L-FUNCTION ASSOCIATED TO JACOBI FORMS OF HALF-INTEGRAL
WEIGHT AND A CONVERSE THEOREM
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ABSTRACT. We associate certain L-functions to a Jacobi form of half-integral weight and
study their analytic properties. We also prove a converse theorem for Jacobi form of half-
integral weight.

1. Introduction

Modular forms are one of the important objects in modern mathematics. They appear in
diverse contexts: Fermat’s last theorem, ¢-hypergeometric series, partitions, elliptic curves,
and string theory. The theory of modular forms has a wide-ranging impact on modern
mathematics and its applications. Recently, modular forms have proven its significance in
analytic number theory by providing new tools and with numerous connections to arithmetic
geometry, notably through the theory of L-functions. A modular form f of weight k& for the
group SLy(7Z) is a complex-valued holomorphic function defined on the complex upper-half
plane H satisfying the following transformation property:

f <Z:is) =(cr+d)f(r), TEH

for all matrices ( CCL Z ) € SLsy(Z), and holomorphic at the cusp oo. The above trans-

formation property implies that a modular form admits a Fourier series expansion given

by

Fr) = S alme
n>0
Further, if af(0) = 0, then we call f to be a cusp form. For each n € N, the complex number
af(n) is called the n-th Fourier coefficients of f. A modular form is completely determined
by its Fourier coefficients. The Fourier coefficients of a modular forms satisfies the estimates
as(n) = O(n**) for any € > 0. One can associate an L-function to a modular form f of
weight k as follows;

ay(n)
Ls(s) = , R(s) > k+1.
The completed L-function Af(s) = (2m)*I'(s)Ls(s) has an analytic continuation to the
whole complex plane with possibly simple poles at 0 and k, and satisfies the functional
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equation
k
Ap(k —s) = (=1)2Af(s).
Hecke studied converse of the above fact which is known as Hecke’s converse theorem. More
precisely he proved the following:

Theorem 1.1. [5] Let k > 2 be a positive integer. Let {a(n)},>1 be a sequence of complex
numbers such that a(n) = O(n°) for some o > 0. The function f(7) = > a(n)e*™ " defines

n=>1
a cusp form of weight k for full modular group SLs(Z) if and only if the completed L-
function Ap(s) = (2m)~*I'(s) > af;j) admits a holomorphic continuation to the whole complex
n=1
plane C which is bounded on any vertical strip and satisfies the functional equation As(s) =

(—1)2As(k —s).

One can ask the similar question for other kinds of automorphic forms as well. This
question attracted several mathematicians in the past where they answered this question in
the case of other kinds of automorphic forms, see [2, 3, 6, 8, 13].

Jacobi forms are natural generalization of modular forms. The theory of Jacobi forms was
first systematically studied by Eichler and Zagier to prove Saito-Kurokawa conjecture [4].
Berndt [1] associated 2m many L-functions A,(¢,s),0 < p < 2m — 1 to a Jacobi form ¢
of weight k and index m using the theta decomposition and studied its analytic properties.
Martin [8] studied the analytic continuation and converse theorem for Jacobi form involving
the L-functions defined by Berndt. We briefly mention the theorem of Martin.

Theorem 1.2. [8] Let k and m be positive integers. Let ¢(1,2) = cg(n, r)e?™(7+72) pe

r2<4nm
holomorphic function satisfying

(i) ¢(T,z) converges absolutely and uniformly on compact subsets of H x C,
(ii) there exists v > 0 such that ¢(1, 2)e*™P* = O(S(7)™) as S(7) — 0,

(iii) for each N\ we have c¢(n,r) = c(n + Ar + X>m,r + 2Am).
Then the following statements are equivalent:
(1) The function ¢(1,z) is a Jacobi form of weight k and index m.

(2) Each completed L-function A,(¢,s),0 < p < 2m — 1 associated to ¢(t,z), can be
analytically continued to a holomorphic function on s-plane. These functions are
bounded on any vertical strip and satisfy the functional equations

2m—1

1 Tiap 1
(2m)72 Y e N9, 5) = Aa(dk — 5 =), 0<a<2m 1.

pn=0
The above result was generalized for Jacobi forms on congruence subgroups by Martin and
Osses [9]. There are two objectives of this paper, first, we associate certain L-functions to
a Jacobi form of half-integral weight and study its analytic properties, and second we prove
a converse theorem for Jacobi forms of half-integral weight. Our approach is similar to the
work of Bruinier [3] related to converse theorem in the case of half-integral weight modular
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forms, however one needs the notion of Fricke type involution operator for Jacobi forms of
half-integral weight.

