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Abstract. In this paper we consider certain quaternary quadratic forms and octonary quadratic
forms and by using the theory of modular forms, we find formulae for the number of representations
of a positive integer by these quadratic forms.

1. Introduction

In this paper we consider two types of quadratic forms, viz., quaternary and octonary forms. In the
first part, we deal with quaternary quadratic forms of the following type given by
Qa,` = Qa⊕`Qa : x21+x1x2+ax22+`(x23+x3x4+ax24), where Qa is the quadratic form x21+x1x2+ax22.
Let Ra,`(n) denote the number of ways of representing a positive integer n by the quadratic form
Qa,`. i.e.,

Ra,`(n) := card
{

(x1, x2, x3, x4) ∈ Z4 : n = x21 + x1x2 + ax22 + `(x23 + x3x4 + ax24)
}
.

One of the main results of this paper is to find formulas for Ra,`(n), (a, `) ∈ A, where A =
{(1, 5), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (5, 1), (5, 2)}. Let us mention a brief account of simi-
lar results obtained so far. S. Ramanujan observed the following identity (without proof):( ∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+n2

)2

= −1

2
E2(z) +

3

2
E2(3z). (1)

(See [8, pp. 402–403], [9, p.460, Entry 3.1] for details.) Since( ∞∑
m=−∞

∞∑
n=−∞

qm
2+mn+n2

)2

= 1 +
∞∑
n=1

R1,1(n)qn,

by comparing the n-th Fourier coefficients in (1), one gets

R1,1(n) = 12σ(n)− 36σ(n/3). (2)

In the above, E2(z) denotes the Eisenstein series of weight 2 on SL2(Z) which is given by

E2(z) = 1− 24
∑
n≥1

σ(n)qn. (3)

Note that E2(z) is a quasimodular form. Here q = e2πiz, z ∈ H, where H = {z ∈ C : Im(z) > 0}.
Formula (2), which is equivalent to (1), was first conjectured in a slightly different form by J. Louville
[17] in 1863. The first elementary arithmetic proof of (2) was given by Huard et al. [[14], Theorem
13]. A second such proof was given by R. Chapman [12] based on the elementary arithmetic proof of

Date: August 17, 2017.
2010 Mathematics Subject Classification. Primary 11E25, 11F11; Secondary 11E20.
Key words and phrases. quaternary quadratic forms; octonary quadratic forms; modular forms of one variable,

classical theta function, convolution sums of the divisor functions.

1



2 B. RAMAKRISHNAN, BRUNDABAN SAHU AND ANUP KUMAR SINGH

Jacobi’s four squares theorem by B.K. Spearman and K. S. Williams [30]. Other proofs have been
given in [21, p.12], [1, Theorem 12] and [6, Theorem 1.2(ii)]. Formulas for Ra,1(n) for a = 2, 3, 4, 6, 7
are known due to the works of several authors using different methods. In this paper, we consider
the case a = 5. Further, we also consider the case ` > 1 for a few values of `. More precisely, for
the pairs (a, `) belonging to the set A. In the following table, we list the present work and also the
earlier works done in this direction.

Present work Earlier works Author(s) References
(a, `) (a, 1) (earlier works)

(1,5) (1,1) Huard et al., Lomadze [14, 21]
(2,2), (2,3), (2,4) (2,1) Ramanujan, Berndt, Chan-Ong, Williams [8, 9, 11, 32]

(3,2), (3,3) (3,1) Chan-Cooper [10]
(4,2) (4,1) Cooper-Ye [13]

(5,1), (5,2) – – –
– (6,1) Chan-Cooper [10]
– (7,1) Dongxi Ye [33]

Table 1.

When a = 1, we consider only the case ` = 5. As mentioned in the above table, the case ` = 1
was proved in [14, 21]. When ` = 2, 3, 4, 6 the formulas were proved in [1, Theorems 13-16] and
three of these formulas (` = 2, 3, 6) were conjectured by Liouville [18, 19, 20]. Using our method, in
this paper we also evaluate the cases ` = 3. The reason for this evaluation is that comparison of our
formula with the formula obtained by Alaca-Alaca-Williams in [1, Theorem 14] leads to getting an
explicit expression for the Fourier coefficients of the eta-quotient η3(z)η3(9z)/η2(3z) in terms of the
divisor function σ(n). We shall discuss this in §4.2.

Some of the formulas for Ra,`(n) involve only the divisor function σ(n), namely the cases (a, `) =
(1, 2), (1, 4), (3, 2). In these cases it is possible to get formulas for the number of representa-
tions of the quadratic forms in eight variables defined by Qa,`;j := Qa,` ⊕ jQa,` using convolu-
tion sums method. We note that this method (doubling the quadratic form with coefficients) can
be considered in general, however, for simplicity we have considered only the following 7 cases:
(a, `, j) = (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 4, 1), (1, 4, 2), (3, 2, 1). To be precise, in these cases
mentioned above, the formulas do not involve too many coefficients coming from the cusp forms.
We would also like to mention here that the formula for R2,1(n) (which is one of the Ramanujan’s
identities and first proved by B. Berndt [9, p.467, Entry 5 (i)]) is given by 4σ(n)− 28σ(n/7). There-
fore, one can also use the convolution sums method to duplicate the corresponding quadratic form
with coefficients and obtain their representation numbers. In our earlier work [26], we considered
this problem and derived formulas for the representation numbers when (a, `; j) = (2, 1; j) with
j = 1, 2, 3, 4.

In the second part of this article, we consider the following octonary quadratic forms (with coef-
ficients 1, 2, 4, 8):

i∑
r=1

x2r + 2

i+j∑
r=i+1

x2r + 4

i+j+k∑
r=i+j+1

x2r + 8

i+j+k+l∑
r=i+j+k+1

x2r , (4)

for all partitions i + j + k + l = 8, i, j, k, l ≥ 0. There are a total of 165 such quadratic forms, and
out of which 81 quadratic forms (corresponding to i = 0 or l = 0) have already been considered by
several authors [4, 5, 25]. In the second part, we consider the remaining 84 quadratic forms and give
formulas for the corresponding representation numbers. All these 84 quadratic forms are listed as
quadruples (i, j, k, l) (corresponding to i 6= 0 and l 6= 0) in Table 2 below.
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(i, j, k, l) Type
(1,0,1,6), (1,0,3,4), (1,0,5,2), (1,1,1,5), (1,1,3,3), (1,1,5,1), (1,2,1,4), (1,2,3,2), (1,3,1,3), (1,3,3,1),
(1,4,1,2), (1,5,1,1), (2,0,0,6), (2,0,2,4), (2,0,4,2), (2,1,0,5), (2,1,2,3), (2,1,4,1), (2,2,0,4), (2,2,2,2), I
(2,3,0,3), (2,3,2,1), (2,4,0,2), (2,5,0,1), (3,0,1,4), (3,0,3,2), (3,1,1,3), (3,1,3,3), (3,2,1,2), (3,3,1,1),
(4,0,0,4), (4,0,2,2), (4,1,0,3), (4,1,2,1), (4,2,0,2), (4,3,0,1), (5,0,1,2), (5,1,1,1), (6,0,0,2), (6,1,0,1)

(1,0,0,7), (1,0,2,5), (1,0,4,3), (1,0,6,1), (1,1,0,6), (1,1,2,4), (1,1,4,2), (1,2,0,5), (1,2,2,3), (1,2,4,1),
(1,3,0,4), (1,3,2,2), (1,4,0,3), (1,4,2,1), (1,5,0,2), (1,6,0,1), (2,0,1,5), (2,0,3,3), (2,0,5,1), (2,1,1,4), II
(2,1,3,2), (2,2,1,3), (2,2,3,1), (2,3,1,2), (2,4,1,1), (3,0,0,5), (3,0,2,3), (3,0,4,1), (3,1,0,4), (3,1,2,2),
(3,2,0,3), (3,2,2,1), (3,3,0,2), (3,4,0,1), (4,0,1,3), (4,0,3,1), (4,1,1,2), (4,2,1,1), (5,0,0,3), (5,0,2,1),

(5,1,0,2), (5,2,0,1), (6,0,1,1), (7,0,0,1)

Table 2.

