 6), (2, 3, 3, 6)
were considered in [4], the forms (1, 1, 1, 2), (1, 2, 2, 2)were considered in [5, 22] and
the forms (1, 1, 2, 3), (1, 2, 2, 6), (1, 3, 3, 6), (2, 3, 6, 6) were considered in [9]. There
are several works which deal with some of these cases. For details we recommend
the reader to look at the references appearing in the works of Williams and his
co-authors mentioned here.

The total number of quadratic forms Q1, with ai ∈ {1, 2, 3, 4, 6, 12} is 126. Out
of this, 35 cases come from the works of [1, 2, 4, 5, 9] (when ai , 4, 12) and so we
do not consider these cases in our present work. Further, there are 36 cases which
have the property that gcd(coefficients) > 1. Therefore, in our work we consider only
the remaining 55 cases of quadratic forms Q1. There are only 4 quadratic forms of
type Q2 and there are 65 quadratic forms of type Q3 (such that the coefficients have
no common factors). In the following table we give the list of quadratic forms Qi ,
i = 1, 2, 3 considered in our work (55 forms in Q1, 4 forms in Q2 and 65 forms in Q3).
These are listed according to the modular forms space (in which the corresponding
theta series belong). Note that in place of M2(48, χ), we mention only the character
χ which is either χ0 (trivial character modulo 48) or χd , d = 8, 12, 24.
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Table 1. (List of quadratic forms)

Space (a1, a2, a3, a4) for Q1
(1, 1, 1, 4), (1, 1, 4, 4), (1, 1, 3, 12), (1, 1, 12, 12), (1, 2, 2, 4), (1, 2, 6, 12),

χ0 (1, 3, 3, 4), (1, 3, 4, 12), (1, 4, 4, 4), (1, 4, 6, 6), (1, 4, 12, 12),
(2, 2, 3, 12), (2, 3, 4, 6), (3, 3, 4, 4), (3, 4, 4, 12)

(1, 1, 2, 4), (1, 1, 6, 12), (1, 2, 4, 4), (1, 2, 3, 12), (1, 2, 12, 12),
χ8 (1, 3, 4, 6), (1, 4, 6, 12), (2, 3, 3, 4), (2, 3, 4, 12), (3, 4, 4, 6)

(1, 1, 1, 12), (1, 1, 3, 4), (1, 1, 4, 12), (1, 2, 2, 12), (1, 2, 4, 6), (1, 3, 3, 12),
χ12 (1, 3, 4, 4), (1, 3, 12, 12), (1, 4, 4, 12), (1, 6, 6, 12), (1, 12, 12, 12), (2, 2, 3, 4),

(2, 3, 6, 12), (3, 3, 3, 4), (3, 3, 4, 12), (3, 4, 4, 4), (3, 4, 6, 6), (3, 4, 12, 12)
(1, 1, 2, 12), (1, 1, 4, 6), (1, 2, 3, 4), (1, 2, 4, 12), (1, 3, 6, 12), (1, 4, 4, 6),

χ24 (1, 6, 12, 12), (2, 3, 3, 12), (2, 3, 4, 4), (2, 3, 12, 12), (3, 3, 4, 6), (3, 4, 6, 12)
(b1, b2) for Q2

χ0 (1, 2), (1, 4), (1, 8), (1, 16)
(a1, a2, b1) for Q3

(1, 3, 1), (1, 3, 2), (1, 3, 4), (1, 3, 8), (1, 3, 16), (1, 12, 1), (1, 12, 2), (1, 12, 4), (1, 12, 8),
χ0 (1, 12, 16), (2, 6, 1), (3, 4, 1), (3, 4, 2), (3, 4, 4), (3, 4, 8), (3, 4, 16), (4, 12, 1)

(1, 6, 1), (1, 6, 2), (1, 6, 4), (1, 6, 8), (1, 6, 16), (2, 3, 1),
χ8 (2, 3, 2), (2, 3, 4), (2, 3, 8), (2, 3, 16), (2, 12, 1), (4, 6, 1)

(1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 8), (1, 1, 16), (1, 4, 1), (1, 4, 2), (1, 4, 4),
χ12 (1, 4, 8), (1, 4, 16), (2, 2, 1), (3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 8), (3, 3, 16),

(3, 12, 1), (3, 12, 2), (3, 12, 4), (3, 12, 8), (3, 12, 16), (4, 4, 1), (6, 6, 1), (12, 12, 1)
(1, 2, 1), (1, 2, 2), (1, 2, 4), (1, 2, 8), (1, 2, 16), (2, 4, 1), (3, 6, 1),

χ24 (3, 6, 2), (3, 6, 4), (3, 6, 8), (3, 6, 16), (6, 12, 1)

Some of our formulas were also proved in works of K. S. Williams and his co-
authors [2, 3, 4, 5, 6, 7, 8] , which we mention in the table below. (These formulas
were obtained using different methods.)

Table A. (List of earlier results)
Type Cases Ref.

(1, 1, 1, 4), (1, 1, 4, 4), (1, 1, 3, 12), (1, 1, 12, 12), (1, 2, 2, 4), (1, 3, 3, 4),
(1, 3, 4, 12), (1, 4, 4, 4), (1, 4, 6, 6), (1, 4, 12, 12),

(2, 2, 3, 12), (3, 3, 4, 4), (3, 4, 4, 12) [2]
Q1 (1, 1, 1, 12), (1, 1, 3, 4), (1, 1, 4, 12), (1, 2, 2, 12), (1, 3, 3, 12), (1, 3, 4, 4),

(1, 3, 12, 12), (1, 4, 4, 12), (1, 6, 6, 12), (1, 12, 12, 12), (2, 2, 3, 4), (3, 3, 3, 4),
(3, 3, 4, 12), (3, 4, 4, 4), (3, 4, 6, 6), (3, 4, 12, 12) [3]

(1, 2, 4, 6) [4]
(1, 1, 2, 4), (1, 2, 4, 4) [5]

Q2 (1, 2), (1, 4) [6]
(1, 1, 1), (1, 1, 2), (1, 1, 4), (3, 3, 1), (3, 3, 2), (3, 3, 4) [4]

Q3 (1, 1, 8), (1, 4, 2), (3, 12, 2) [7]
(1, 3, 1), (1, 3, 2), (1, 3, 4), (1, 4, 4), (2, 2, 1), (6, 6, 1) [8]
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Let N,Z,Q and C denote the sets of natural numbers, integers, rational numbers
and complex numbers respectively. For n ∈ N, let the number of representations of
n by the quadratic forms Q1, Q2 and Q3 be denoted respectively by

N1(a1, a2, a3, a4; n) = #{(x1, x2, x3, x4) ∈ Z
4 : a1x2

1 + a2x2
2 + a3x2

3 + a4x2
4 = n}, (1)

N2(b1, b2; n) = #{(x1, x2, x3, x4) ∈ Z
4 : b1(x2

1+x1x2+x2
2)+b2(x2

3+x3x4+x2
4) = n}

(2)
and

N3(a1, a2, b1; n) = #{(x1, x2, x3, x4) ∈ Z
4 : a1x2

1+a2x2
2+b1(x2

3+x3x4+x2
4) = n}.

(3)
We observe that the generating functions corresponding to the quaternary quadratic
forms considered in our work are modular forms of weight 2 on Γ1(48). So, we
construct explicit bases for the spaces of modular forms of weight 2 on Γ0(48)
with character χ (modulo 48) and use them to give formulas forN1(a1, a2, a3, a4; n),
N2(b1, b2; n) andN3(a1, a2, b1; n). It is to be noted that in hiswork [19], S. Ramanujan
gave the list of 55 universal quadratic forms of type Q1. Our work includes 8 out of
these 55 forms which are given by (a1, a2, a3, a4) = (1, 1, 1, 4), (1, 1, 2, 4), (1, 1, 2, 12),
(1, 1, 3, 4), (1, 2, 3, 4), (1, 2, 4, 4), (1, 2, 4, 6) and (1, 2, 4, 12). We give explicit formulas
for the number of representations of these 8 quadratic forms in Theorem 2.1. In §2.1,
we give simplified expressions for some of the formulas obtained in our work and
as a consequence deduce that the quadratic form x2

1 + x1x2 + x2
2 + `(x

2
3 + x3x4 + x2

4)
is universal when ` = 2 and non-universal when ` = 4. Using the formulas for
N2(b1, b2; n) and N3(a1, a2, b1; n), we show the universality and non-universality of
some of the forms in these two types.