This paper is organized as follows: In Section 2, we recall the basic definition and some
properties of Jacobi forms of half-integral weight. In Section 3, we associate certain Dirichlet
series to a Jacobi form of half-integral weight. In Section 4, we first define and study the
twist of a Jacobi form of half-integral weight by a Dirichlet character. Next, we define certain
Fricke involution type operator and study its properties. In Section 5, we state the main
results of the paper. Finally, in Section 6, we provide proofs of the results stated in Section
D.

2. Notations and preliminaries

Let C and H denote the complex plane and complex upper half-plane, respectively. For a
complex number z, we denote

= |Z]%e(%)argz with —7 < arg z <,

= (\/Z) for any k € Z.

2mimz/n

N &l
ISTEIE N

. We also write e = e™(z2), el =
1 9

For z € C and integers m and n, we put €]'(z) = e .
en(z), and e} = e(z). For integers m and n, (Z) denotes the Jacobi symbol. We now
briefly recall the definition and some properties of Jacobi forms of half-integral weight. For a

positive integer N, we define the following congruence subgroup I'g(N) of SL4(Z) as follows:

To(N) = {( i Z) € SLy(Z) : ¢ = 0 (mod N)}.

For v = (2%) € GLy (R), let ¥ = (v, ¢(7)), where ¢(7) is a complex-valued holomorphic

d
function on H such that ¢?(7) = tL with ¢t € {1, —1}. Then the set

det(y)

“ _{ =)= (Z fl) € GLy (R), s@z(T)Zt%t(i), t:ﬂ},

forms a group with the following operation

(v, 01(7)) - (2, £2(7)) 1= (1172, 01 (727)2(7)), (1, 01(7)), (72, 02(T)).-

For v = (Z Z) € Io(4), put j(v,7) = (5) (5) 1/2 (et 4+ d)'/?. Then the association
v+ =(7,4(v,7)) is an injective map from I'y(4) into G.

Let
G’ ={(7,X,s): v€ SLy(R), X € R? s€ S'}.

Then G is a group, with the group law
(7, X, 8) (72, Y, 8') = <7172, Xy +Y, ss' - det <ny2>> :

The real Jacobi group G defined by
T=1{(7,X,0): M € SLy(R), X € R* ¢ € S'}
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is a subgroup of the group GJ , and acts on H x C as follows:

b 24 A
b (r7) = (aT—I— z+ r+u)7

ct+d  er+d

where (1,2) € H x C, h = (v,X,() € G’ with v = . Z

Let k and m be fixed positive integers with & odd. For a function ¢ : H x C — C and
h= (7 X,s) € G’ with X = (\,u) € R?, the slash operator ]gm of weight £ and index m
is defined by

—k m [ —c(z+XT 2 ar ZHAT
(Bl5,uh) (7,2) i= s7p(r) Fem (S22 4 227 490z 4 A ) @ (4222, E2250)

For h = (7,(0,0),1) with v = ((CCL Z) ,j(%T)) : (? Z) € I'o(N) the above definition

reduces to

- - m 7022 aT 4
((b‘g,mh‘) (7—7 Z) = .](77 T) ke (m’—i—d) ¢ (CTIS’ CT+d) '
We use the notation ¢|§7mh = ¢|§’m7yv for h = (7,(0,0),1) with ¥ = (v, 4(7,7)),v € To(V).
For positive integers a, # and N with 4|N, consider the subgroup I'] 5(N) of G7 defined
by T 5(N) :=To(N) x ((aZ x B7'Z) x {(s)) i.e.,

Los(N) ={(F, (A, n),s) : 7 €To(N), A € aZ, pu € B7'Z, s € ((p)},
where ((3) is the cyclic group generated by the primitive 5-th roots of unity. We use the
notation I'{ | (N) = I'/(N). We now define Jacobi forms of half-integral weight for the group
Fiﬁ(]\f ).
Definition 2.1. Let k, N,m,« and [ be positive integers such that k is odd and 4|N. Let x
be a Dirichlet character modulo N. A Jacobi form of weight % and index fm with character x

for the group Fiﬁ(N) 1s a complex-valued holomorphic function ¢ defined on H x C satisfying
the following conditions:

(‘Z) gb |§,ﬁm h = X(d)¢7 fO’I" a’” h = (77/7 X7S> € Fi,ﬁ(N) thh v = (zrl)a
(2) for every o = (CCL 3) € SLy(Q) there exists an integer d, such that the function
o) |§,5m h, where h = (¢71,(0,0,1)) has a Fourier expansion of the form

n T
) \gﬂm h = Z Copo(n,re (d_C,T + d—gz) )

n,rez
r2<4nfmd,
Further, if the Fourier coefficients ¢y, (n,r) satisfy ¢, (n,r) = 0 whenever 48mnd, = r?
for every o € SLy(Q), then ¢ is called a Jacobi cusp form.
We denote the space of Jacobi forms (respectively, Jacobi cusp forms) of weight g and index
m with character x for the group I'{; by J§7Bm(Fiﬁ(N), X) (respectively, J;;;(Fiﬂ(]\f), X))

For more details on the theory of Jacobi forms of half-integral weight for the group I'/ (N),
we refer to [11, 12].
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2.1. Theta decomposition. Let ¢ € J§75m(Fi7ﬁ(N),X). Then using the transformation
property of ¢(7, z) we have the following Fourier series expansion of ¢

O(1,2) = Y coln,r)e(nr +1fz). (1)
n,reZ
Br2<4nm

For D > 0, r(mod 2ma), we define a sequence {c,(D)} of complex numbers as follows:

D+pBr? D= 32 d4 _ 12
cu(D) = Cop ( am J") , 1 pre (mod 4m),r = p (mod 2ma), @
0, otherwise.
Set .
hM<T) = Z CN(D)64m(DT), (3)
D=0

and for a natural number [, consider the Jacobi theta function defined by
2

Ou(roz)i= Y e(Z—ZT+m). (4)

rEZL
r=u(mod 21)

The equations (1), (3) and (4) implies the following decomposition of the Jacobi form ¢(7, z) :

2ma

(1, 2) = Z "y (7)0ma, (BT, B2). (5)

The above equation is called the theta decomposition of the Jacobi form ¢ and the functions
h,, are called the theta components of the Jacobi form ¢. The transformation property of
the Jacobi form ¢ inherits certain transformation properties to h,. For more details on the
transformation properties satisfied by the function h,,, we refer to [10].

The Fourier coefficients of a Jacobi cusp form satisfies the following bound.

Lemma 2.2. Let ¢ € J;"P(TV(N), x) be a Jacobi form with the Fourier series expansion as
27

given in (1). Then there exists a positive real number Cy such that |cy(n,r)| < CoD', where

D = 4mn — r2.

The above estimate for the Fourier coefficients has nice analytic consequences given in the
following lemma:

Lemma 2.3. Let m be a positive integer and {c, (D)}, p=1,---,2m,D > 0 be a sequence
as defined in (2). Let hy(7),0m,(T,2) and ¢(1,2) be the power series given by (3), (4)
and (5), respectively. If c, (D) = O(D°) for some § > 0, then each of the series h,(T)
(respectively, h,(T)0m (T, %)) converges absolutely and uniformly on any compact subset of
H (respectively, H x C). In particular they define holomorphic functions on H (respectively,
H x C). Moreover

hy(7)0p (T, 2)e™ (p2) = O(y_‘s_%) as y — 0,

hy(7)0m (7, 2)e™ (pz) = O (e (%)) as y — 0o
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hold uniformly with respect to x where T = x 4+ 1y and z = pT + q.
Proof. Proof of the above lemma follows in a similar way to lemma 3 [§] g

Lemma 2.4. Let ¢ : H x C — C be a holomorphic function satisfying part (i) of the
definition 2.1. Assume that the estimates e™(pz)¢(7,2) = O(v™°) as y — 0 holds uniformly
with respect to R(T) for some positive real number 0. Then ¢ € Jg’m(FJ(N), X). Moreover,

if 6 < 5L then ¢ € Jg“jf(FJ(N),X).
Proof. The proof is similar to the proof of Lemma 3 [9]. O

3. Dirichlet Series associated to Jacobi forms of half-integral weight
In this Section, we associate certain Dirichlet series to a Jacobi form of half-integral weight.

Definition 3.1. For a fized positive integer m, we call ¢(1,2) = >, cy(n,r)e(nt+1z2) to
n,reZ
r?<dnm

be a series of type J, if the following properties hold:
(1) The series ¢(T,z) converges absolutely and uniformly on every compact subset of

H x C.

(2) There exist positive real numbers C and & such that |cg(n,r)| < C(4mn —r?)° for all
n,r such that r? < 4nm.