We would like to mention here that in his thesis [16], M. Lemire determined the representation
numbers of the form

x21 + · · ·+ x2r + 2x2r+1 + · · ·+ 2x2r+s + 4x2r+s+1 + · · ·+ 4x2r+s+t,

where r ≥ 1, s ≥ 0, t ≥ 0 and r + s + t = 4k. When k = 2, Lemire’s work deals with some of the
octonary forms considered in this paper.

There are several methods used in the literature to obtain results of this type. In this paper, we
use the theory of modular forms to prove our formulas. We first obtain the level and character of the
modular forms corresponding to these quadratic forms. Then by using explicit bases for the spaces
of modular forms, we deduce our formulas.

2. Preliminaries and statement of results

As we use the theory of modular forms, we shall first present some preliminary facts on modular
forms. For k ∈ 1

2Z, let Mk(Γ0(N), χ) denote the space of modular forms of weight k for the
congruence subgroup Γ0(N) with character χ and Sk(Γ0(N), χ) be the subspace of cusp forms of
weight k for Γ0(N) with character χ. We assume 4|N when k is not an integer and in that case,
the character χ which is a Dirichlet character modulo N , is an even character. When χ is the
trivial (principal) character modulo N , we shall denote the spaces by Mk(Γ0(N)) and Sk(Γ0(N))
respectively. Further, when k ≥ 4 is an integer and N = 1, we shall denote the vector spaces by Mk

and Sk respectively.
For an integer k ≥ 4, let Ek denote the normalized Eisenstein series of weight k in Mk given by

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where q = e2iπz, σr(n) is the sum of the rth powers of the positive divisors of n, and Bk is the k-th

Bernoulli number defined by
x

ex − 1
=

∞∑
m=0

Bm
m!

xm.

The classical theta function which is fundamental to the theory of modular forms of half-integral
weight is defined by

Θ(z) =
∑
n∈Z

qn
2
, (5)

and is a modular form in the space M1/2(Γ0(4)). Another function which is mainly used in our work
is the Dedekind eta function η(z), which is defined by

η(z) = q1/24
∏
n≥1

(1− qn). (6)
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An eta-quotient is a finite product of integer powers of η(z) and we denote it as follows.

s∏
i=1

ηri(diz) := dr11 d
r2
2 · · · d

rs
s , (7)

where di’s are positive integers and ri’s are non-zero integers.
Suppose that χ and ψ are primitive Dirichlet characters with conductors M and N , respectively.

For a positive integer k, let

Ek,χ,ψ(z) := c0 +
∑
n≥1

∑
d|n

ψ(d) · χ(n/d)dk−1

 qn, (8)

where

c0 =

{
0 if M > 1,

−Bk,ψ
2k if M = 1,

and Bk,ψ denotes generalized Bernoulli number with respect to the character ψ. Then, the Eisenstein

series Ek,χ,ψ(z) belongs to the space Mk(Γ0(MN), χ/ψ), provided χ(−1)ψ(−1) = (−1)k and MN 6=
1. When χ = ψ = 1 (i.e., when M = N = 1) and k ≥ 4, we have Ek,χ,ψ(z) = Ek(z), the normalized
Eisenstein series of integer weight k as defined before. We refer to [22, 31] for details. We give a
notation to the inner sum in (8):

σk−1;χ,ψ(n) :=
∑
d|n

ψ(d) · χ(n/d)dk−1. (9)

Let N and N0 denote the set of positive integers and non-negative integers respectively. For
a1, . . . , a8 ∈ N and n ∈ N0, we define

N(a1, . . . , a8;n) := card
{

(x1, . . . , x8) ∈ Z8|n = a1x
2
1 + · · ·+ a8x

2
8

}
.

Note that N(a1, . . . , a8; 0) = 1. Without loss of generality we may assume that

a1 ≤ a2 ≤ · · · ≤ a8 and gcd(a1, . . . , a8) = 1.

In our work, we assume that a1, . . . , a8 ∈ {1, 2, 4, 8}. For the octonary quadratic forms given by (4),
the number of representations is denoted (in the above notation) by N(1i, 2j , 4k, 8l;n), i+j+k+l = 8.
In our earlier paper [25], we had listed some of the basic results in the theory of modular forms of
integral and half-integral weight, which will be used in our proof. For more details we refer to
[15, 22, 29].

We now list the main results of this paper.

Theorem 2.1. For n ∈ N, we have

R1,5(n) =
3

2
σ(n) +

9

2
σ(n/3)− 15

2
σ(n/5)− 45

2
σ(n/15) +

9

2
τ2,15(n) (10)

R2,2(n) =
4

3
σ(n) +

8

3
σ(n/2)− 28

3
σ(n/7)− 56

3
σ(n/14) +

2

3
τ2,14(n) (11)

R2,3(n) =
63

40
σ(n)− 9

2
σ(n/3) +

21

2
σ(n/7)− 1323

40
σ(n/21) +

1

2
τ2,21(n) (12)

R2,4(n) =
2

3
σ(n) +

2

3
σ(n/2) +

8

3
σ(n/4)− 14

3
σ(n/7)− 14

3
σ(n/14)− 56

3
σ(n/28)

+
4

3
τ2,14(n) +

8

3
τ2,14(n/2) (13)
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R3,2(n) = 2σ(n)− 4σ(n/2) + 22σ(n/11)− 44σ(n/22) (14)

R3,3(n) =
3

5
σ(n) +

9

5
σ(n/3)− 33

5
σ(n/11)− 99

5
σ(n/33) +

16

15
τ2,11(n)

+
16

5
τ2,11(n/3) +

1

3
τ2,33(n) (15)

R4,2(n) =
1

2
σ(n) + σ(n/2) +

3

2
σ(n/3)− 5

2
σ(n/5) + 3σ(n/6)− 5σ(n/10)− 15

2
σ(n/15)

−15σ(n/30) +
1

2
τ2,15(n) + τ2,15(n/2) + τ2,30(n) (16)

R5,1(n) =
4

3
σ(n)− 76

3
σ(n/19) +

8

3
τ2,19(n) (17)

R5,2(n) =
6

5
σ(n)− 12

5
σ(n/2) +

114

5
σ(n/19)− 228

5
σ(n/38) +

4

5
τ2,38;2(n). (18)

Note: In the above theorem, τk,N (n) denotes the n-th Fourier coefficient of the normalized newform
in the space Sk(Γ0(N), χ). Also, if there are more than one newform, then τk,N ;j(n) is the n-th
Fourier coefficient of the j-th newform.

As mentioned in the introduction, since the formulas for R1,2(n), R1,4(n) and R3,2(n) involve only
the divisor function σ(n), we use the convolution sums of the divisor functions to get formulas for
a few more quadratic forms in eight variables, namely, the quadratic forms defined by Qa,` ⊕ jQa,`,
which is denoted byQa,`;j . Let Ra,`;j(n) be the number of representations of n by this quadratic form.
In Theorem 2.2, we give formulas for Ra,`;j(n) when (a, `, j) = (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4),
(1, 4, 1), (1, 4, 2), (3, 2, 1). In order to get these formulas we need the convolution sums Wa,b(n),
(a, b) = and WN (n), for 1 ≤ N ≤ 24. Here the convolution sums are defined as follows:

Wa,b(n) =
∑

ai+bj=n

σ(i)σ(j). (19)

We write W1,N (n) and WN,1(n) as WN (n). Also note that Wa,b(n) = Wb,a(n). In all the above con-
volution sums, the indices used are natural numbers. The following theorem gives the representation
numbers Ra,`;j(n) for the above mentioned triplets (a, `, j).