2 Preliminaries and Statement of Results

We use the theory of modular forms to prove our results and so we first fix our
notations and present some of the basic facts on modular forms. For positive integers
k, N ≥ 1 and a Dirichlet character χ modulo N with χ(−1) = (−1)k , let Mk(N, χ)
denote the C- vector space of holomorphic modular forms of weight k for the con-
gruence subgroup Γ0(N), with character χ. Let us denote by Sk(N, χ), the subspace
of cusp forms in Mk(N, χ). The modular forms space is decomposed into the space
of Eisenstein series (denoted by Ek(N, χ)) and the space of cusp forms Sk(N, χ) and
one has

Mk(N, χ) = Ek(N, χ) ⊕ Sk(N, χ). (4)

Explicit basis for the space Ek(N, χ) can be obtained using the following construc-
tion. For details we refer to [17, 21]. Suppose that χ and ψ are primitive Dirichlet
characters with conductors N and M , respectively. For a positive integer k ≥ 2, let
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Ek,χ,ψ(z) := c0 +
∑
n≥1

©­«
∑
d |n

ψ(d)χ(n/d)dk−1ª®¬ qn, (5)

where q = e2πiz (z ∈ C, Im(z) > 0) and

c0 =

{
0 if N > 1,
−

Bk,ψ

2k if N = 1,

with Bk,ψ denoting the generalized Bernoulli number with respect to the character ψ.
Then, the Eisenstein series Ek,χ,ψ(z) belongs to the space Mk(N M, χ/ψ), provided
χ(−1)ψ(−1) = (−1)k and N M , 1. We give a notation to the inner sum in (5):

σk−1,χ,ψ(n) :=
∑
d |n

ψ(d)χ(n/d)dk−1. (6)

In this paper we use the Eisenstein series of the above type with the following
11 pairs of characters given by (1, χ8), (χ8, 1), (1, χ12), (χ12, 1), (1, χ24), (χ24, 1),
(χ−4, χ−4), (χ−4, χ−3), (χ−3, χ−4), (χ−3, χ−8), (χ−8, χ−3). For a square-free integer
d ≡ 1 (mod 4), the Dirichlet character χd (modulo |d |) denotes the real quadratic
character

(
d
·

)
, whereas for a square-free integer d ≡ 2, 3 (mod 4), the Dirichlet

character χ4d (modulo 4|d |) is the real quadratic character
(

4d
·

)
. These characters

are nothing but the Kronecker symbol. The character 1 is the trivial character given
by 1(n) = 1 for all n ≥ 1. The constant term c0 corresponding to each of these 11
pairs is given in the following table.

(χ, ψ) c0
(χ8, 1), (χ12, 1), (χ24, 1), (χ−4, χ−4), (χ−4, χ−3), (χ−3, χ−4), (χ−3, χ−8), (χ−8, χ−3) 0

(1, χ8) − 1
2

(1, χ12) −1
(1, χ24) −3

When χ = ψ = 1 (i.e., when N = M = 1) and k ≥ 4, we have Ek,χ,ψ(z) = −
Bk

2k Ek(z),
where Ek(z) is the normalized Eisenstein series of weight k in the space Mk(1),
defined by

Ek(z) = 1 −
2k
Bk

∑
n≥1

σk−1(n)qn. (7)

In the above σr (n) is the sum of the r-th powers of the positive divisors of n and

Bk is the k-th Bernoulli number defined by
x

ex − 1
=

∞∑
m=0

Bm

m!
xm. We also need the

Eisenstein series of weight 2, which is a quasimodular form of weight 2, depth 1 on
SL2(Z) and is given by

E2(z) = 1 − 24
∑
n≥1

σ(n)qn.

(Note that σ(n) = σ1(n).) Let
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η(z) = q1/24
∏
n≥1
(1 − qn)

denote the Dedekind eta function. Then, an eta-quotient is a finite product of integer
powers of η(z) and we denote it as

∏s
i=1 η

ri (diz), where di’s are positive integers
and ri’s are non-zero integers. For more details on holomorphicity/modularity of
eta-quotients one may refer to [14].

In the case of the space of cusp forms Sk(N, χ), we use a basis consisting of
newforms of level N and oldforms generated by the newforms of lower level d, d |N ,
χ modulo d, d , N . However, when χ = χ12, we construct a basis for the space
of newforms, which are not Hecke eigenforms. For a basic theory of newforms we
refer to [10, 16] and for details on modular forms, we refer to [15, 17, 21].

We now state the main results of this paper. In the following statements χ denotes
a Dirichlet character modulo 48, which is either the principal character modulo 48,
denoted as χ0 or the Kronecker symbol χd =

(
d
·

)
, where d = 8, 12, or 24. For each

such χ, let `χ denote the dimension of the C- vector space M2(48, χ). Then

`χ =

{
14 if χ = χ0 or χ12,

12 if χ = χ8 or χ24.

Theorem 2.1 Let n ∈ N. For each entry (a1, a2, a3, a4) corresponding to Q1 in Table
1, the associated theta series is a modular form of weight 2 on Γ0(48) with character
χ. Therefore, using the basis given Table B (in §3.5), we have

N1(a1, a2, a3, a4; n) =
`χ∑
i=1

αi,χAi,χ(n), (8)

where Ai,χ(n) are the Fourier coefficients of the basis elements fi,χ and the
values of the constants αi,χ’s are given in (§6, Table 2). Explicit formulas for
N1(a1, a2, a3, a4; n) are given below for the 8 universal quadratic forms (obtained
in Ramanujan’s work [19]) corresponding to (a1, a2, a3, a4) = (1, 1, 1, 4), (1, 1, 2, 4),
(1, 1, 2, 12), (1, 1, 3, 4), (1, 2, 3, 4), (1, 2, 4, 4), (1, 2, 4, 6) and (1, 2, 4, 12).
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N1(1, 1, 1, 4; n) = 4σ(n) − 20σ(n/4) + 24σ(n/8) − 32σ(n/16) + 2σ2,χ−4,χ−4 (n),

N1(1, 1, 2, 4; n) = 4σ2,χ8,1(n) − 2σ2,1,χ8 (n/2),

N1(1, 1, 2, 12; n) = 2σ2,χ24,1(n) −
1
3
σ2,1,χ24 (n/2) +

2
3
σ2,χ−3,χ−8 (n) + σ2,χ−8,χ−3 (n/2)

+ 16τ2,24,χ24;1(n/2) +
4
3
τ2,24,χ24;2(n) +

16
3
τ2,24,χ24;2(n/2),

N1(1, 1, 3, 4; n) = 3σ2,χ12,1(n) − 3σ2,χ12,1(n/2) + 12σ2,χ12,1(n/4) −
1
2
σ2,1,χ12 (n)

+
1
2
σ2,1,χ12 (n/2) − σ2,1,χ12 (n/4) +

3
2
σ2,χ−3,χ−4 (n) +

3
2
σ2,χ−3,χ−4 (n/2)

+ 3σ2,χ−3,χ−4 (n/4) − σ2,χ−4,χ−3 (n) − σ2,χ−4,χ−3 (n/2) − 4σ2,χ−4,χ−3 (n/4)
+ τ2,48,χ12;1(n) − τ2,48,χ12;2(n),

N1(1, 2, 3, 4; n) = 2σ2,χ24,1(n) −
1
3
σ2,1,χ24 (n/2) +

2
3
σ2,χ−3,χ−8 (n) + σ2,χ−8,χ−3 (n/2)

− 8τ2,24,χ24;1(n/2) −
2
3
τ2,24,χ24;2(n) −

8
3
τ2,24,χ24;2(n/2),

N1(1, 2, 4, 4; n) = 2σ2,χ8,1(n) − 2σ2,1,χ8 (n/2),

N1(1, 2, 4, 6; n) = −σ2,1,χ12 (n/4) +
3
2
σ2,χ12,1(n) +

1
2
σ2,χ−4,χ−3 (n) − 3σ2,χ−3,χ−4 (n/4),

N1(1, 2, 4, 12; n) = σ2,χ24,1(n) −
1
3
σ2,1,χ24 (n/2) +

1
3
σ2,χ−8,χ−3 (n) + σ2,χ−3,χ−8 (n/2)

+ 4τ2,24,χ24;1(n/2) +
2
3
τ2,24,χ24;2 (n) +

4
3
τ2,24,χ24;2(n/2).