(3) The Fourier coefficients of cy(n,r) satisfy cy(n,r) = cg(n + Ar+ Nm,r + 2mM) for
every A € Z.

The condition (1) implies that ¢ : H x C — C is a holomorphic function. The condition
(1) and (3) together imply that ¢ has a theta decomposition as given in (5). It is easy to
observe that the Fourier series expansion of a Jacobi cusp form ¢(r, z) € J.“P(I'/(N), x) is

3,m

a series of type J with § = %.

Definition 3.2. Let N and M be positive integers with 4N and (N, M) = 1. Let ¢(r, 2)
be a series of type J and x1 be a primitive Dirichlet character modulo M. Then for each
pe {0,1,2,---,2mM — 1}, we define a Dirichlet series using theta decomposition of ¢ as

follows:
[e.e] D 2 D —S
Lu(dyi58) = Y xa ( 4:: ) ¢u(D) (m) : (6)

The completed Dirichlet series is defined by
2w

M09 = () TELo) @)

Note here that condition (2) of the definition 3.1 implies the series (6) is uniformly con-
vergent on the complex half plane R(s) > 1+ ¢ for every p € {0,1,2,--- ,2mM — 1}.

Definition 3.3. Let m and N be fized positive integers with 4|N. We call a series ¢(7,z) =
Yo co(n,r)e(nT +1rNz) to be a series of type Jy, if the following properties hold:

n,rez
4mn>Nr?



L-FUNCTION ASSOCIATED TO JACOBI FORMS OF HALF-INTEGRAL WEIGHT 7

(1) The series ¢(T,z) converges absolutely and uniformly on every compact subset of
H x C.

(2) There exist positive real numbers C' and § such that |c4(n,r)| < C(4mn — Nr?)° for
all n,r such that Nr? < 4nm.

(3) The Fourier coefficients of cs(n,r) satisfy cy(n,r) = cy(n + ArN + N2mN,r + 2m))
for every \ € Z.

A series of type Jy has a theta decomposition given by
2m
O(1,2) = D gu(T)0mu(NT, N2) (8)
pn=1

where g,(7) = Y d,(D)e (£7) and d,(D) = ¢y(n,r) with D = 4nm — Nr2. For details we

D=1
refer to [[9], p. 170].
If (7, 2) € JZUZ)(FJ(N)’X)’ then ¢(7,2) = ¢\§7WWN(T, z) € ngmN(Ff’N(N),X) and hence

(T, z) can be represented by a series of type Jy.
As in Definition 3.2, for each p € {0,1,2,--- ,2mM — 1}, we define the Dirichlet series
L,(¢¥, x1, s) and the corresponding completed Dirichlet series A, (1), x1, s) associated to 1) as

follows:
- D + Np? D\’
Lisas) = o () o) () )
D=1

2\’
Moo = (5r7) TOLGG) (10

4. Twist and Fricke involution for half-integral weight Jacobi forms

Let k, m, M and N be positive integers such that 4 | N, and y be a Dirichlet character
modulo N. For a real number A\, let T = ((1) i\) and I; denote the identity matrix of order
2. Define €,; by

I, M=1 (mod 4)
M= 9.
i, M =3 (mod 4).

Definition 4.1. Let ¢ be a series of type J or Jy. Let x1 be a primitive Dirichlet character
modulo M, where (N, M) = 1. The twist of ¢(7,z) by x1 is defined by

bxi(m2) = Y xa(n)es(n,r)e(nt +72). (11)

n,reZ
r2<4dnm

Lemma 4.2. Let ¢ € J%m(FJ(N), X) be a Jacobi form with the Fourier series expansion as
given in (1). Let x1 be a primitive Dirichlet character modulo M, where (N, M) = 1. Then

¢X1 (T7 Z) < J%,m(r&,l(NM2)7 XX%)‘

Further, if ¢ is a Jacobi cusp form, then ¢,, is also a Jacobi cusp form.
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Proof. For any u € 7Z, consider the matrix T,, = (é ?f) € SLy(R). Then/T\; = (((1) ib) ,1) €

GG, where 1 is the constant function 1. Now

Olsm Ty (0,0,1)(r,2) = 6 (r 4+ 17.2) = Y e(57) colme(nr +72).

