NONVANISHING OF KERNEL FUNCTIONS FOR JACOBI
FORMS

SHIVANSH PANDEY AND BRUNDABAN SAHU

ABSTRACT. Y. Martin introduced a set of kernel functions for the Jacobi group
to study 2m Dirichlet series associated with a Jacobi form of weight k£ and index
m. We study nonvanishing of these kernel functions and also study nonvanishing
of 2m Dirichlet series associated with Jacobi form of weight k and index m.

1. INTRODUCTION AND PRELIMINARIES

Let Si be the space of cusp forms of weight k for the full modular group I' =
S Ly(7Z) with the usual Petersson inner product (,). For a cusp form f(z) € Sy with
Fourier expansion f(2) = > ., a,g" we associate the Hecke L-function L(f,s) :=

Y o1 % for o = Re(s) > % The completed L-function L*(f, s) := (2m)°I'(s)L(f, s)
has a holomorphic continuation to C and satisfies the functional equation L*(f, k —

s) = (=1)*2L*(f,s). It is well-known that zeroes of L*(f,s) can occur only inside

the critical strip (k—1)/2 < Re(s) < (k+1)/2, and according to the generalized Rie-
mann hypothesis all the zeroes should lie on the line Re(s) = k/2. In this direction
Kohnen [7] proved the following nonvanishing results for L-functions on average:

Theorem 1.1. [7] Let {f1, fo, -, faim s, } be the basis of normalized Hecke eigen-
forms of Sk. Let t, € R and ¢ > 0. Then there exists a constant C(tg,e) > 0
depending only on ty and € such that for k > C(to,€), the function

dim Sy,

Ly
2 ke

i=1

does not vanish at any point s = o + it with t = to, (k —1)/2 < 0 < k/2 — ¢,
kj2+e<o<(k+1)/2.

Corollary 1.2. [7] Lett, € R and ¢ > 0. For k > C(ty,€), and any s = o + it with
t=ty, (k—1)/2 <0 <k/2—¢€ k/2+€ <0 < (k+1)/2, there exists a Hecke
eigenform f € Sy such that L*(f,s) # 0.

For the complex numbers 2z and s with z # 0 we set 2° = exp(slog z) with log z =
log |z|+iarg z and —7 < arg z < 7. We fix the notation e(x) := exp(27mix), e™(x) :=
exp(2mimz).
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Kohnen considered the following functions (called kernel functions) in Sy to prove
the nonvanishing of L-function. For z e Hand s=c+it € Cwith1 <o <k —1,
define the function Ry s by

(s I R -
Rk’S(ZW()(ng)er( vt (Z50) 0

where 7;(s) := 2e™2T(s)['(k — s). These kernel functions dual w.r.t the Petersson
inner product gives the values L*(f, s) upto a constant. More precisely,

—1)*2x(k —2)!
(. Ry = ETE 2R g, 2
for all cusp forms f € Si. Kohnen computed the Fourier coefficients of these kernel

functions explicitly and estimate the first Fourier coefficient in an appropriate way
to conclude the nonvanishing of L-functions on the average.

Theorem 1.3. [7] The function Ry s(z) has the Fourier expansion

Rk,s(z) = Zrk,s(n)qna

n>1

where

Ths(n) =27)°T(k — s)n* ' + (1)

k ]_ k
2 “(=1)2
5(=1)

X Z ™ <E>S [e%ma//cem; 1f1(s, k; —2min/ac)

a
(a,c)€Z? ,ac>0
g.c.d(a,c)=1

(2m)F 5T (s)nF =1 + (2m)fnht

+ e 2minafe—mig Lfi(s, k; 27Tm/ac)] ’

where a' € 7, is an inverse of a modulo ¢ and

il Biz) = %g)‘“) F (B 2), (4)

and 1 Fy is Kummer’s degenerate hypergeometric function.

The work of Kohnen by constructing kernel functions and proving nonvanishing
of L-functions has motivated many authors to work in other automorphic forms
like Siegel modular forms [8], Hilbert modular forms [6]. Recently the authors in
[10] proved the nonvanishing of the kernel function Ry s at certain real point by
analytic estimate and deduced the nonvanishing of L-function associated with a
Hecke eigenform.