Theorem 2.2 Let n ∈ N. Then we have

N2(1, 2; n) = 6σ(n) − 12σ(n/2) + 18σ(n/3) − 36σ(n/6),
N2(1, 4; n) = 6σ(n) − 18σ(n/2) − 18σ(n/3) + 24σ(n/4) + 54σ(n/6) − 72σ(n/12),

N2(1, 8; n) =
3
2
σ(n) −

9
2
σ(n/2) +

9
2
σ(n/3) + 9σ(n/4) −

27
2
σ(n/6) − 12σ(n/8)

+ 27σ(n/12) − 36σ(n/24) +
9
2
τ2,24(n),

N2(1, 16; n) =
3
2
σ(n) −

9
2
σ(n/2) −

9
2
σ(n/3) + 9σ(n/4) +

27
2
σ(n/6) − 18σ(n/8)

− 27σ(n/12) + 24σ(n/16) + 54σ(n/24) + 72σ(n/48) +
9
2
τ2,48(n),

(9)

where τ2,24(n) and τ2,48(n) are the n-th Fourier coefficients of ∆2,24(z) and ∆2,48(z)
respectively, defined in §3.1.

Theorem 2.3 Let n ∈ N. For each entry (a1, a2, b1) corresponding to Q3 in Table 1,
the associated theta series is a modular form of weight 2 on Γ0(48) with character
χ. Therefore, using the basis given in Table B (in §3.5), we have
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N3(a1, a2, b1; n) =
`χ∑
i=1

βi,χAi,χ(n), (10)

where Ai,χ(n) are the Fourier coefficients of the basis elements fi,χ and the values
of the constants βi,χ’s are given in (§6, Table 3).

Note: Explicit formulas for some of the cases (a1, a2, b1) in the above theorem are
given in sections 2.1 and 2.2.

2.1 Simplification of some of the formulas and determining
universal property

In this section, we shall simplify some of the formulas given in Theorems 2.1 – 2.3
and discuss about the universal property of the corresponding quadratic forms. In
Theorem 2.1, we consider three formulas corresponding to (1, 1, 1, 4), (1, 1, 2, 4) and
(1, 2, 4, 4). We first consider the formula for N1(1, 1, 1, 4; n), given in Theorem 2.1:

N1(1, 1, 1, 4; n) = 4σ(n) − 20σ(n/4) + 24σ(n/8) − 32σ(n/16) + 2σ2,χ−4,χ−4 (n),

where σ2,χ−4,χ−4 (n) =
∑

d |n

(
−4
d

) (
−4
n/d

)
d. This twisted divisor sum vanishes when

n is even and it is equal to
(
−4
n

)
σ(n), when n is odd. Therefore, when n is odd,

the representation number becomes
(
4 + 2

(
−4
n

) )
σ(n). When n is even, using the

multiplicative property, it is easy to see that it takes the value λσ(m), where n = 2αm,
α ≥ 0 and λ = 12, 8 or 24 according as α = 1, 2 or ≥ 3, respectively. Thus, we have

N1(1, 1, 1, 4; n) =


(4 + 2

(
−4
n

)
)σ(n) if 2 6 |n,

12σ(m) if n = 2m, m is odd,
8σ(m) if n = 4m, m is odd,
24σ(m) if n = 2αm, m is odd and α ≥ 3.

(11)

Note that in the casewhen n is odd, the formula is nothing but 6σ(n) if n ≡ 1 (mod 4)
and 2σ(n) if n ≡ 3 (mod 4). From this formula, it is clear that N1(1, 1, 1, 4; n) > 0
for all n ≥ 1. This shows that the form x2

1 + x2
2 + x2

3 + 4x2
4 is universal.

Next, we consider the quadratic forms corresponding to the cases (1, 1, 2, 4) and
(1, 2, 4, 4). For an odd natural number n, we have

N1(1, 1, 2, 4; n) = 4σ2,χ8,1(n) = 4
∑
d |n

(
2

n/d

)
d = 4

(
2
n

) ∑
d |n

(
2
d

)
d. (12)

When n = 2αm, α ≥ 1, m odd, then the formula simplifies as follows.
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N1(1, 1, 2, 4; n) = 4σ2,χ8,1(n) − 2σ2,1,χ8 (n/2)

= 4
∑
d |n

(
2

n/d

)
d − 2

∑
d |n/2

(
2
d

)
d

=

(
2α+2

(
2
m

)
− 2

) ∑
d |m

(
2
d

)
d.

(13)

Combining the above two cases, we get

N1(1, 1, 2, 4; n) =


4
(

2
n

) ∑
d |n

(
2
d

)
d if n is odd,(

2α+2
(

2
m

)
− 2

) ∑
d |m

(
2
d

)
d if n = 2αm, α ≥ 1, m is odd.

(14)
Now, it is easy to see that for an odd positive integer n, both

(
2
n

)
and

∑
d |n

(
2
d

)
d have

the same sign (positive or negative). Therefore
(

2
n

) ∑
d |n

(
2
d

)
d is positive when n is

odd. Using this fact, it also follows that
(
2α+2

(
2
m

)
− 2

) ∑
d |m

(
2
d

)
d is positive for

all odd positive integers m, when α ≥ 1. (Note that one can give explicit values for
these twisted divisor sums similar to the one given in Eq.(22).) Thus, for all natural
numbers n, we have N1(1, 1, 2, 4; n) > 0, which implies that the quaternary form
x2

1 + x2
2 + 2x2

3 + 4x2
4 is universal.

Using similar arguments as in the case of N1(1, 1, 2, 4; n), the formula for
N1(1, 2, 4, 4; n) given in Theorem 2.1 simplifies as follows (with n = 2αm, α ≥ 0
and m is odd).

N1(1, 2, 4, 4; n) = 2σ2,χ8,1(n) − 2σ2,1,χ8 (n/2)

=


2
(

2
n

) ∑
d |n

(
2
d

)
d if n is odd,(

2α+1
(

2
m

)
− 2

) ∑
d |m

(
2
d

)
d if n = 2αm, α ≥ 1, m is odd.

(15)

Thus, the form x2
1 + 2x2

2 + 4x2
3 + 4x2

4 is also universal.

Next, we simplify the two formulas for N2(1, 2; n) and N2(1, 4; n) given in The-
orem 2.2. Using the multiplicative property of the divisor function, it can be seen
that

N2(1, 2; n) = 6σ(n) − 12σ(n/2) + 18σ(n/3) − 36σ(n/6)

= 6(3β+1 − 2)σ(m), if n = 2α3βm, gcd(m, 6) = 1,
(16)
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which is always positive and therefore the form x2
1 + x1x2 + x2

2 + 2(x2
3 + x3x4 + x2

4)
is a universal quadratic form.

Now for the other case N2(1, 4; n), Theorem 2.2 gives the following formula

N2(1, 4; n) = 6σ(n) − 18σ(n/2) − 18σ(n/3) + 24σ(n/4) + 54σ(n/6) − 72σ(n/12).

Now, write n = 2α3βm, with gcd(m, 6) = 1, the above formula reduces to

6σ(m)
(
σ(3β) − 3σ(3β−1)

) (
σ(2α) − 3σ(2α−1) + 4σ(2α−2)

)
.

The value of the factor (σ(2α) − 3σ(2α−1) + 4σ(2α−2)) is 1 when α = 0, and 0 if
α = 1, whereas, it is equal to 2(2α−1 − 1) for α ≥ 2. On the other hand, for all β ≥ 0,
we have (σ(3β) − 3σ(3β−1)) = 1. It turns out that the formula does not depend on β
and so assuming n = 2α3βm, m a positive integer with gcd(m, 6) = 1, the formula
for N2(1, 4; n) becomes

N2(1, 4; n) =


6σ(m) if α = 0,
0 if α = 1,
12(2α−1 − 1)σ(m) if α ≥ 2.