n,reZ
r2<4nm

Multiplying by ¥;(u) and summing over all u (mod M), we obtain

= el T 0.0.D(2) = Y (ixxu)e(%))%(n,r)e(mw),

0 n,r€Z u=0
r2<4nm
= E Grx, Co(n,r)e(nt +12),
n,reZ
r2<4nm

where G, %, is the Gauss sum associated with the primitive Dirichlet character x; defined by

M—1
¥ = Zo X1 (w)e(47). Note that G, 5, = 0 if (n, M) > 1. Therefore

ME

Ty, (0,0),1)(7, 2) = Gx, 014 (7, 2), (12)

u=0
where G15~ = G+ .
X1 X1

Let L = NM? and 7 = (7,j(7,7)), where v = (a ;

T d) € T'o(L). Now

Y =TT, € Do(L) C To(N), x(7) = x(), ¥ = (7,4(7, 7)) € To(L) C To(N)
M

—_—

and ' = (T, (0,0), 1)5(To,b . (0,0), 1). Thus for any [7, (A, v),1] € T, (L), we have

M

__ N _ \d2 __
(@ T (0.0) DDl (7. 00 2007 2) = 0l (7 (A,u 25 1) LT 00,007

= X9t (To2 wa (0, 0), 1)(7, 2).

From (12) and the above equation, we obtain

Gxrdale i (V: (A ), 1 Z X1 (@)0]k 1 (Tu2, 2, (0,0),1)(7, 2). (13)
As (d, M) = 1 replacing d*u by u in (13), we obtain
Izt lsm(V (A ), 1)(72) = x(7) ) Xi(ud™)élx (T, (0,0), 1)(7, 2)

.E

= x(Mxa(d) Y X (@)ele (T, (0,0), 1)(7,2).

u

i
=)

2)
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Now as x1(d) = x1(7), from (12) we get
Sl (T, (A1), 1)(7,2) = X3 (7)o (T, 2).

Thus we see that ¢,, satisfies the transformation properties of Jacobi forms. From the
Fourier expansion of ¢ is easy to check that ¢,, has the required Fourier expansion. U

Definition 4.3. Let k and m be positive integers and ¢ be a complex-valued holomorphic
function defined on H x C. For a positive integer L, we define the following Fricke involution
type operator by

WE™(9) = (Uyz)] s purh (14)

— 0o —-—-L
where h = (7,(0,0),1) € G7,7 = ((\/E ﬁ) ,Li(—i7)§> € G, and the operator Uy, is

0
defined as
Urd(r, Z) := ¢(1, Lz).

We have the following form of (14)

WE™(9)(r,2) = i% L i r—5emt (—z;) & (—i 3) . (15)

LT’ T
We write Wy, instead of ;"™ when k and m are clear from the context.

Lemma 4.4. Let L be a positive integer with 4|L and x a Dirichlet character modulo L. If
¢ € Ji ., (T7(L),x), then

m

W) € Ju (T (L), X,

where x*(d) = x(d) (§) . Further, if ¢ is a Jacobi cusp form, then Wy(¢) is also a Jacobi
cusp form.

Proof. Holomorphicity of the function Wy, (¢) is obvious from the equation (15). For matrices

a b d —c
= (CL d)’ V= (—bL a) € I'o(L), we have

(Ve 3 2iem) (e 50wt = (o (3) )

Thus by the definition of W, and above identity, we have

Wo@ly a0 Com)2) = Wl (7 (5 ) i) (7 75 ) 2
= (D)ol D (75 H =)
= () @ ((p 3F) et

— (%) (AW
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Now we consider (I, (\,v), () € '/ (L). We have

W6 s (Lo (A, v), G )
a1 () ) (5, ) )

We have
A .
UMy us (12 (VI 52 ) 6L ) = U0l i (= L), 1)

As ¢ € Jg’m(F‘](L),X), we obtain

Vs (10 (~VEn 2 L) = Uslo)

Hence we have WL(¢)|§7mL(Id, (AN, v), () = Wi(¢). It easy to check that Wy (¢) has required

Fourier expansion and proof is similar to that of Lemma 5, p. 166, [9]. U

Lemma 4.5. Let ¢ € J;“::(FJ(N),X) be a Jacobi cusp form. Let x, be a primitive Dirichlet
2’
character modulo M, where (N, M) = 1. Denote » = Wy (). Then

(VVNM2 (¢X1))(77 Z) = OX1¢*(77 MZ)7

where

= (%);X(M) (%)Xl(—N>fz\/fl -

and

02 = > ) (37) YlguT (0,0),1).