Theorem 2.2.

R1,2;1(n) =
24

5
σ3(n) +

96

5
σ3(n/2) +

216

5
σ3(n/3) +

864

5
σ3(n/6) +

36

5
τ4,6(n), (20)

R1,2;2(n) =
12

5
σ3(n)− 84

5
σ3(n/2) +

108

5
σ3(n/3) +

192

5
σ3(n/4)− 756

5
σ3(n/6)

+
1728

5
σ3(n/12) +

18

5
τ4,6(n) +

72

5
τ4,6(n/2), (21)

R1,2;3(n) =
2

5
σ3(n) +

8

5
σ3(n/2) +

76

5
σ3(n/3) +

304

5
σ3(n/6) +

162

5
σ3(n/9)

+
648

5
σ3(n/18) + 6(n+ 1)σ(n) +

3

5
τ4,6(n) +

27

5
τ4,6(n/3)− 2τ4,9(n)

−8τ4,9(n/2) +
1

5
c2,9(n) +

31

5
c1,18(n), (22)
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R1,2;4(n) =
33

40
σ3(n)− 93

40
σ3(n/2) +

297

40
σ3(n/3)− 93

10
σ3(n/4)− 837

40
σ3(n/6)

+
264

5
σ3(n/8)− 837

10
σ3(n/12) +

2376

5
σ3(n/24) + (18− 27

2
n)σ(n/3)

+27(1− n)σ(n/8)− 27

10
τ4,6(n)− 18τ4,6(n/2)− 216

5
τ4,6(n/4)

+
9

8
τ4,8(n) +

81

8
τ4,8(n/3), (23)

R1,4;1(n) =
6

5
σ3(n) +

18

5
σ3(n/2) +

54

5
σ3(n/3) +

96

5
σ3(n/4) +

162

5
σ3(n/6)

+
864

5
σ3(n/12)− 36σ(n/6) +

54

5
τ4,6(n) +

216

5
τ4,6(n/2), (24)

R1,4;2(n) =
3

5
σ3(n) +

39

5
σ3(n/2) +

27

5
σ3(n/3) +

102

5
σ3(n/4) +

351

5
σ3(n/6)

+
1056

5
σ3(n/8)− 1242

5
σ3(n/12) +

864

5
σ3(n/24) + 54(4− n)σ(n/2)

−18(1 + n)σ(n/8)− 18(13 + 6n)σ(n/12)− 540nσ(n/24)− 63

10
τ4,6(n)

−531

5
τ4,6(n/2)− 1872

5
τ4,6(n/4)− 9

4
τ4,8(n)− 81

4
τ4,8(n/3) +

9

40
c3,8(n)

−54τ4,12(n/2) +
549

40
c1,24(n). (25)

R3,2;1(n) =
24

61
σ3(n) +

96

61
σ3(n/2) +

2904

61
σ3(n/11) +

11616

61
σ3(n/22) +

220

61
a1(n)

−480

61
a1(n/2) +

1976

61
a2(n)− 3296

61
a2(n/2) +

6276

61
a3(n)− 7680

61
a3(n/2)

+
9280

61
a4(n)− 7680

61
a4(n/2) +

5440

61
a5(n). (26)

Remark 2.1. As mentioned before, τk,N (n) denotes the n-th Fourier coefficient of the newform of
weight k, level N . The coefficients c2,9(n), c1,18(n) were defined in [2, Definition 2.1] and the
coefficients c3,8(n), c1,24(n) were defined in [3, Definition 2.1]. The remaining coefficients aj(n) that
appear in the above formulas are defined by the equations (47) to (53).

The next theorem gives the formulae for the octonary quadratic forms with coefficients 1, 2, 4,
and 8 given in Table 2. We present them as two statements, each statement corresponds to the two
modular forms spaces (M4(Γ0(32)) for Type I and M4(Γ0(32), χ8) for Type II) that appear in Table
2 respectively.

Theorem 2.3. Let n ∈ N and i, j, k, l be non-negative integers such that i+ j + k + l = 8.
(i) For each entry (i, j, k, l) in Table 2 corresponding to the space M4(Γ0(32)), i.e. j + l ≡ 0(2), we
have

N(1i, 2j , 4k, 8l;n) =

16∑
α=1

cαCα(n), (27)

where Cα(n) are the Fourier coefficients of the basis elements Fα defined in §4.4 and the values of
the constants cα are given in Table 3.
(ii) For each entry (i, j, k, l) in Table 2 corresponding to the space M4(Γ0(32), χ8), i.e., j + l ≡ 1(2),
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we have

N(1i, 2j , 4k, 8l;n) =
16∑
α=1

dαDα(n), (28)

where Dα(n) are the Fourier coefficients of the basis elements Gα defined in §4.5 and the values of
the constants dα are given in Table 4.

3. Sample formulas

In this section we shall give explicit formulas for a few cases of (27) and (28) in Theorem 2.3. We
first give the formulas for the cases (1,0,1,6) and (1,1,1,5) in Table 2 (Type I), which correspond to
the space M4(Γ0(32)).

For n ∈ N, we have

N(11, 41, 86;n) =
1

64
σ3(n)− 9

64
σ3(n/2) +

17

8
σ3(n/4)− 2σ3(n/8)− 16σ3(n/16)

+ 256σ3(n/32) +
1

64
σ3;χ−4,χ−4(n) +

31

64
a4,8(n) + 2a4,8(n/4) +

31

64
a4,16(n)

+
13

8
a4,32,1(n) +

3

4
a4,32,2(n)− 5

8
a4,32,3(n),

N(11, 21, 41, 85;n) =
1

32
σ3(n)− 1

32
σ3(n/2)− 16σ3(n/16)− 256σ3(n/32) +

11

32
a4,8(n)

+
3

4
a4,8(n/2) + 2a4,8(n/4) +

5

8
a4,16(n) +

11

8
a4,32,1(n) +

1

4
a4,32,2(n)

− 3

8
a4,32,3(n).

Next we give the formulas for the cases (1,0,0,7) and (1,1,2,4) in Table 2 (Type II), which correspond
to the space M4(Γ0(32), χ8).

For n ∈ N, we have

N(11, 87;n) =
1

88
σ3,χ0,χ2(n)− 1

88
σ3,χ0,χ2(n/2)− 2

11
σ3,χ0,χ2(n/4) +

1

88
σ3,χ2,χ0(n)

− 1

11
σ3,χ2,χ0(n/2)− 16

11
σ3,χ2,χ0(n/4) +

1

88
σ3;χ−4,χ−8(n) +

1

88
σ3;χ−8,χ−4(n)

+
43

176
a4,8,χ8;1(n) +

43

22
a4,8,χ8;1(n/2) +

8

11
a4,8,χ8;1(n/4)− 129

176
a4,8,χ8;2(n)

− 43

44
a4,8,χ8;2(n/2)− 4

11
a4,8,χ8;2(n/4) +

43

44
a4,32,χ8;1(n) +

43

44
a4,32,χ8;2(n),

N(11, 21, 42, 84;n) =
2

11
σ3,χ0,χ2(n/4) +

1

22
σ3,χ2,χ0(n) +

3

22
a4,8,χ8;1(n) + 2a4,8,χ8;1(n/2)

− 48

11
a4,8,χ8;1(n/4)− 9

11
a4,8,χ8;2(n) + a4,8,χ8;2(n/2) +

16

11
a4,8,χ8;2(n/4)

+ a4,32,χ8;1(n) + 2a4,32,χ8;2(n).