(17)

Since N2(1, 4; n) = 0 for all positive integers n ≡ 2 (mod 4), it follows that the
corresponding quadratic form x2

1 + x1x2 + x2
2 + 4(x2

3 + x3x4 + x2
4) is not a universal

form. Further, if n = 3β , β ≥ 1, then N2(1, 4; n) = 6 and for n = 2α3β , α ≥ 2, we
have N2(1, 4; n) = 12(2α−1 − 1).

Finally, we give formulas for the quadratic forms Q3 corresponding to the cases
(1, 3, 1), (1, 3, 2) and (1, 3, 4), which involve only divisor functions σ(n). Using these
formulas, we show that two of them (corresponding to (1, 3, 1) and (1, 3, 2)) are
universal forms and the third one (corresponding to (1, 3, 4)) is non-universal. Using
Table B for the basis elements and Table 3 for the linear combination coefficients,
formulas for the cases (1, 3, 1), (1, 3, 2) and (1, 3, 4) are given below.

N3(1, 3, 1; n) = 8σ(n) − 12σ(n/2) − 24σ(n/3) + 16σ(n/4) + 36σ(n/6) − 48σ(n/12),
N3(1, 3, 2; n) = 2σ(n) + 6σ(n/3) − 8σ(n/4) − 24σ(n/12),
N3(1, 3, 4; n) = 2σ(n) − 6σ(n/2) − 6σ(n/3) + 16σ(n/4) + 18σ(n/6) − 48σ(n/12).

By writing n = 2α3βm, α, β ≥ 0 and gcd(m, 6) = 1, the above formulas reduce to
the following simplified expressions.

N3(1, 3, 1; n) =

{
8σ(m) if α = 0,
12(2α − 1)σ(m) if α ≥ 1.

(18)
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N3(1, 3, 2; n) =

{
2(3β+1 − 2)σ(m) if α = 0,
6(3β+1 − 2)σ(m) if α ≥ 1.

(19)

N3(1, 3, 4; n) =


2σ(m) if α = 0,
0 if α = 1,
12(2α−1 − 1)σ(m) if α ≥ 2.

(20)

The above formulas directly imply that the quadratic forms x2
1+3x2

2+`(x
2
3+x3x4+

x2
4) are universal where ` = 1, 2 and the quadratic form x2

1 + 3x2
2 + 4(x2

3 + x3x4 + x2
4)

is non-universal.
Among the 65 cases of type Q3 considered in this work, 16 forms are universal

(this is verified using the famous ‘290’ theorem [11]). They are given by the following
triplets: (a1, a2, b1) ∈ {(1, 3, 1), (1, 3, 2), (1, 12, 1), (2, 6, 1), (1, 6, 1), (1, 6, 2), (2, 3, 1),
(1, 1, 1), (1, 1, 2), (1, 4, 1), (1, 4, 2), (2, 2, 1), (1, 2, 1), (1, 2, 2), (1, 2, 4), (2, 4, 1)}. Among
these 16 cases, the formulas for the 6 cases (1, 3, 1), (1, 3, 2), (1, 1, 1), (1, 1, 2), (1, 4, 2),
(2, 2, 1) involve only the divisor functions. So, it is easy to verify the universal prop-
erty from our formulas for these cases. We have just shown (using (18) and (19))
that the cases (1, 3, 1) and (1, 3, 2) are universal. In a similar way we show that the re-
maining 4 cases are also universal by using explicit formulas given by Theorem 2.3.
Writing n = 2α3βN , α, β ≥ 0, gcd(N, 6) = 1, the following formulas are obtained
for the cases (1, 1, 1), (1, 1, 2), (1, 4, 2), (2, 2, 1) using Theorem 2.3:

N3(1, 1, 1; n) = (2α+2 + (−1)α+β+
N−1

2 )(3β+1 − (−1)α+β
(

N
3

)
)F12(N),

N3(1, 1, 2; n) = (2α+1 − (−1)α+β+
N−1

2 )(3β+1 + (−1)α+β
(

N
3

)
)F12(N),

N3(1, 4, 2; n) =


(1 − 1

2 (−1)β+ N−1
2 )(3β+1 + (−1)β

(
N
3
)
)F12(N) if α = 0,

3(3β+1 − (−1)β
(
N
3
)
)F12(N) if α = 1,

(2α−1 − (−1)α+β+ N−1
2 )(3β+1 + (−1)α+β

(
N
3
)
)F12(N) if α ≥ 2.

N3(2, 2, 1; n) =

{
3(3β+1 − (−1)β

(
N
3
)
)F12(N) if α = 0,

(2α + (−1)α+β+ N−1
2 )(3β+1 − (−1)α+β

(
N
3
)
)F12(N) if α ≥ 1.

(21)

In the above, we have used the following notation defined in [6, p. 1542]: For a
natural number n,

F12(n) =
∑
d |n

(
12

n/d

)
d =

∏
pλ ‖n

pλ+1 −
(

12
p

)λ+1

p −
(

12
p

) . (22)

It is clear from the above definition that for all natural numbers n, F12(n) > 0. With
the same assumption that n = 2α3βN , where α, β ≥ 0 and gcd(N, 6) = 1, one can
check easily the following facts (which are used to prove (21)):
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d |n

(
12

n/d

)
d = 2α3βF12(N),∑

d |n

(
12
d

)
d =

(
12
N

)
F12(N) =

(
−4
N

) (
N
3

)
F12(N),∑

d |n

(
−3
d

) (
−4
n/d

)
d = (−1)α+β2α

(
N
3

)
F12(N),∑

d |n

(
−4
d

) (
−3
n/d

)
d = (−1)α+β+(N−1)/23βF12(N).

(23)

Since F12(n) is positive for all n ≥ 1, it follows from (21) that all the four quadratic
forms corresponding to (1, 1, 1), (1, 1, 2), (1, 4, 2) and (2, 2, 1) are universal.

As mentioned before, there are 10 quadratic forms (of type Q3) considered in
our work, which are universal (by using the ‘290’ theorem) for which our explicit
formulas involve Fourier coefficients of cusp forms. So, it will be interesting to get
this property using our explicit formulas. Here we would like to mention a very
interesting and motivating survey article by J. H. Conway [13] on the 15 and 290
Theorem on the universal property of integral quadratic forms.

2.2 Remarks on equivalence of formulas

As mentioned in the introduction, our results include 36 known formulas (19 corre-
sponding to Q1, 2 corresponding to Q2, 15 corresponding to Q3), which are obtained
using differentmethods. The cases (1, 2) and (1, 4) corresponding toQ2 were obtained
in [6]. Formula for the case (1, 2) given in [6] is same as our formula (Theorem 2.2)
and the formula for (1, 4) given in [6, Theorem 15] is equivalent to (17). However,
for the remaining 34 cases, some of the earlier formulas have been expressed in a
different way. We would like to remark that our formulas are equivalent to these
formulas obtained earlier. Here we indicate how these equivalence properties can be
realised.

The formulas deduced in the previous section (§2.1) (i.e., simplified versions of ac-
tual formulas obtained from our theorems) are exactly the same formulas obtained in
the earlierworks [2, 4, 5, 7, 8]. Belowwemention the formulas alongwith reference to
the earlier result:N1(1, 1, 1, 4; n) ([2, Theorem 1.7]),N1(1, 1, 2, 4; n),N1(1, 2, 4, 4; n)
([5, Theorems 5.3, 5.4]), N3(1, 1, 1; n), N3(1, 1, 2; n) ([4, Theorems 11.1, 12.1]),
N3(1, 3, 1; n), N3(1, 3, 2; n), N3(1, 3, 4; n) ([8, Theorem 1.2 (iii)]), N3(1, 4, 2; n) ([7,
Theorem 1.3]) and N3(2, 2, 1; n) ([8, Theorem 1.4]).

We now show one more formula corresponding to Q3 for the case (a1, a2, b1) =
(1, 1, 8) and deduce the formula obtained in [6, Theorem 1.4] for this case.