u=

Proof. Let u be an integer such that (u, M) = 1. Then there exist integers x, y such that

M —yuN = 1. Then v = (_j\f]\f _:ry) € I'y(N). Observe that

1

T 000) (e 9™ ) i

=

, (O, 0), 1)
~((Jy FF) ¥ emh 0.000) 505 0.0 D)0 (2) e (0.0).1),
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Also, note that UM\ﬁ(¢|k m(T2,(0,0),1))(7,2) = ( M\F¢)| mNMQ(T ,(0,0),1)(7, z). There-
fore

(Wns(0]1,(T,» (0,0), D)(7, )
= Uy (613 T 0,01 )] v ), (V) (in) (0,0).1) 72

= (D)t Oy (g 57) FHE0,0)1) 750,00 10072

= (1) tvn (Tawolsn (( Uy ]Tﬁ) V=1 0,0,1) 775,001 (7.2
= () U (W@l g punAls (T (0,00, 1)) (7. 2)
= () U (Vg g T (0,0),D) (7,2).
Using Lemma 4.4, we obtain
Waar 6l T (0.0 D)7 2) = (£5) e5x(1) () bl (T 0,01 17, 012),

Now multiplying above equation by X;(u) and summing over all u (mod M) as in (12), we
obtain

(Wxare (G, 60))(7.2) = €3 x(M) (%) 3w (37) Y15 (T (0.0). 1) (7, M)

— ) (37 ) TN 00),
Hence the result follows. O

Lemma 4.6. Let ¢ € JZUZ(FJ(N), X) be a Jacobi cusp form, where x is a Dirichlet character
5
modulo N. Let M be a prime with (N, M) = 1. Then
Bu(6) € I (D (NAL). ),
where By(¢) is defined by
Bu(9) = M > Ol (T (0,0).1).

u (mod M)

a b
M d

@7(0,0»1)((0;}, ) ) 2. (0,0),1),

Proof. Let M' = NM?. Consider the matrix v = < ) € I'o(M"). Then we have
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where 7/ = <0X/4’ Zl,) € To(M') with d' = d — cd”WM'. We have
~ 1 ~
Bu@y,d = v 3 Olyn(Ty (0.0,10)]1,73
u (mod M)
1 ~
= (9117 )& g (Tusz  (0,0), 1)
u rnodM)
= X(d’)M > Olew(Tuz, (0,0),1)
u (mod M)
1
= x(d)y; > 9l (T, (0,0),1)
u (mod M)
= x(d)Bu(9).

In the above calculation we have used that (d, M) = 1 and d’ = d (mod N) to obtain x(d) =
x(d'). Other transformation properties and required Fourier expansion follows similarly as
in the proof of Lemma 4.2.

O

Lemma 4.7. Let M be an odd prime, and x, be a primitive Dirichlet character modulo M.
For a complex-valued holomorphic function v defined on H x C, consider the function 1V* as
defined in Lemma 4.5. Then

(i) If xa # Xz then Cy " = (51)"% X(M)(3)x1 (= N)ex} Gnina O Y

1

(i1) 1f x1 = Xa, then Cu* = (5)"% 1 (M)(M3 By () = M~29).
Here C, is as in Lemma 4.5 and x2(u) = (%) )

Proof. If x1 # X2, then x1x2 is primitive character modulo M, and the proof follows from
Lemma 4.2.
If x1 = x2, then

and Cy, = (7)) x(M)e;,
5. Main result

In this Section, We state the main results of this paper.

Theorem 5.1. Let m, N and M be positive integers such that 4|N and (N, M) = 1. Let x be
a Dirichlet character modulo N, x1 be a primitive Dirichlet character modulo M, and x, be
a Dirichlet character defined by x,(+) = (M) , where (M) denotes the Jacobi symbol. If ¢ €
JCUSP(F‘](N) X) is a Jacobi cusp form with Wy (¢p) = 1, then for each p = 0,1, , 2mM —1,

the completed Dirichlet series A, (¢, x1,s) associated to ¢ admits a holomorphic continuation
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to the whole complex plane. Moreover, they are bounded in any vertical strip and satisfy the
functional equation:

o For x, # X,
_lomMm—1
2mM '\ 2 ap .
——— A -6) = (I)A L
( \/N ) =0 e( 2mM> u<¢x“ ) (w)(l)(ga S 2),
where C{) = (ﬁl)%X(M)(%)M(—N)gxlng;_
o Forx, =X,

i ;2%6<_&>A(¢ 5) = CON (M3 By(p) - Mby & — s 1)
VN ) &=\ amM) xa . 2 27

where C’>(<21) = (%)%X(M) and the operator By is defined in Lemma 4.6.