4. Proofs of Theorems

4.1. Proof of Theorem 2.1. Let Θa,`(z) denote the theta series associated to the quadratic form
Qa,`. Then

Θa,`(z) = Θa(z)Θa(`z), (29)
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where Θa(z) is the theta function associated to the quadratic form Qa. i.e.,

Θa(z) =
∞∑

m,n=−∞
qm

2+mn+an2
. (30)

Recall q = e2πiz. Since Ra,`(n) is the number of representations of a positive integer n by the
quadratic form Qa,`, we see that

Θa,`(z) = 1 +

∞∑
n=1

Ra,`(n)qn. (31)

So, it is sufficient to write the theta series Θa,`(z) in terms of a basis of the space of modular forms
in order to get our formulas.

Lemma 4.1. The theta series Θa,`(z) is a modular form of weight 2 on Γ0(lcm[`, (4a − 1)]) with
trivial character.

Proof. By [28, Theorem 4], it follows that Θa(z) is a modular form of weight 1 on Γ0(4a − 1) with

character
(
·

4a−1

)
. Also, it is a well-known fact that if f is a modular form of integer weight k on

Γ0(N) with character ψ, then for a positive integer d, the function f(dz) is a modular form of same
weight k on Γ0(dN) with character ψ. Further, if fi are modular forms of weight ki, on Γ0(Ni) with
chracter ψi, i = 1, 2, then the product f1f2 is a modular form of weight k1 + k2 on Γ0(lcm[N1, N2])
with character ψ1ψ2. For these facts, we refer to [15, Chapter 3]. We also refer to the proof of Fact
II in our earlier work [25], which contains details of the above arguments. Therefore, Θa,`(z) is a
modular form of weight 2 on Γ0(lcm[`, (4a− 1)]). �

Let (a, `) be an element of A. Consider the quadratic form Qa,`. By the above lemma, the
corresponding theta series Θa,`(z) is a modular form in the space M2(Γ0(lcm[`, (4a − 1)])). Let
us assume that the dimension of this vector space is da,`. If {fi : 1 ≤ i ≤ da,`} is a basis of
M2(Γ0(lcm[`, (4a− 1)])), then we can write the theta series Θa,`(z) in terms of this basis. So, let

Θa,`(z) =

da,`∑
i=1

cifi(z).

Combining this with (31) and comparing the n-th Fourier coefficients, we obtain the required for-
mulas for Ra,`(n).

We shall give below a basis of the modular forms space used in our formulas corresponding to
each pair (a, `) in the set A. Using these bases, the formulas mentioned in Theorem 2.1 follow by
comparing the n-th Fourier coefficients as demonstrated above. We shall be using the notation (7)
for the eta-quotients.

Before we proceed, we define certain modular form of weight 2 using the quasimodular form E2(z).
For natural numbers a, b with a|b, a 6= b, define the function Φa,b(z) by

Φa,b(z) =
1

b− a
(bE2(bz)− aE2(az)). (32)

Using the transformation properties of E2(z), it follows that Φa,b(z) is a modular form belonging
to the space M2(Γ0(b)). We shall use these type of forms to construct our bases for the spaces of
modular forms of weight 2.

A basis for the space M2(Γ0(15)) (the case (a, `) = (1, 5)): The vector space M2(Γ0(15)) has
dimension 4 and the subspace of cusp forms S2(Γ0(15)) is one dimensional. Let ∆2,15(z) be the
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unique normalized newform in the space S2(Γ0(15)), which is given by an eta-quotient and we put

∆2,15(z) = 113151151 =
∑
n≥1

τ2,15(n)qn. (33)

We consider the following basis for M2(Γ0(15)):

{Φ1,3(z),Φ1,5(z),Φ1,15(z),∆2,15(z)} .

In this case, we have

Θ1,5(z) = −1

8
Φ1,3(z) +

1

4
Φ1,5(z) +

7

8
Φ1,15(z) +

9

2
∆2,15(z)

= − 1

16
E2(z)−

3

16
E2(3z) +

5

16
E2(5z) +

15

16
E2(15z) +

9

2
∆2,15(z).

A basis for the space M2(Γ0(14)) (the case (a, `) = (2, 2)): A basis for the 4 dimensional vector
space M2(Γ0(14)) is given by

{Φ1,2(z),Φ1,7(z),Φ1,14(z),∆2,14(z)} ,

where ∆2,14(z) is the unique normalized newform in S2(Γ0(14)), which is given by

∆2,14(z) = 112171141 =
∑
n≥1

τ2,14(n)qn. (34)

With this basis, the theta series Θ2,2(z) has the following expression.

Θ2,2(z) = − 1

18
Φ1,2(z) +

1

3
Φ1,7(z) +

13

18
Φ1,14(z) +

2

3
∆2,14(z)

= − 1

18
E2(z)−

1

9
E2(2z) +

7

18
E2(7z) +

7

9
E2(14z) +

2

3
∆2,14(z).

A basis for the space M2(Γ0(21)) (the case (a, `) = (2, 3)): Let ∆2,21(z) be the unique normalized
newform in S2(Γ0(21)), which is given by the following eta-quotient:

∆2,21(z)=
η(7z)

2η2(z)η(3z)η(9z)η(21z)
(3η2(z)η2(7z)η4(9z)− η5(3z)η(7z)η(9z)η(21z) + 3η4(z)η2(9z)η2(63z)

+ 7η(z)η2(3z)η(9z)η4(21z) + 3η3(z)η(7z)η3(9z)η(63z)− 3η(z)η5(3z)η(21z)η(63z)).
(35)

Now a basis for this space is given by

{Φ1,3(z),Φ1,7(z),Φ1,21(z),∆2,21(z)} .

We give the expression for the corresponding theta series.

Θ2,3(z) =
1

8
Φ1,3(z)−

3

8
Φ1,7(z) +

21

16
Φ1,21(z) +

1

2
∆2,21(z)

= − 21

320
E2(z) +

3

16
E2(3z)−

7

16
E2(7z) +

441

320
E2(21z) +

1

2
∆2,21(z).

A basis for the space M2(Γ0(28)) (the case (a, `) = (2, 4)): In this case, the cusp forms space
S2(Γ0(28)) is spanned by ∆2,14(z) and ∆2,14(2z) and we use the following basis:

{Φ1,2(z),Φ1,4(z),Φ1,7(z),Φ1,14(z),Φ1,28(z),∆2,14(z),∆2,14(2z)} .
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The newform ∆2,14(z) is given by (34). We give the expression for the theta series.

Θ2,4(z) = − 1

72
Φ1,2(z)−

1

12
Φ1,4(z) +

1

6
Φ1,7(z) +

13

72
Φ1,14(z) +

3

4
Φ1,28(z) +

4

3
∆2,14(z) +

8

3
∆2,14(2z)

= − 1

36
E2(z)−

1

36
E2(2z)−

1

9
E2(4z) +

7

36
E2(7z) +

7

36
E2(14z) +

7

9
E2(28z)

+
4

3
∆2,14(z) +

8

3
∆2,14(2z).

A basis for the space M2(Γ0(22)) (the case (a, `) = (3, 2)): First we give the newform of weight
2 on Γ0(11).

∆2,11(z) = 12112 =
∑
n≥1

τ2,11(n)qn. (36)

For getting the required formula, we use the following basis:

{Φ1,2(z),Φ1,11(z),Φ1,22(z),∆2,11(z),∆2,11(2z)} .

The expression for the theta series Θ3,2(z) is given below.

Θ3,2(z) =
1

12
Φ1,2(z)−

5

6
Φ1,11(z) +

7

4
Φ1,22(z)

= − 1

12
E2(z) +

1

6
E2(2z)−

11

12
E2(11z) +

11

6
E2(22z).

A basis for the space M2(Γ0(33)) (the case (a, `) = (3, 3)): In this case the dimension of the
space is 6. We need the newform of level 33. Since explicit expression of this newform is not known,
we give below its first few Fourier coefficients (using SAGE).