By using Table 3 (for the character χ12) and the basis for the space given in
Table B, our formula for N3(1, 1, 8; n) is obtained by comparing the n-th Fourier
coefficients, which is given below.
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N3(1, 1, 8; n) =
1
2
σ2,1,χ12 (n) −

3
2
σ2,1,χ12 (n/2) +

3
2
σ2,χ12,1(n) +

1
2
σ2,χ−4,χ−3 (n)

+
3
2
σ2,χ−3,χ−4 (n) +

9
2
σ2,χ−3,χ−4 (n/2)

=
1
2

∑
d |n

(
12
d

)
d −

3
2

∑
d |n/2

(
12
d

)
d +

3
2

∑
d |n

(
12

n/d

)
d +

1
2

∑
d |n

(
−3
d

) (
−4
n/d

)
d

+
3
2

∑
d |n

(
−4
d

) (
−3
n/d

)
d +

9
2

∑
d |n/2

(
−4
d

) (
−3
n/d

)
d.

Now using (22), (23) in the above, we get the following explicit formula for
N3(1, 1, 8; n): Let n = 2α3βN , where α, β ≥ 0 and gcd(N, 6) = 1. Then,

N3(1, 1, 8; n)

=


0 if n ≡ 3, 6, 7(mod 8),
(3β+1 + (−1)β

(
N
3
)
)F12(N) if n ≡ 1, 5(mod 8),

(2α−1 − (−1)α+β+ N−1
2 )(3β+1 + (−1)α+β

(
N
3
)
)F12(N) if n ≡ 0, 2, 4(mod 8).

(24)

The above formula is the same as Theorem 1.4 of [6]. Note that the above formula
implies that the corresponding quadratic form is non-universal.

3 Proofs

In this section, we shall take χ to be one of the four characters χ0, χ8, χ12 or χ24 and
`χ is the dimension of the space of modular forms M2(48, χ). The main ingredient in
proving our theorems is the construction of explicit bases for the spaces M2(48, χ).
For uniformity, we shall denote these basis elements as { fi,χ(z) : 1 ≤ i ≤ `χ} and
write their Fourier expansions as

fi,χ(z) =
∑
n≥0

Ai,χ(n)e2πinz . (25)

The basis elements fi,χ(z) are explicitly given in §3.5.

3.1 A basis for M2(48, χ0)

The vector space M2(48, χ0) has dimension 14 with
dimC E2(48, χ0) = 11 and dimC S2(48, χ0) = 3. For a, b divisors of N with a|b, (b >
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a), we define φa,b(z) to be

φa,b(z) :=
1

b − a
(bE2(bz) − aE2(az)). (26)

It is easy to see that φa,b ∈ M2(N, χ0).We need the following two eta-quotients:

∆2,24(z) = η(2z)η(4z)η(6z)η(12z) =
∞∑
n=1

τ2,24(n)qn (27)

∆2,48(z) =
η4(4z)η4(12z)

η(2z)η(6z)η(8z)η(24z)
=

∞∑
n=1

τ2,48(n)qn. (28)

Using the above functions,we give a basis for the space M2(48, χ0) in the following
proposition.

Proposition 3.1 A basis for the space of Eisenstein series E2(48, χ0) is given by

{φ1,b : b|48(b > 1), E2,χ−4,χ−4 (z), E2,χ−4,χ−4 (3z)}

and a basis for the space of cusp forms S2(48, χ0) is given by

{∆2,24(z),∆2,24(2z),∆2,48(z)}.

3.2 A basis for M2(48, χ8)

The vector space M2(48, χ8) has dimension 12 with
dimC E2(48, χ8) = 8 and dimC S2(48, χ8) = 4. For the space of cusp forms, we
need the following eta-quotients.

∆2,24,χ8;1(z) =
η(z)η4(6z)η2(8z)
η(2z)η(3z)η(12z)

=

∞∑
n=1

τ2,24,χ8;1(n)qn,

∆2,24,χ8;2(z) =
η2(z)η(8z)η4(12z)
η(4z)η(6z)η(24z)

=

∞∑
n=1

τ2,24,χ8;2(n)qn.

The following proposition gives a basis of the space M2(48, χ8).

Proposition 3.2 A basis for the space of Eisenstein series E2(48, χ8) is given by

{E2,1,χ8 (az), a|6, E2,χ8,1(bz), b|6}

and a basis for the space of cusp forms S2(48, χ8) is given by

{∆2,24,χ8;1(z),∆2,24,χ8;1(2z),∆2,24,χ8;2(z),∆2,24,χ8;2(2z)}.
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3.3 A basis for M2(48, χ12)

The vector space M2(48, χ12) has dimension 14 with
dimC S2(48, χ12) = 2. For the space of cusp forms, we use the following eta-quotient.

∆2,48,χ12 (z) =
η11(2z)η(6z)η(8z)η(24z)

η4(z)η5(4z)η(12z)
=

∞∑
n=1

a2,48,χ12 (n)q
n.

Using the above eta-quotient, we define the following two cusp forms (which are
obtained by considering the character twists of the above eta-quotient).

∆2,48,χ12;1(z) =
∑
n≥1

n≡1 (mod 4)

a2,48,χ12 (n)q
n, ∆2,48,χ12;2(z) =

∑
n≥1

n≡3 (mod 4)

a2,48,χ12 (n)q
n.

(29)
Using these functions we give a basis for the space M2(48, χ12) in the following
proposition.

Proposition 3.3 A basis for the space of Eisenstein series E2(48, χ12) is given by

{E2,1,χ12 (az); a|4, E2,χ12,1(bz); b|4, E2,χ−4,χ−3 (t1z); t1 |4, E2,χ−3,χ−4 (t2z); t2 |4}

and a basis for the space of cusp forms S2(48, χ12) is given by

{∆2,48,χ12;1(z),∆2,48,χ12;2(z)}.

3.4 A basis for M2(48, χ24)

The vector space M2(48, χ24) has dimension 12 with
dimC S2(48, χ24) = 4. We need the following eta-quotients.

∆2,24,χ24;1(z) =
η(z)η(4z)η4(6z)η2(24z)
η(2z)η(3z)η2(12z)

=

∞∑
n=1

τ2,24,χ24;1qn,

∆2,48,χ24;2(z) =
η2(z)η4(4z)η(6z)η(24z)
η2(2z)η(8z)η(12z)

=

∞∑
n=1

τ2,24,χ24;2qn.

In the following we give a basis for the space M2(48, χ24).

Proposition 3.4 A basis for the space of Eisenstein series E2(48, χ24) is given by

{E2,1,χ24 (az); a|2, E2,χ24,1(bz); b|2, E2,χ−3,χ−8 (t1z); t1 |2, E2,χ−8,χ−3 (t2z); t2 |2}

and a basis for the space of cusp forms S2(48, χ24) is given by

{∆2,24,χ24;1(z),∆2,24,χ24;1(2z),∆2,24,χ24;2(z),∆2,24,χ24;2(2z)}.
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3.5 Combined table for bases

In this section, we combine all the bases given in Propositions 3.1 to 3.4 in a tabular
form along with identifying the elements fi,χ(z) for each i, 1 ≤ i ≤ `χ.