Jacobi forms are natural generalization of modular forms, the classical Jacobi
theta function is an example of Jacobi form. The Fourier-Jacobi expansion of Siegel
modular forms over the sympletic group Sps(Z) are natural examples of Jacobi
forms. Consider the Jacobi group I'V := SLy(Z) x Z* consisting elements of the
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a b

type (M, X) where M = (c d) € SLy(Z) and X = (\,v) € Z* with the group

law
(M, X)(M', X"y = (MM, XM + X').
The group I'V acts on H x C via

a b ) - (r2) = ar+b z+ At +v
c d)\V" T 2) = cr+d  cer+d '

For positive integers k£ and m, consider the automorphic factor

. o oo [ —C(z+ AT+ v)?
Jkm(h, T, 2) = (e + d) e ( p——

+ N2 T 4202 + )\V) ,

where h = <((cl Z) s (A, V)) . Now we define an action of I'/ on the collection of

holomorphic functions ¢ : H x C — C via ¢ — ¢|i ., where
¢|k‘,mh(7_a Z) = jk,m(hv T, Z>¢(h(77 Z))

Let k& and m be positive integers. A Jacobi form of weight £ and index m over
the Jacobi group I'/ is any holomorphic function ¢ : H x C — C which satisfies
Blgmh = ¢ for all h € T/, and has a Fourier series expression of the form

o(r,2) = Y eln,r)g"¢, (q=re(r),( = e(2)).

n,r€,
4mn2r2

Furthermore, a Jacobi form ¢ is said to be a cusp form if it has a Fourier series
expression of the form

o(r,2) = > cln,r)g"¢

n,r€L,

amn>r2

Let Ji ., be the set of all Jacobi forms of weight k& and index m which is a finite
dimensional vector space over C. Let J,jjjj}’ be the subspace of Jacobi cusp forms of
weight £ and index m which is a finite dimensional Hilbert space w.r.t the Petersson
inner product

(6,10) = / o, 2, 2)etmm gy,
T/\HxC

where dV := v=3dz dy du dv, (T = u + v,z = x + iy). For details on Jacobi forms
we refer [4].

The Fourier coefficients of Jacobi form satisfy c¢(n,r) = c¢(n’,r’) whenever r' = r
(mod 2m) and 4n'm —r"? = 4nm —r?, i.e. ¢(n,r) depends only on 4nm —r? and on
r (mod 2m). Set ¢,.(D) := c(n,r) if D = 4nm — r?, else ¢,(D) = 0. A Jacobi form
of weight k& and index m can be written as

o7, 2) = Z P (T) O (T, 2)
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where h,(7) = Y. 5_, c.(D)gP/*™ and ©,, (1, 2) = > _ e q"”/*m¢ . The above

=up (mod 2'm)
representation is called the theta decomposition of J acobi form o.

To any Jacobi cusp form ¢ with the theta decomposition ¢(7, z) = Ziml Py (T)Om (T, 2),
we associate the function ¢(7, z) := ¢(—7, —z) which is also a Jacobi cusp form with
the associated coefficients ¢, (D) instead of ¢, (D) in the corresponding theta decom-
position.

To any Jacobi cusp form ¢ with the theta decomposition ¢(7, z) = 2,221 hy(T)Onm (T, 2),
Berndt [2] associated the 2m—tuple Dirichlet series

L(6s) = 3 (D) (i)

D=1

for p = 1,2,---,2m. We also set A,(¢,s) := (2m)°I'(s)L,(¢, s). These series are
uniformly convergent on compact subsets of the half plane Re(s) > k/2+ 1. Berndt
[2] established following analytic properties using a variation of the Mellin transfor-
mation (also see [11] for another proof).