∆2,33(z) = q + q2 − q3 − q4 − 2q5 − q6 + 4q7 − 3q8 + q9 − 2q10 +O(q11) (37)

We use the following basis for M2(Γ0(33)):

{Φ1,3(z),Φ1,11(z),Φ1,33(z),∆2,11(z),∆2,11(3z),∆2,33(z)} .

Using this basis, we have

Θ3,3(z) = − 1

20
Φ1,3(z) +

1

4
Φ1,11(z) +

4

5
Φ1,33(z) +

16

15
∆2,11(z) +

16

5
∆2,11(3z) +

1

3
∆2,33(z)

= − 1

40
E2(z)−

3

40
E2(3z) +

11

40
E2(11z) +

33

40
E2(33z) +

16

15
∆2,11(z) +

16

5
∆2,11(3z) +

1

3
∆2,33(z).

A basis for the space M2(Γ0(30)) (the case (a, `) = (4, 2)): The normalized newform of level 15
is given by (33). For level 30 it is defined below.

∆2,30(z) = 315161101 − 1121151301 =
∑
n≥1

τ2,30(n)qn. (38)

Following is a basis for the space M2(Γ0(30)).

{Φ1,2(z),Φ1,3(z),Φ1,5(z),Φ1,6(z),Φ1,10(z),Φ1,15(z),Φ1,30(z),∆2,15(z),∆2,15(2z),∆2,30(z)} .

Using the above basis, we have
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Θ4,2(z) = − 1

48
Φ1,2(z)−

1

24
Φ1,3(z) +

1

12
Φ1,5(z)−

5

48
Φ1,6(z) +

3

16
Φ1,10(z) +

7

24
Φ1,15(z)

+
29

48
Φ1,30(z) +

1

2
∆2,15(z) + ∆2,15(2z) + ∆2,30(z)

= − 1

48
E2(z)−

1

24
E2(2z)−

1

16
E2(3z) +

5

48
E2(5z)−

1

8
E2(6z) +

5

24
E2(10z) +

5

16
E2(15z)

+
5

8
E2(30z) +

1

2
∆2,15(z) + ∆2,15(2z) + ∆2,30(z).

A basis for the space M2(Γ0(19)) (the case (a, `) = (5, 1)): For defining the newform of level
19, we use the Ramanujan theta functions Φ(z) and Ψ(z) which are defined below.

Φ(z) :=
η5(2z)

η2(z)η2(4z)
,

Ψ(z) := q−1/8
η2(2z)

η(z)
.

(39)

We give the newform ∆2,19(z) as follows.

∆2,19(z) = q
{

Ψ(4z)Φ(38z)− q2Ψ(z)Ψ(19z) + q9Φ(2z)Ψ(76z)
}2

:=
∑
n≥1

τ2,19(n)qn (40)

The vector space M2(Γ0(19)) is spanned by the following two modular forms:

{Φ1,19(z),∆2,19(z)}

Now we give the expression for the corresponding theta function.

Θ5,1(z) = Φ1,19(z) +
8

3
∆2,19(z)

= − 1

18
E2(z) +

19

18
E2(19z) +

8

3
∆2,19(z).

A basis for the space M2(Γ0(38)) (the case (a, `) = (5, 2)): In this case we need two newforms
of level 38. Explicit expression of these newforms are not known. However, using SAGE one can get
their Fourier expansion (with certain number of Fourier coefficients) which we give below.

∆2,38;1(z) = q − q2 + q3 + q4 − q6 − q7 − q8 − 2q9 +O(q10) =
∑
n≥1

τ2,38;1(n)qn,

∆2,38;2(z) = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + q8 − 2q9 +O(q10) =
∑
n≥1

τ2,38;2(n)qn.
(41)

A basis for the space M2(Γ0(38)) is given by

{Φ1,2(z),Φ1,19(z),Φ1,5(z),Φ1,38(z),∆2,19(z),∆2,19(2z),∆2,38;1(z),∆2,38;2(z)} .

In this case, the theta series has the following expression.

Θ5,2(z) =
1

20
Φ1,2(z)−

9

10
Φ1,19(z) +

37

20
Φ1,5(z) +

4

5
∆2,38;2(z)

= − 1

20
E2(z) +

1

10
E2(2z)−

19

20
E2(19z) +

19

10
E2(38z) +

4

5
∆2,38;2(z).

Proof of Theorem 2.1 is now complete.
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4.2. A remark about the coefficients k(n) of the eta-quotient η3(z)η3(9z)/η2(3z). In this
section we evaluate the representation number R1,3(n). This is nothing but the Fourier coefficient of
the theta series Θ1,3(z). As observed earlier this theta series is a modular form in M2(Γ0(9)). This
vector space has dimension 3 and a basis for this space is given by

{Φ1,3(z),Φ1,9(z),Ψ2,9(z)} ,

where Ψ2,9(z) is the eta-quotient Ψ2,9(z) =
η3(z)η3(9z)

η2(3z)
. Therefore, we have

Θ1,3(z) = Φ1,9(z) + 3Ψ2,9(z)

= −1

8
E2(z) +

9

8
E2(9z) + 3Ψ2,9(z).

Comparing the n-th Fourier coefficients, we get

R1,3(n) = 3σ(n)− 27σ(n/9) + 3k(n), (42)

where k(n) is the n-th Fourier coefficient of the eta-quotient Ψ2,9(z). In [1, Theorem 14] a formula
for R1,3(n) is given which we give below.

R1,3(n) =


12σ(n)− 36σ(n/3) if n ≡ 0 (mod 3),

6σ(n) if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3)

(43)

Comparing the formulas (42) and (43), we get

k(n) =


0 if n ≡ 0 (mod 3),

σ(n) if n ≡ 1 (mod 3),

−σ(n) if n ≡ 2 (mod 3).

(44)

In fact, if we denote the Fourier expansion of Φ1,3(z) as

Φ1,3(z) = 1 +
∑
n≥1

a(n)qn,

we see that

Ψ2,9(z) =
∑
n≥1

(n
3

)
a(n)qn,

where
( ·
3

)
is the odd Dirichlet character modulo 3. In other words, the eta-quotient Ψ2,9(z) is

nothing but the twist of the modular form Φ1,3(z) with the character
( ·
3

)
.

4.3. Proof of Theorem 2.2. We use the formula for R3,2(n) as given in Theorem 2.1. For R1,2(n),
we use the formula proved in [1, Theorem 13].

R1,2(n) = 6σ(n)− 12σ(n/2) + 18σ(n/3)− 36σ(n/6). (45)

Though a formula for R1,4(n) is given in [1, Theorem 15], we need a single formula for our method,
which we shall give below.

R1,4(n) = 6σ(n)− 18σ(n/2)− 18σ(n/3) + 24σ(n/4) + 54σ(n/6)− 72σ(n/12). (46)

The above formula is evaluated in a similar manner as demonstrated in the proof of Theorem 2.1.
In this case, we use the following basis for the modular forms space M2(Γ0(12)), whose dimension
is 5:

{Φ1,2(z),Φ1,3(z),Φ1,4(z),Φ1,6(z),Φ1,12(z)} .
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We are now ready to prove the theorem. Here, we shall demonstrate the method by giving a proof
of the formula for R1,2;j(n), 1 ≤ j ≤ 4. The rest of the proofs are similar. It is clear that

R1,2;j(n) =
∑
a,b∈N0
a+bj=n

R1,2(a)R1,2(b).