Table B (List of basis elements)

f1,χ0 (z) = φ1,2(z), f6,χ0 (z) = φ1,12(z), f11,χ0 (z) = E2,χ−4,χ−4 (3z),
f2,χ0 (z) = φ1,3(z), f7,χ0 (z) = φ1,16(z), f12,χ0 (z) = ∆2,24(z),
f3,χ0 (z) = φ1,4(z), f8,χ0 (z) = φ1,24(z), f13,χ0 (z) = ∆2,24(2z),
f4,χ0 (z) = φ1,6(z), f9,χ0 (z) = φ1,48(z), f14,χ0 (z) = ∆2,48(z).
f5,χ0 (z) = φ1,8(z), f10,χ0 (z) = E2,χ−4,χ−4 (z),

f1,χ8 (z) = E2,1,χ8 (z), f5,χ8 (z) = E2,χ8,1(z), f9,χ8 (z) = ∆2,24,χ8;1(z),
f2,χ8 (z) = E2,1,χ8 (2z), f6,χ8 (z) = E2,χ8,1(2z), f10,χ8 (z) = ∆2,24,χ8;1(2z),
f3,χ8 (z) = E2,1,χ8 (3z), f7,χ8 (z) = E2,χ8,1(3z), f11,χ8 (z) = ∆2,24,χ8;2(z),
f4,χ8 (z) = E2,1,χ8 (6z), f8,χ8 (z) = E2,χ8,1(6z), f12,χ8 (z) = ∆2,24,χ8;2(2z).

f1,χ12 (z) = E2,1,χ12 (z), f6,χ12 (z) = E2,χ12,1(4z), f11,χ12 (z) = E2,χ−3,χ−4 (2z),
f2,χ12 (z)) = E2,1,χ12 (2z), f7,χ12 (z) = E2,χ−4,χ−3 (z), f12,χ12 (z) = E2,χ−3,χ−4 (4z),
f3,χ12 (z) = E2,1,χ12 (4z), f8,χ12 (z) = E2,χ−4,χ−3 (2z), f13,χ12 (z) = ∆2,48,χ12;1(z),
f4,χ12 (z) = E2,χ12,1(z), f9,χ12 (z) = E2,χ−4,χ−3 (4z), f14,χ12 (z) = ∆2,48,χ12;2(z).
f5,χ12 (z) = E2,χ12,1(2z), f10,χ12 (z) = E2,χ−3,χ−4 (z),

f1,χ24 (z) = E2,1,χ24 (z), f5,χ24 (z) = E2,χ−3,χ−8 (z), f9,χ24 (z) = ∆2,24,χ24;1(z),
f2,χ24 (z) = E2,1,χ24 (2z), f6,χ24 (z) = E2,χ−3,χ−8 (2z), f10,χ24 (z) = ∆2,24,χ24;1(2z),
f3,χ24 (z) = E2,χ24,1(z), f7,χ24 (z) = E2,χ−8,χ−3 (z), f11,χ24 (z) = ∆2,24,χ24;2(z),
f4,χ24 (z) = E2,χ24,1(2z), f8,χ24 (z) = E2,χ−8,χ−3 (2z), f12,χ24 (z) = ∆2,24,χ24;2(2z).

We are now ready to prove the theorems. The generating functions for the two
types of quadratic forms considered in this paper, viz., sum of squares and forms of
type x2 + xy + y2 are given respectively by the classical theta function

Θ(z) =
∑
n∈Z

e2πin2z, (30)

and the function
F (z) =

∑
m,n∈Z

e2πi(m2+mn+n2)z . (31)
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The theta function Θ(z) is a modular form of weight 1/2 on Γ0(4) and F (z) is a
modular form ofweight 1 on Γ0(3)with character

(
·
3
)
(see [15], [20, Theorem 4], [12]

for details). To each quadratic form (a1, a2, a3, a4) as in the Table 1 (corresponding
to the quadratic forms Q1), the associated theta series is given by

Θ(a1z)Θ(a2z)Θ(a3z)Θ(a4z). (32)

By using [18, Lemmas 1–3], we see that the above function is a modular form in
M2(48, χ), where χ is one of the four characters that appear in Table 1. Now using
the bases constructed as in Table B, one can express each of the theta products (32)
as a linear combination of the respective basis elements. SinceN1(a1, a2, a3, a4; n) is
the n-th Fourier coefficient of the theta product (32), by comparing the n-th Fourier
coefficients, we get the required formulae in Theorem 2.1.

We now briefly demonstrate the case (1, 1, 1, 4). The linear combination coeffi-
cients in this case are given by (from Table 2, character χ0) 0, 0, 5/8, 0,−7/8, 0, 5/4,
0, 0, 2, 0, 0, 0, 0. Therefore,

θ3(z)θ(4z) =
5
8

(
4
3

E2(4z) −
1
3

E2(z)
)
−

7
8

(
8
7

E2(8z) −
1
7

E2(z)
)

+
5
4

(
16
15

E2(16z) −
1
15

E2(z)
)
+ 2E2,χ−4,χ−4 (z)

= −
1
6

E2(z) +
5
6

E2(4z) − E2(8z) +
4
3

E2(16z) + 2E2,χ−4,χ−4 (z).

Comparing the n-th Fourier coefficients of both the sides, we get

N1(1, 1, 1, 4; n) = 4σ(n) − 20σ(n/4) + 24σ(n/8) − 32σ(n/16) + 2σ2,χ−4,χ−4 (n).

Next, for the four quadratic forms given by the pairs (1, 2), (1, 4), (1, 8), (1, 16)
in Table 1, the corresponding theta series is the product of the forms F (b1z) and
F (b2z). Again by using Lemmas 1 and 3 in [18], these forms belong M2(48, χ0).
So, we can express these 4 forms as a linear combination of the basis elements of
M2(48, χ0), which we denote as follows. Let (b1, b2) ∈ {(1, 2), (1, 4), (1, 8), (1, 16)}.
Then

N2(b1, b2; n) =
14∑
i=1

ci Ai,χ0 (n), (33)

where Ai,χ0 (n) are the Fourier coefficients of the basis elements fi,χ0 (z) (given in Ta-
ble B). The values of the constants ci for each pair (b1, b2) are given in the following
table.
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Table C
b1, b2 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1, 2 1
4

−1
2 0 5

4 0 0 0 0 0 0 0 0 0 0

1, 4 3
8

1
2

−3
4

−15
8 0 11

4 0 0 0 0 0 0 0 0

1, 8 3
32

−1
8

−9
32

15
32

7
16

−33
32 0 23

16 0 0 0 9
2 0 0

1, 16 3
32

1
8

−9
32

−15
32

21
32

33
32

−15
16

−69
32

47
16 0 0 0 0 9

2

The values of ci are non-zero only in the case of basis elements which are either
φ1,b(z), b|48 and b > 1 or one of the cusp forms ∆2,24(z), ∆2,48(z). The Fourier
expansion of the Eisenstein series φa,b(z) is given as follows.

φa,b(z) = 1 +
24a

b − a

∑
n≥1

σ(n/a)qn −
24b

b − a

∑
n≥1

σ(n/b)qn.

By substituting the values of the constants ci in the expression along with the Fourier
expansion of the above basis elements, we get the required formulas in Theorem 2.2.

Finally, the theta series corresponding to each quadratic form Q3 represented
by the triplets (a1, a2, b1) in Table 1 is the product Θ(a1z)Θ(a2z)F (b1z). By using
Lemmas 1 to 3 of [18], it can be observed that this theta product is a modular form
of weight 2 on Γ0(48) with one of the characters χ0 or χd , d = 8, 12, 24 (depending
on the triplets (a1, a2, b1)). Formulas in Theorem 2.3 now follow from comparing
the Fourier coefficients of these associated modular forms.

This completes the proofs of the theorems.

4 Tables for Theorems 2.1 and 2.3

In this section, we shall give Tables 2 and 3, which give explicit coefficients αi,χ and
βi,χ that appear in Theorem 2.1 and Theorem 2.3.
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Table 2 for the character χ0.

a1, a2, a3, a4 α1, χ0 α2, χ0 α3, χ0 α4, χ0 α5, χ0 α6, χ0 α7, χ0 α8, χ0 α9, χ0 α10, χ0 α11, χ0 α12, χ0 α13, χ0 α14, χ0