We now state the converse of the above theorem. For this, we need the following notation.
For a positive integer N, let My be the set of all prime numbers p such that (p, N) = 1 and
the set My N {al + b|L € Z} is non-empty for all a, b € Z \ {0} with (a,b) = 1.

Theorem 5.2. Let m, N be positive integers such that 4|N, and x be a Dirichlet character
modulo N. Let {cg(n,r)} and {cy(n,r)} be sequences of complex numbers such that the series

o(r,2) = Z co(n,r)e(nt +rz)

n,reZ
4mn>r?

and

(T, z) = Z cy(n,r)e(nt +rNz)

n,rez
4mn>Nr?

are of type J and Jy, respectively, and ¥(t,z) = (—=1)2x(=1)¢(r, —2). Assume that for
every primitive Dirichlet character x1 of conductor M € MU{1}, A, (¢, x1,s) is entire and
bounded in every vertical strip and satisfies the following conditions:

(i) if x1 # x2(= (57)), then

7mM1

2mMA _ o) — o) k1
( VN ) ; c ( 2mM> Au(dxi58) = O Aol X X2; 5 % 2)
where C) = (51 % (M) (3)x1(~N)Gy .05
(ii) if x1 = x2 = (57), then

@

ue) % (~ 525 ) Au(usi8) = COMME Byy() = MEs f =5 = )
VN omM ) T e M '2

2
©n=0

where C) = (51)5 x(M).
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If for every pn € {0,1,2,--- ,2mM — 1} the Dirichlet series L,(¢;s) converges absolutely for
g—l—eforcmye>0, then

¢ € JL'W(DV(N), x) and 3 = Wi(6).

6. Proofs

In this Section we present the proofs of Theorem 5.1 and Theorem 5.2.

6.1. Proof of Theorem 5.1. We need the following half-integral weight version of Propo-
sition 1 in [9] to prove Theorem 5.1.

Lemma 6.1. Let k,m and N be positive integers with k odd and 4|N. Let x, be a char-
acter mod M with (M, N) = 1. If ¢(7,z) and ¥ (T, 2) are Fourier series of type J and Jy,
respectively. Then the following statements are equivalent:

a) There exists a constant C' such that

(VVNM2 (¢X1))(T7 Z) = C¢*(T7 MZ)

b) The functions A,(dy, sy and A (¥*,s) (1 < p < 2mM) have a holomorphic contin-
uation to the whole complex plane. Moreover they are bounded in any vertical strip
and satisfy the functional equations

L omM

<%> Z e (—%) Au(@y38) = CA, (zb*; g —s— %) , where 1 < a < 2mM.
pn=1

Proof. Since the definitions of Fricke involution in the case of integral weight ([9], p.) and
half integral weight ((14)) vary just by a constant, the lemma follows just by replacing &
with g in the proof of the Proposition 1 in [9]. O

We now give a proof of the Theorem 5.1. Since ¢ € J;***(T'/(N), x) is a Jacobi cusp form
2 k)

with Wy (¢) = 9, from Lemma 4.5 it is easy to see that ¢ and v as series of type J and
type Jy satisfying condition (a) of Lemma 6.1. Hence from Lemma 6.1, we deduce that
for every = 10,1,---,2mM — 1 the completed Dirichlet series A,,(¢y,;s) have holomorphic
continuation to whole complex plane, are bounded on every vertical strip and satisfy the
function equation

1 omM

2mM 2 ajL k 1
( \/N> Z€<_2mM> Ap(@xi38) = Cha (@Z’ 5§—S—§)> where 1 < a < 2mM.
pn=1

Now the result follows from Lemma 4.7.