Now using the formula for R1,2(n) from Theorem 2.1 with the convention R1,2(0) = 1, we get

R1,2;j(n) = R1,2(n) +R1,2(n/j) +
∑
a,b∈N
a+bj=n

R1,2(a)R1,2(b)

= R1,2(n) +R1,2(n/j) +
∑
a,b∈N
a+bj=n

(6σ(a)− 12σ(a/2) + 18σ(a/3)− 36σ(a/6))

(6σ(b)− 12σ(b/2) + 18σ(b/3)− 36σ(b/6))

= R1,2(n) +R1,2(n/j) + 36Wj(n)− 72W2j(n) + 108W3j(n)− 216W6j(n)− 72W2,j(n)

+ 108W3,j(n)− 216W6,j(n)− 216W2,3j(n)− 216W3,2j(n) + 144Wj(n/2) + 324Wj(n/3)

+ 1296Wj(n/6)− 648W2j(n/3) + 432W3j(n/2)− 648W2,j(n/3) + 432W3,j(n/2).

We now use the convolution sums Wa,b(n) and WN (n) obtained by several authors (see the table
below) in the last step and get the required formulas for R1,2;j(n) for 1 ≤ j ≤ 4.

(a, `; j) Convolution sums Convolution sums References
WN (n) Wa,b(n)

(1, 2; 1) WN (n), N = 1, 2, 3, 6 W2,3(n) [7, 27]
(1, 2; 2) WN (n), N = 1, 2, 3, 4, 6, 12 W2,3(n), W3,4(n) [7, 24, 27]
(1, 2; 3) WN (n), N = 1, 2, 3, 6, 9, 18 W2,3(n), W2,9(n) [2, 7, 27]
(1, 2; 4) WN (n), N = 2, 4, 6, 8, 12, 24 W2,3(n), W3,4(n), W3,8(n) [3, 7, 24, 27]
(1, 4; 1) WN (n), N = 1, 2, 3, 4, 6, 12 W2,3(n), W3,4(n) [7, 24, 27]
(1, 4; 2) WN (n), N = 1, 2, 4, 6, 8, 12, 24 W2,3(n), W3,4(n), W3,8(n) [3, 7, 24, 27]
(3, 2; 1) WN (n), N = 1, 2, 22 W2,11(n) [23, 27]

To get the formula for R3,2;1(n) we also need the convolution sumW11(n). Though this convolution
sum is obtained by E. Royer in [27], it involved a pair of terms with complex coefficients. In order to
avoid this expression, we compute below the convolution sum W11(n) which involves only rational
coefficients.

The convolution sum W11(n): First we compute an explicit basis for the space M4(Γ0(22)). The
dimension of this vector space is 11 and the cuspidal dimension is 7. The following 7 eta-quotients
form a basis for the space of cusp forms S4(Γ0(22)).

A1(z) = 162−211622−2 :=
∑
n≥1

a1(n)qn, (47)

A2(z) = 14114 :=
∑
n≥1

a2(n)qn, (48)

A3(z) = 1222112222 :=
∑
n≥1

a3(n)qn, (49)
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A4(z) = 24224 :=
∑
n≥1

a4(n)qn, (50)

A5(z) = 1−22611−2226 :=
∑
n≥1

a5(n)qn, (51)

A6(z) = 1−121113225 :=
∑
n≥1

a6(n)qn, (52)

A7(z) = 1−52911722−3 :=
∑
n≥1

a7(n)qn. (53)

By taking a basis of the Eisenstein series for the space M4(Γ0(22)) as {E4(tz) : t|22}, we get the
following full basis for M4(Γ0(22)).

{E4(tz), Aj(z) : t|22, 1 ≤ j ≤ 7} .

In order to get the convolution sum W11(n), we express the modular form of weight 4 given by
(E2(z)− 11E2(11z))2 in terms of the above basis. So, we get the following expression.

(E2(z)− 11E2(11z))2 =
50

61
E4(z) +

6050

61
E4(11z) +

17280

61
A1(z) +

118656

61
A2(z)

+
276480

61
A3(z) +

276480

61
A4(z).

Now, by comparing the n-th coefficient on both the sides, we get the expression for W11(n) as

W11(n) =
5

1464
σ3(n) +

605

1464
σ3(n/11) +

(
1

21
− n

44

)
σ(n) +

(
1

21
− n

4

)
σ(n/11)

− 15

671
a1(n)− 103

671
a2(n)− 240

671
a3(n)− 240

671
a4(n).

(54)

4.4. Proof of Theorem 2.3. We observe that the theta series corresponding to the quadratic form
given by (4) is the following product:

Θi(z)Θj(2z)Θk(4z)Θl(8z).

Therefore, by Fact II of [25], all of them belong to the space of modular forms of weight 4 on Γ0(32)
with character depending on the parity of j+ l. When j+ l is even, then the above product of theta
series belongs to M4(Γ0(32)) and if j + l is odd, then it belongs to M4(Γ0(32), χ8). Therefore, as
in the proof of Theorem 2.1, the essence of the proof lies in giving explicit bases for these vector
spaces.

4.5. A basis for M4(Γ0(32)) and proof of Theorem 2.3(i). The vector space M4(Γ0(32)) has
dimension 16 and the space of Eisenstein series has dimension 8. So, dimC S4(Γ0(32)) = 8. For d = 8
and 16, Snew4 (Γ0(d)) is one-dimensional and dimC S

new
4 (Γ0(32)) = 3.

Let us define some eta-quotients and use them to give an explicit basis for S4(Γ0(32)). Let

f4,8(z) = 2444 :=
∑
n≥1

a4,8(n)qn, (55)

f4,16(z) = 2−44168−4 :=
∑
n≥1

a4,16(n)qn, (56)
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g4,32,1(z) = 1−221488316−2 :=
∑
n≥1

a4,32,1(n)qn, (57)

g4,32,2(z) = 122381162 :=
∑
n≥1

a4,32,2(n)qn, (58)

g4,32,3(z) = 1−426488−2 :=
∑
n≥1

a4,32,3(n)qn, (59)

f4,32,1(z) :=
∑
n≡1(2)

a4,32,1(n)qn, (60)

f4,32,2(z) :=
∑
n≡1(2)

a4,32,2(n)qn, (61)

f4,32,3(z) :=
∑
n≡1(2)

a4,32,3(n)qn. (62)

Let χ−4 be the primitive odd character modulo 4. Using the definition (8), the Eisenstein series
E4,χ−4,χ−4(z) belongs to M4(Γ0(16)) and we have

E4,χ−4,χ−4(z) =
∑
n≥1

σ3,χ−4,χ−4(n)qn =
∑
n≥1

(
−4

n

)
σ3(n)qn. (63)

Using the above functions, we give below a basis for the space M4(Γ0(32)).

Proposition 4.2. A basis for the space M4(Γ0(32)) is given by{
E4(tz), t|32;E4,χ−4,χ−4(z), E4,χ−4,χ−4(2z),

f4,8(t1z), t1|4; f4,16(t2z), t2|2; f4,32,1(z), f4,32,2(z), f4,32,3(z)} .
(64)

For the sake of simplicity in the formulae, we list these basis elements as {Fα(z)|1 ≤ α ≤ 16}, where
F1(z) = E4(z), F2(z) = E4(2z), F3(z) = E4(4z), F4(z) = E4(8z), F5(z) = E4(16z), F6(z) = E4(32z),
F7(z) = E4,χ−4,χ−4(z), F8(z) = E4,χ−4,χ−4(2z), F9(z) = f4,8(z), F10(z) = f4,8(2z), F11(z) = f4,8(4z),
F12(z) = f4,16(z), F13(z) = f4,16(2z), F14(z) = f4,32,1(z), F15(z) = f4,32,2(z), F16(z) = f4,32,3(z).
We also express the Fourier coefficients of the function Fα(z) =

∑
n≥1Cα(n)qn, 1 ≤ α ≤ 16.

We are now ready to prove the theorem. Noting that all the 40 cases (corresponding to Type I in
Table 2) have the property that the sum of the powers of the theta functions corresponding to the
coefficients 2 and 8 are even. So, we can express these theta functions as a linear combination of the
basis given in Proposition 4.2 as follows.