1, 1, 1, 4 0 0 5
8 0 − 7

8 0 5
4 0 0 2 0 0 0 0

1, 1, 4, 4 1
24 0 0 0 − 7

24 0 5
4 0 0 2 0 0 0 0

1, 1, 3, 12 1
12

1
6 − 5

16 − 5
12

7
16

55
48 − 5

8 − 23
16

47
24 1 3 0 2 1

1, 1, 12, 12 1
48

1
12 0 − 5

48
7
48 0 − 5

8 − 23
48

47
24 1 3 1 2 1

1, 2, 2, 4 1
24 0 0 0 − 7

24 0 5
4 0 0 0 0 0 0 0

1, 2, 6, 12 1
96 − 1

24 0 5
96 − 7

96 0 5
16 − 23

96
47
48 0 0 1

2 1 1

1, 3, 3, 4 1
12

1
6 − 5

16 − 5
12

7
16

55
48 − 5

8 − 23
16

47
24 -1 -3 0 -2 1

1, 3, 4, 12 1
16

1
12 − 5

16 − 5
16

7
16

55
48 − 5

8 − 23
16

47
24 0 0 0 0 1

1, 4, 4, 4 1
16 0 − 5

16 0 0 0 5
4 0 0 1 0 0 0 0

1, 4, 6, 6 1
48

1
12 0 − 5

48
7
48 0 − 5

8 − 23
48

47
24 0 0 1 -2 0

1, 4, 12, 12 1
32

1
24 − 5

32 − 5
32

7
24

55
96 − 5

8 − 23
24

47
24

1
2

3
2

1
2 0 1

2

2, 2, 3, 12 1
48

1
12 0 − 5

48
7
48 0 − 5

8 − 23
48

47
24 0 0 -1 2 0

2, 3, 4, 6 1
96 − 1

24 0 5
96 − 7

96 0 5
16 − 23

96
47
48 0 0 1

2 1 -1

3, 3, 4, 4 1
48

1
12 0 − 5

48
7
48 0 − 5

8 − 23
48

47
24 -1 -3 -1 -2 1

3, 4, 4, 12 1
32

1
24 − 5

32 − 5
32

7
24

55
96 − 5

8 − 23
24

47
24 − 1

2 − 3
2 − 1

2 0 1
2

Table 2 for the character χ8.

a1, a2, a3, a4 α1, χ8 α2, χ8 α3, χ8 α4, χ8 α5, χ8 α6, χ8 α7, χ8 α8, χ8 α9, χ8 α10, χ8 α11, χ8 α12, χ8

1, 1, 2, 4 0 -2 0 0 4 0 0 0 0 0 0 0

1, 1, 6, 12 0 − 4
5 0 − 6

5
8
5 0 − 12

5 0 8
5

32
5

4
5 − 8

5

1, 2, 4, 4 0 -2 0 0 2 0 0 0 0 0 0 0

1, 2, 3, 12 0 2
5 0 − 12

5
4
5 0 24

5 0 4
5

24
5

2
5 − 16

5

1, 2, 12, 12 0 2
5 0 − 12

5
2
5 0 12

5 0 12
5

24
5 − 4

5 − 16
5

1, 3, 4, 6 0 − 4
5 0 − 6

5
8
5 0 − 12

5 0 8
5 − 8

5 − 6
5 − 8

5

1, 4, 6, 12 0 − 4
5 0 − 6

5
4
5 0 − 6

5 0 4
5

12
5

2
5 − 8

5

2, 3, 3, 4 0 2
5 0 − 12

5
4
5 0 24

5 0 − 16
5 − 16

5
12
5

24
5

2, 3, 4, 12 0 2
5 0 − 12

5
2
5 0 12

5 0 − 8
5

4
5

6
5

4
5

3, 4, 4, 6 0 − 4
5 0 − 6

5
4
5 0 − 6

5 0 4
5 − 8

5 − 8
5 − 8

5
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Table 2 for the character χ12.
a1, a2, a3, a4 α1, χ12 α2, χ12 α3, χ12 α4, χ12 α5, χ12 α6, χ12 α7, χ12 α8, χ12 α9, χ12 α10, χ12 α11, χ12 α12, χ12 α13, χ12 α14, χ12

1, 1, 1, 12 − 1
2

1
2 -1 3 3 -12 -1 1 4 3

2
3
2 3 3 1

1, 1, 3, 4 − 1
2

1
2 -1 3 -3 12 -1 -1 -4 3

2
3
2 3 1 -1

1, 1, 4, 12 − 1
2

1
2 -1 3

2 0 0 − 1
2 0 0 3

2
3
2 3 2 0

1, 2, 2, 12 0 0 -1 3
2 0 0 − 1

2 0 0 0 0 3 1 1

1, 2, 4, 6 0 0 -1 3
2 0 0 1

2 0 0 0 0 -3 0 0

1, 3, 3, 12 − 1
2

1
2 -1 1 -1 4 1 1 4 − 1

2 − 1
2 -1 1 1

3

1, 3, 4, 4 0 0 -1 3
2 -3 12 − 1

2 -1 -4 0 0 3 1 -1

1, 3, 12, 12 0 0 -1 1
2 -1 4 1

2 1 4 0 0 -1 1 1
3

1, 4, 4, 12 − 1
4

1
4 -1 3

4 − 3
2 6 − 1

4 − 1
2 -2 3

4
3
4 3 1 0

1, 6, 6, 12 0 0 -1 1
2 0 0 1

2 0 0 0 0 -1 1 − 1
3

1, 12, 12, 12 1
4 − 1

4 1 1
4 − 1

2 2 1
4

1
2 2 1

4
1
4 -1 1 0

2, 2, 3, 4 0 0 -1 3
2 0 0 − 1

2 0 0 0 0 3 -1 -1

2, 3, 6, 12 0 0 -1 1
2 0 0 − 1

2 0 0 0 0 1 0 0

3, 3, 3, 4 − 1
2

1
2 -1 1 1 -4 1 -1 -4 − 1

2 − 1
2 -1 -1 1

3, 3, 4, 12 − 1
2

1
2 -1 1

2 0 0 1
2 0 0 − 1

2 − 1
2 -1 0 2

3

3, 4, 4, 4 1
4 − 1

4 -1 3
4 − 3

2 6 − 1
4 − 1

2 -2 − 3
4 − 3

4 3 0 -1

3, 4, 6, 6 0 0 -1 1
2 0 0 1

2 0 0 0 0 -1 -1 1
3

3, 4, 12, 12 − 1
4

1
4 -1 1

4 − 1
2 2 1

4
1
2 2 − 1

4 − 1
4 -1 0 1

3

Table 2 for the character χ24.
a1, a2, a3, a4 α1, χ24 α2, χ24 α3, χ24 α4, χ24 α5, χ24 α6, χ24 α7, χ24 α8, χ24 α9, χ24 α10, χ24 α11, χ24 α12, χ24

1, 1, 2, 12 0 − 1
3 2 0 2

3 0 0 1 0 16 4
3

16
3

1, 1, 4, 6 0 − 1
3 2 0 − 2

3 0 0 -1 8 0 8
3 − 8

3

1, 2, 3, 4 0 − 1
3 2 0 2

3 0 0 1 0 -8 − 2
3 − 8

3

1, 2, 4, 12 0 − 1
3 1 0 1

3 0 0 1 0 4 2
3

4
3

1, 3, 6, 12 0 − 1
3

2
3 0 2

3 0 0 1
3

4
3

8
3

2
3 0

1, 4, 4, 6 0 − 1
3 1 0 − 1

3 0 0 -1 4 0 4
3 − 8

3

1, 6, 12, 12 0 − 1
3

1
3 0 1

3 0 0 1
3

8
3

8
3

4
3 0

2, 3, 3, 12 0 − 1
3

2
3 0 − 2

3 0 0 − 1
3 − 8

3
16
3 0 8

3

2, 3, 4, 4 0 − 1
3 1 0 1

3 0 0 1 0 -8 − 4
3 − 8

3

2, 3, 12, 12 0 − 1
3

1
3 0 − 1

3 0 0 − 1
3 − 4

3
16
3 0 8

3

3, 3, 4, 6 0 − 1
3

2
3 0 2

3 0 0 1
3 − 8

3 − 16
3 − 4

3 0

3, 4, 6, 12 0 − 1
3

1
3 0 1

3 0 0 1
3 − 4

3 − 4
3 − 2

3 0
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Table 3 for the character χ0.
a1, a2, b1 β1, χ0 β2, χ0 β3, χ0 β4, χ0 β5, χ0 β6, χ0 β7, χ0 β8, χ0 β9, χ0 β10, χ0 β11, χ0 β12, χ0 β13, χ0 β14, χ0