6.2. Proof of Theorem 5.2. We first state two lemmas which will be used to prove The-
orem 5.2. To state these lemma, we need the following notation. For a complex-valued
holomorphic function ¢ on H x C, we define 2, = {0 € C[G] : M%ma = 0}, where C[G] is

the group ring. Then €, is a right ideal in C[G].
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Lemma 6.2. Let m, N be positive integers and M be prime such that 4| N and (N, M) = 1.
Let x be a Dirichlet character modulo N, x1 be a primitive Dirichlet character modulo M.
Let ¢(7,z) and (7, 2) be series of type J and type Jy, respectively. Assume that ¢ and 1
satisfy the following:

Wx() = G with Oy = (37 ) 7 x0n) (37 ) - Mesiog!
and
M—-1 u
W(T, Z) = Z Xl(U) (M) @ZJ‘%mTﬁ
u=0

Then, for u, v € Z with (u, M) = (v, M) = 1, we have
(1) (Foner=x0n (57)) 7 = (57) (Fon = xon (5) ) 73 moa 1)

Proof. The proof uses the similar method as given in Lemma 2.17 (p. 30, [3]). O

Lemma 6.3. Let N be a positive integer, and My, My are prime numbers with (M, N) =
1= (M, N). Let x1 be a primitive Dirichlet character with conductor My or Ms. Let ¢(T, z)
and (7, z) be series of type J and type Jy, respectively. Suppose that ¢ and 1) satisfy the
assumptions given in Lemma 6.2. Then

N Ml —v
w;,mN’Y = x(M) (M) ¥ for ally = (—uN Mz) € L'o(N).
Proof. The proof is a straight forward adaptation of the Lemma 2.18 (p. 32, [3]). O

We now give a proof of Theorem 5.2.

It is easy to observe that ¢(7,2) and (7, z) are holomorphic function on H x C. From
the functional equation for M = 1 in Lemma 6.1 (y; will be the trivial character), it follows
that ¢ = Wx(¢). Now, let M be a prime number and y; be a primitive Dirichlet character
modulo M. Then from the conditions (), (i7) and Theorem 6.1, it follows that

(WN(¢X1)>(Ta Z) = Cxﬂp*(Ta MZ)
Next, we prove that

-~ _ N M, —v
¢|§,mN/y = X<M2) (E) ¢ for all v = <—U}V MQ) S F()(N)
+1 v

Ifc=0,then7:<0 11

) and the required transformation property for v is easy to

check. Now, assume that ¢ # 0 and v = c?\f _d . Since (a,c¢N) =1 = (d,cN) there exist

integers s, t such that a + tcN,d 4+ scN € M. Put o’ =a+tcN, d =d+ scN, ¢ = —c and
b = —(b+ as + stcN + dt). Then we have

(=00 ) (o D)0
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From the above computation, we obtain
- 1 —t\" ([ o« =V\" (1 —s\"
Vlemny = Ylemy (o 1) (—c’N d’) (o 1)
a =b\" (1 —s\"
= Vlenn <-ch d’> (0 1) |

Using Lemma 6.3, we obtain

Syt d) = xta) () tr.2).

a
Since a’d' =1 and 4 | N, we have

Uyl 2) =) () 02,

Also d = d + scN. Thus, we have

Uy nitr2) =xa) (5 ) w62, (10

The invariance of (7, 2) under the group (Z x N~'Z){((y) follows from the theta decom-
position of ¥ (7, z). Hence

1/)|§,mNh(T, z) = X(d) (%) (T, 2z) for every h € FIJVN(N).

. d —c a b
For matrices v = (—bL a ) , Y = (cL d) € I'o(L), we have

0o —-L 0o —-L - N

<(\/Z 6/E) 7Li(_i7—);> 37 ((\/Z 6/Z> 7Li(_l.7-) ) = <’7,7 (E) j('ylaT)) :
Thus by definition of W and above identity, we have
W ' = (U NEARTN 0~
L)y mr (7 5O, )T 2)= (Ul mr (V5 | - ) I0V7) VI 0
N ~ 0 —— 1,01
= (;) U\/f(¢|§,m7/)|g,mL ((\/z f) ,L4(—z7')2)

From (16) and (17), we obtain

() vstols,7 - x@ol o (g ~3F) HinE) =0

for every (7, z) € H x C. Hence we have that ¢‘§m:77 =x(a)¢ = x(d)¢, for every ' € Ty(N).

=
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To check the cuspidality, we need to estimate e™(pz)h,(7)0, (T, z). For this, consider

d,(n) defined by d,(n) :== > |c,(IN)|. Then, we have
N=1

o0

dy(n) <na (Y [ou (NN FH)),

N=1
Thus, we obtain d,(n) = O(nz='¢) and 3 d,(n)e ?m = O(y~2%°). A straight forward cal-
n=0

culation shows that €™ (2)@,,(7)0m, (7, 2) = O(y~527¢) and hence ™ (2)¢(r, 2) = O(y~2+21).
Finally, Lemma 2.4 together with the above observation implies that ¢ € J;“7(T'/(N), x).

=m
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