Θi(z)Θj(2z)Θk(4z)Θl(8z) =
16∑
α=1

cαFα(z), (65)

where aα’s some constants. Comparing the n-th Fourier coefficients both the sides, we get

N(1i, 2j , 4k, 8l;n) =
16∑
α=1

cαCα(n).

Explicit values for the constants cα, 1 ≤ α ≤ 16 corresponding to these 40 cases are given in Table 3.

4.6. A basis for M4(Γ0(32), χ8) and proof of Theorem 2.3(ii). The space M4(Γ0(32), χ8) is 16
dimensional and the cusp forms space has dimension 8. For the space of Eisenstein series we use
the basis elements given by (8). There are two Eisenstein series corresponding to (χ, ψ) = (1, χ8)
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and (χ, ψ) = (χ8,1), where χ8 =
(
2
·
)
, the even primitive character modulo 8. For the space of cusp

forms, we use the following two newforms of level 8.

f4,8,χ8;1(z) = 1−22114−382 :=
∑
n≥1

a4,8,χ8;1(n)qn,

f4,8,χ8;2(z) = 122−34118−2 :=
∑
n≥1

a4,8,χ8;2(n)qn,
(66)

We also need the 2 newforms of level 32, which we define below. Let

g4,32,χ8;1(z) = 122145 :=
∑
n≥1

a4,32,χ8;1(n)qn,

g4,32,χ8;2(z) = 1−2234384 :=
∑
n≥1

a4,32,χ8;2(n)qn.
(67)

Then the two newforms of level 32 are defined by

f4,32,χ8;1(z) :=
∑
n≥1

χ4(n)a4,32,χ8;1(n)qn,

f4,32,χ8;2(z) :=
∑
n≥1

χ4(n)a4,32,χ8;2(n)qn,
(68)

where χ4 is the trivial character modulo 4.
A basis for the space M4(Γ0(32), χ8) is given in the following proposition.

Proposition 4.3. A basis for the space M4(Γ0(32), χ8) is given by{
E4,1,χ8(tz), E4,χ8,1(tz), t|4;E4,χ−4,χ−8(z), E4,χ−8,χ−4(z)

f4,8,χ8;1(t1z), f4,8,χ8;2(t1z), t1|4; f4,32,χ8;1(z), f4,32,χ8;2(z)} .
(69)

In the above, E4,1,χ8(z) and E4,χ8,1(z) are defined as in (8), f4,8,χ8;i(z), i = 1, 2 are defined in (66)
and f4,32,χ8;j(z), 1 ≤ j ≤ 2 are defined by (68)

For the sake of simplifying of the notation, we shall list the basis in Proposition 4.3 as
{Gα(z)|1 ≤ α ≤ 16}, where G1(z) = E4,1,χ8(z), G2(z) = E4,1,χ8(2z), G3(z) = E4,1,χ8(4z), G4(z) =
E4,χ8,1(z), G5(z) = E4,χ8,1(2z), G6(z) = E4,χ8,1(4z), G7(z) = E4,χ−4,χ−8(z), G8(z) = E4,χ−8,χ−4(z),
G9(z) = f4,8,χ8;1(z), G10(z) = f4,8,χ8;1(2z), G11(z) = f4,8,χ8;1(4z), G12(z) = f4,8,χ8;2(z), G13(z) =
f4,8,χ8;2(2z), G14(z) = f4,8,χ8;2(4z), G15(z) = f4,32,χ8;1(z), G16(z) = f4,32,χ8;2(z).
As before, we also write the Fourier expansions of these basis elements as Gα(z) =

∑
n≥1Dα(n)qn,

1 ≤ α ≤ 16.
In this case, all the 44 quadruples (corresponding to Type II in Table 2) have the property that

the sum of the powers of the theta functions corresponding to the coefficients 2 and 8 are odd.
Therefore, the resulting products of theta functions are modular forms of weight 4 on Γ0(32) with
character χ8 (as observed earlier). So, we can express these products of theta functions as a linear
combination of the basis given in Proposition 4.3 as follows.

Θi(z)Θj(2z)Θk(3z)Θl(4z) =

16∑
α=1

dαGα(z). (70)

Comparing the n-th Fourier coefficients both the sides, we get

N(1i, 2j , 4k, 8l;n) =
16∑
α=1

dαDα(n).

Explicit values for the constants dα, 1 ≤ α ≤ 14 corresponding to these 44 cases are given in Table
4.
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5. List of tables

In this section, we list Tables 3 and 4, which give the coefficients for the formulas for the number
of representations corresponding to Theorem 2.3 (i) and (ii).

Table 3. (Theorem 2.3 (i))

ijkl c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

1016 1
15360

−3
5120

17
1920

−1
120

−1
15

16
15

1
64 0 31

64 0 2 31
64 0 13

8
3
4

−5
8

1034 1
7680

−3
2560

17
960

−1
60

−1
15

16
15

1
32 0 15

32 0 4 15
32 0 3

2 1 −1
2

1052 1
3840

−3
1280

17
480

−1
30

−1
15

16
15

1
16 0 7

16 0 4 7
16 0 3

2 1 −1
2

1115 1
7680

−1
7680 0 0 −1

15
16
15 0 0 11

32
3
4 2 5

8 1 11
8

1
4

−3
8

1133 1
3840

−1
3840 0 0 −1

15
16
15 0 0 7

16
1
2 4 1

2 1 5
4

1
2

−1
4

1151 1
1920

−1
1920 0 0 −1

15
16
15 0 0 3

8 1 4 1
2 0 3

2 1 −1
2

1214 1
3840

−1
3840 0 0 −1

15
16
15 0 0 3

16
3
2 4 3

4 2 1 0 0

1232 1
1920

−1
1920 0 0 −1

15
16
15 0 0 3

8 1 4 1
2 2 1 0 0

1313 1
1920

−1
1920 0 0 −1

15
16
15 0 0 1

8 2 8 3
4 3 1

2 0 1
2

1331 1
960

−1
960 0 0 −1

15
16
15 0 0 1

4 2 4 1
2 2 1 0 0

1412 1
960

−1
960 0 0 −1

15
16
15 0 0 1

4 2 12 1
2 4 0 0 1

1511 1
480

−1
480 0 0 −1

15
16
15 0 0 1

2 2 12 0 4 0 0 1

2006 1
7680

−1
7680 0 0 −1

15
16
15

1
32

1
4

31
32

7
4 2 31

32
7
4

13
4

3
2

−5
4

2024 1
3840

−1
3840 0 0 −1

15
16
15

1
16 0 15

16
3
2 4 15

16 2 3 2 -1

2042 1
1920

−1
1920 0 0 −1

15
16
15

1
8 0 7

8 1 4 7
8 2 3 2 -1

2105 1
3840

−1
3840

1
120

−17
120

1
15

16
15 0 1

4
11
16

5
2 6 5

4
11
4

11
4

1
2

−3
4

2123 1
1920

−1
1920 0 0 −1

15
16
15 0 0 7

8 2 8 1 3 5
2 1 −1

2

2141 1
960

−1
960 0 0 −1

15
16
15 0 0 3

4 2 4 1 2 3 2 -1

2204 1
1920

−1
1920

1
60

−17
60

1
5

16
15 0 0 3

8 3 12 3
2 4 2 0 0

2222 1
960

−1
960 0 0 −1

15
16
15 0 0 3

4 2 12 1 4 2 0 0
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Table 3. (Theorem 2.3 (i))(contd.)