1, 3, 1 1
4

2
3

−1
2

−5
4 0 11

6 0 0 0 0 0 0 0 0

1, 3, 2 0 −1
6

1
4 0 0 11

12 0 0 0 0 0 0 0 0

1, 3, 4 1
8

1
6

−1
2

−5
8 0 11

6 0 0 0 0 0 0 0 0

1, 3, 8 1
32

−1
24

−7
32

5
32

7
16

−77
96 0 23

16 0 0 0 3
2 0 0

1, 3, 16 1
32

1
24

−7
32

−5
32

21
32

77
96

−15
16

−69
32

47
16 0 0 0 0 3

2

1, 12, 1 1
8

1
3

−5
16

−5
8

7
16

55
48

−5
8

−23
16

47
24 1 3 0 6 3

1, 12, 2 0 −1
12

5
32 0 −7

32
55
96

5
16

−23
32

47
48

−1
2

3
2 0 3 3

2

1, 12, 4 1
16

1
12

−5
16

−5
16

7
16

55
48

−5
8

−23
16

47
24 1 3 0 0 0

1, 12, 8 1
64

−1
48

−5
64

5
64 0 −55

192
5
16 0 47

48
1
4

−3
4

3
4 0 3

4

1, 12, 16 1
64

1
48

−5
64

−5
64

7
32

55
192

−5
8

−23
32

47
24

1
4

3
4

3
4 0 3

4

2, 6, 1 7
48

−1
4

−3
16

35
48

7
24

−11
16 0 23

24 0 0 0 3 0 0

3, 4, 1 1
8

1
3

−5
16

−5
8

7
16

55
48

−5
8

−23
16

47
24 -1 -3 0 -6 3

3, 4, 2 0 −1
12

5
32 0 −7

32
55
96

5
16

−23
32

47
48

1
2

−3
2 0 3 −3

2

3, 4, 4 1
16

1
12

−5
16

−5
16

7
16

55
48

−5
8

−23
16

47
24 -1 -3 0 0 0

3, 4, 8 1
64

−1
48

−5
64

5
64 0 −55

192
5
16 0 47

48
−1
4

3
4

3
4 0 −3

4

3, 4, 16 1
64

1
48

−5
64

−5
64

7
32

55
192

−5
8

−23
32

47
24

−1
4

−3
4

−3
4 0 3

4

4, 12, 1 3
16

1
4

−7
16

−15
16

7
16

77
48

−5
8

−23
16

47
24 0 0 0 0 3

Table 3 for the character χ8.

a1, a2, b1 β1, χ8 β2, χ8 β3, χ8 β4, χ8 β5, χ8 β6, χ8 β7, χ8 β8, χ8 β9, χ8 β10, χ8 β11, χ8 β12, χ8

1, 6, 1 −4
5 0 −6

5 0 32
5 0 −48

5 0 24
5 0 −12

5 0

1, 6, 2 2
5 0 −12

5 0 8
5 0 48

5 0 12
5 0 −12

5 0

1, 6, 4 −4
5 0 −6

5 0 8
5 0 −12

5 0 0 0 6
5 0

1, 6, 8 2
5 0 −12

5 0 2
5 0 12

5 0 6
5 0 0 0

1, 6, 16 2
5

−6
5

3
5

−9
5

2
5 0 −3

5 0 6
5

18
5 0 −12

5

2, 3, 1 2
5 0 −12

5 0 16
5 0 96

5 0 0 0 12
5 0

2, 3, 2 −4
5 0 −6

5 0 16
5 0 −24

5 0 −12
5 0 0 0

2, 3, 4 2
5 0 −12

5 0 4
5 0 24

5 0 −12
5 0 6

5 0

2, 3, 8 −4
5 0 −6

5 0 4
5 0 −6

5 0 6
5 0 −6

5 0

2, 3, 16 −1
5

3
5

6
5

−18
5

1
5 0 6

5 0 −6
5

6
5

6
5

6
5

4, 6, 1 0 −4
5 0 −6

5
24
5

−32
5

−36
5

48
5

24
5 0 −18

5
−24

5
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Table 3 for the character χ12.

a1, a2, b1 β1, χ12 β2, χ12 β3, χ12 β4, χ12 β5, χ12 β6, χ12 β7, χ12 β8, χ12 β9, χ12 β10, χ12 β11, χ12 β12, χ12 β13, χ12 β14, χ12

1, 1, 1 -1 0 0 12 0 0 -4 0 0 3 0 0 0 0

1, 1, 2 -1 0 0 6 0 0 2 0 0 -3 0 0 0 0

1, 1, 4 -1 0 0 3 0 0 -1 0 0 3 0 0 0 0

1, 1, 8 1
2

−3
2 0 3

2 0 0 1
2 0 0 3

2
9
2 0 0 0

1, 1, 16 −1
4

3
4

−3
2

3
4 0 0 −1

4 0 0 3
4

9
4

9
2 3 0

1, 4, 1 −1
2

1
2 -1 6 -3 12 -2 -1 -4 3

2
3
2 3 3 -3

1, 4, 2 −1
2

1
2 -1 3 3 -12 1 -1 -4 −3

2
−3
2 -3 0 0

1, 4, 4 −1
2

1
2 -1 3

2 -3 12 −1
2 -1 -4 3

2
3
2 3 0 0

1, 4, 8 1
4

−1
4 -1 3

4
−3
2 6 1

4
1
2 2 3

4
3
4 -3 0 0

1, 4, 16 −1
8

1
8 -1 3

8
−3
4 3 −1

8
−1
4 -1 3

8
3
8 3 3

2 0

2, 2, 1 0 -1 0 9 -12 0 -3 -4 0 0 -3 0 0 0

3, 3, 1 -1 0 0 4 0 0 4 0 0 -1 0 0 0 0

3, 3, 2 -1 0 0 2 0 0 -2 0 0 1 0 0 0 0

3, 3, 4 -1 0 0 1 0 0 1 0 0 -1 0 0 0 0

3, 3, 8 1
2

−3
2 0 1

2 0 0 −1
2 0 0 −1

2
−3
2 0 0 0

3, 3, 16 −1
4

3
4

−3
2

1
4 0 0 1

4 0 0 −1
4

−3
4

−3
2 0 1

3, 12, 1 −1
2

1
2 -1 2 -1 4 2 1 4 −1

2
−1
2 -1 3 1

3, 12, 2 −1
2

1
2 -1 1 1 -4 -1 1 4 1

2
1
2 1 0 0

3, 12, 4 −1
2

1
2 -1 1

2 -1 4 1
2 1 4 −1

2
−1
2 -1 0 0

3, 12, 8 1
4

−1
4 -1 1

4
−1
2 2 −1

4
−1
2 -2 −1

4
−1
4 1 0 0

3, 12, 16 −1
8

1
8 -1 1

8
−1
4 1 1

8
1
4 1 −1

8
−1
8 -1 0 1

2

4, 4, 1 0 0 -1 9
2 -9 12 −3

2 -3 -4 0 0 3 3 -3

6, 6, 1 0 -1 0 3 -4 0 3 4 0 0 1 0 0 0

12, 12, 1 0 0 -1 3
2 -3 4 3

2 3 4 0 0 -1 3 1
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Table 3 for the character χ24.

a1, a2, b1 β1, χ24 β2, χ24 β3, χ24 β4, χ24 β5, χ24 β6, χ24 β7, χ24 β8, χ24 β9, χ24 β10, χ24 β11, χ24 β12, χ24

1, 2, 1 −1
3 0 8 0 8

3 0 -1 0 0 0 −4
3 0

1, 2, 2 −1
3 0 4 0 −4

3 0 1 0 -4 0 −4
3 0

1, 2, 4 −1
3 0 2 0 2

3 0 -1 0 0 0 2
3 0

1, 2, 8 −1
3 0 1 0 −1

3 0 1 0 2 0 2
3 0

1, 2, 16 1
6

−1
2

1
2 0 1

6 0 1
2

3
2 0 6 2

3 2

2, 4, 1 0 −1
3 6 -8 2 8

3 0 1 0 -16 -2 −16
3

3, 6, 1 −1
3 0 8

3 0 8
3 0 −1

3 0 8
3 0 4

3 0

3, 6, 2 −1
3 0 4

3 0 −4
3 0 1

3 0 4
3 0 0 0

3, 6, 4 −1
3 0 2

3 0 2
3 0 −1

3 0 −4
3 0 −2

3 0

3, 6, 8 −1
3 0 1

3 0 −1
3 0 1

3 0 −2
3 0 0 0

3, 6, 16 1
6

−1
2

1
6 0 1

6 0 1
6

1
2

−4
3 -2 −2

3 0

6, 12, 1 0 −1
3 2 −8

3 2 8
3 0 1

3 4 16
3 2 0
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