ijkl c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

2303 1
960

−1
960

1
60

−17
60

1
5

16
15 0 −1

2
1
4 3 20 3

2
11
2 1 0 1

2321 1
480

−1
480 0 0 −1

15
16
15 0 0 1

2 2 12 1 4 2 0 0

2402 1
480

−1
480 0 0 −1

15
16
15 0 -1 1

2 2 28 1 7 0 0 2

2501 1
240

−1
240

−1
30

17
30

−3
5

16
15 0 -1 1 0 28 0 7 0 0 2

3014 1
1920

1
640

−17
480

1
30

−1
15

16
15

1
16 0 9

8
9
2 4 27

16 6 4 2 -1

3032 1
960

1
320

−17
240

1
15

−1
15

16
15

1
8 0 5

4 3 4 11
8 6 4 2 -1

3113 1
960

−1
960 0 0 −1

15
16
15 0 0 1 5 16 7

4 7 3 1 0

3131 1
480

−1
480 0 0 −1

15
16
15 0 0 1 4 4 3

2 6 4 2 -1

3212 1
480

−1
480 0 0 −1

15
16
15 0 0 1 4 28 3

2 8 2 0 1

3311 1
240

−1
240 0 0 −1

15
16
15 0 0 1 2 28 1 8 2 0 1

4004 1
960

1
320

−13
240

−13
60

1
5

16
15 0 0 3

4 9 12 3 12 4 0 0

4022 1
480

1
160

−17
120

2
15

−1
15

16
15 0 0 3

2 6 12 2 12 4 0 0

4103 1
480

−1
480

1
60

−17
60

1
5

16
15 0 −1

2
1
2 9 36 3 27

2 2 0 2

4121 1
240

−1
240 0 0 −1

15
16
15 0 0 1 6 12 2 12 4 0 0

4202 1
240

−1
240 0 0 −1

15
16
15 0 -1 1 6 60 2 15 0 0 4

4301 1
120

−1
120

−1
30

17
30

−3
5

16
15 0 -1 2 0 60 0 15 0 0 4

5012 1
240

1
240

−17
120

2
15

−1
15

16
15

−1
4 0 3

2 10 44 11
4 20 2 -4 3

5111 1
120

−1
120 0 0 −1

15
16
15 0 0 1 6 44 2 20 2 -4 3

6002 1
120

−1
120 0 0 −1

15
16
15

−1
2 -1 1 14 124 7

2 31 -4 -8 10

6101 1
60

−1
60

−1
30

17
30

−3
5

16
15 0 -1 2 0 124 0 31 -4 -8 10
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Table 4. (Theorem 2.3 (ii))

ijkl d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

1007 1
88

−1
88

2
11

1
88

−1
11

16
11

1
88

1
88

43
176

43
22

8
11

129
176

−43
44

−4
11

43
44

43
44

1025 0 0 2
11

1
44

−2
11

32
11 0 1

44
7
22

43
22

12
11

29
44

−14
11

20
11

43
44

14
11

1043 0 0 2
11

1
22

−4
11

64
11 0 1

22
17
44

21
11

20
11

25
44

−17
11

24
11

21
22

17
11

1061 0 0 2
11

1
11

−8
11

128
11 0 1

11
3
11

20
11

−8
11

7
11

−12
11

32
11

10
11

12
11

1106 0 0 2
11

1
44 0 0 1

44 0 3
44

5
2

48
11

10
11 1 −28

11
43
44

37
22

1124 0 0 2
11

1
22 0 0 0 0 3

22 2 48
11

9
11 1 16

11 1 2

1142 0 0 2
11

1
11 0 0 0 0 3

11 2 48
11

7
11 0 16

11 1 2

1205 −1
44

1
44

2
11

1
22 0 0 1

44 0 −3
88

67
22

92
11

89
88

59
22

−28
11

43
44

59
22

1223 0 0 2
11

1
11 0 0 0 0 1

44 2 92
11

39
44 3 16

11 1 3

1241 0 0 2
11

2
11 0 0 0 0 1

22 2 48
11

17
22 2 16

11 1 2

1304 −1
22

1
22

2
11

1
11 0 0 0 0 −3

44
34
11

136
11

45
44

48
11

16
11 1 4

1322 0 0 2
11

2
11 0 0 0 0 1

22 2 136
11

17
22 4 16

11 1 4

1403 −1
22

1
22

2
11

2
11 0 0 −1

22 0 −1
22

23
11

180
11

10
11

70
11

104
11

23
22

62
11

1421 0 0 2
11

4
11 0 0 0 0 1

11 2 136
11

6
11 4 16

11 1 4

1502 0 0 2
11

4
11 0 0 −1

11 0 1
11 0 224

11
6
11 8 192

11
12
11

80
11

1601 1
11

−1
11

2
11

8
11 0 0 −1

11 0 4
11

−24
11

224
11

−2
11

80
11

192
11

12
11

80
11

2015 0 0 2
11

1
22 0 0 0 1

22
7
11 5 92

11
29
22 0 −28

11
43
22

28
11

2033 0 0 2
11

1
11 0 0 0 1

11
17
22 4 92

11
25
22 0 16

11
21
11

34
11

2051 0 0 2
11

2
11 0 0 0 2

11
6
11 4 48

11
14
11 0 16

11
20
11

24
11
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Table 4. (Theorem 2.3 (ii))(contd.)

ijkl d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

2114 0 0 2
11

1
11 0 0 0 0 3

11 5 136
11

18
11 3 16

11 2 4

2132 0 0 2
11

2
11 0 0 0 0 6

11 4 136
11

14
11 2 16

11 2 4

2213 0 0 2
11

2
11 0 0 0 0 1

22 4 180
11

39
22 6 104

11 2 6

2231 0 0 2
11

4
11 0 0 0 0 1

11 4 136
11

17
11 4 16

11 2 4

2312 0 0 2
11

4
11 0 0 0 0 1

11 2 224
11

17
11 8 192

11 2 8

2411 0 0 2
11

8
11 0 0 0 0 2

11 0 224
11

12
11 8 192

11 2 8

3005 −1
44

1
44

2
11

1
11

4
11

−64
11

1
44

1
22

53
88

201
22

252
11

205
88

115
22

−124
11

129
44

115
22

3023 0 0 2
11

2
11

8
11

−128
11 0 1

11
35
44

68
11

236
11

89
44

67
11 0 32

11
67
11

3041 0 0 2
11

4
11

16
11

−256
11 0 2

11
13
22

70
11

160
11

45
22

46
11

−16
11

31
11

46
11

3104 −1
22

1
22

2
11

2
11 0 0 0 0 9

44
100
11

312
11

117
44

92
11

16
11 3 8

3122 0 0 2
11

4
11 0 0 0 0 13

22 6 312
11

45
22 8 16

11 3 8

3203 −1
22

1
22

2
11

4
11 0 0 −1

22 0 0 67
11

356
11

59
22

136
11

280
11

67
22

128
11

3221 0 0 2
11

8
11 0 0 0 0 2

11 6 312
11

23
11 8 16

11 3 8

3302 0 0 2
11

8
11 0 0 −1

11 0 2
11 0 400

11
23
11 16 544

11
34
11

168
11

3401 1
11

−1
11

2
11

16
11 0 0 −1

11 0 6
11

−68
11

400
11

10
11

168
11

544
11

34
11

168
11

4013 0 0 2
11

4
11

16
11

−256
11 0 0 1

11
92
11

468
11

39
11

200
11

72
11 4 12

4031 0 0 2
11

8
11

32
11

−512
11 0 0 2

11
96
11

360
11

34
11

136
11

−48
11 4 8

4112 0 0 2
11

8
11 0 0 0 0 2

11 6 576
11

34
11 20 192

11 4 16

4211 0 0 2
11

16
11 0 0 0 0 4

11 4 576
11

24
11 16 192

11 4 16

5003 −1
22

1
22

2
11

8
11

16
11

−256
11

−1
22

−2
11

−31
22

115
11

820
11

63
11

402
11

424
11

115
22

258
11

5021 0 0 2
11

16
11

32
11

−512
11 0 −4

11
−7
11

118
11

712
11

46
11

268
11

−48
11

9
11

172
11

5102 0 0 2
11

16
11 0 0 −1

11 0 −7
11 0 928

11
46
11 40 896

11
56
11

344
11
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