Theorem 1.4. [11] Let k > 9,m be positive integers and ¢ € J,' 7. Then ev-
ery completed Dirichlet series Ag(¢,s), with f = 1,2,---,2m, admits an analytic

continuation to the whole complex plane, and they satisfy the set of 2m functional
equations

As(d, )

(k=5 —1/2). ()

For s € C with 1 < Re(s) < k — 3 and t, € (2m)~'Z, define the function

Qz]fowsZ T z Z ¢to 8|km T Z) (6>

heHI\I'Y

1 _ _ 2
where ¢y, s(7,2) = —e™ (M) , H? = {(Id,(\,0))|\ € Z}. A collection of
T8 T

coset representatives for the elements in H/\I'/ is given by {(I, (0,v))(M, (0,0)) |M €

I' = SLy(Z),v € Z}. Martin [11] proved the following result for Jacobi forms anal-
ogous to (2).

Theorem 1.5. [11] Let k and m be positive integers with k > 6 and ty € (2m)~'Z.

If s € C with 1 < Re(s) < k — 3, then the series Qfo’g defines a Jacobi cusp form in
Jeam - Moreover

b W I'(k—3/2) 1 , _
Q1‘/0 87 ¢ >= 9k—2pmis/2 F(S _ 1/2)F<k3 _ S) % ; exp(—Qmuto)Au((b, k — S)? (7>

for all g € JF and all s € C with 3 < Re(s) < & —2.

2
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Following the work on Kohnen, we explicitly compute the Fourier coefficients
of the kernel functions Qfo”; and establish the nonvanishing of any general (n,r)-

coefficient of the kernel functions Qforz for large k. Further as applications we deduce

nonvanishing of the Dirichlet series A,(¢,s) for a Jacobi form ¢ and a result on
nonvanishing of Jacobi Poincaré series.

2. STATEMENT OF RESULTS

Theorem 2.1. Let k and m be positive integers with k > 6 and ty € (2m)~Z. If
s € C with 1 < Re(s) < k — 3, then QF™ has the Fourier expansion

to,s

Qfo’f:(T,z): Z w(n,r)q¢"¢",

4nm>r2

where
w(n,r) :ocsmlstS*%(e(—Tto) + (—1)ke(rt0))
+ (=1)*(2im)Zay_ amE DR (14 (< 1))

k—s
k—1 1.5 3 1 a
1)z (2 k772772k 1-k -D k—3 - —k
ey Fen i ooty 5 (2)

ac>0,(a,c

where D = 4nm — r2.

Theorem 2.2. Let w(n,r) be the (n,r)- Fourier coefficient of Q,’fof as above. Given

any positive integer m,n,r such that m 1 2r, there exist ko such that w(n,r) # 0 for

k > k.

Theorem 2.3. Let m be any positive integer, t' € H and ¢ > 0. Then there

exists a constant ko = ko(t',€) such that for k > ko and any s = o + it’ with
k3 k_ L

k 1 1 k . . cusp
35— 1<0<5—1—¢€ 5—3+T€<0 <3+ there exist a Hecke eigenform ¢ € J,

such that vector valued function A(p,s) = (A1(d, 8), Aa(9,5), ..., Ao (b, 8)) # 0.

3. PROOFS
Proof of Theorem 2.1. By definition of QZ)ZL we have
z
2 —s8 —( + v — to)z
k,m _ . ar +b m ct+d
Qs (1,2) = Z (cT+d) e (m-—i—d) (CT+d) e ( p—— >
vEZ, (a b) er ct+d
c d

(9)
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We split the sum into three parts corresponding to ¢ = 0,a = 0 and ac # 0.
N . . . . 1
Contribution of the sum corresponding to ¢ = 0 in (9) is due to matrices £ (0 D ;
l € 7Z, which we denote by Cy. Then

Co=)Y_ {(Hz)—sem(—(wV—to>2)+(_1>k(7H)_Sem(—(—wu—to)z)]

INZSY/A T+l T+l
:ge:z [(T + l)_sem<—(ztil_ t0>2)+(—1)k(7 + l)_sem(_(z tiJlr t0)2>} '

The contribution of first part of above sum to the (n,r)-Fourier coefficient, which
we denote by Cyy(n, ), is

Con (1, 1) / R ( / o (-M)d—m dz)e(—m’) dr, (C1>0,Cy € R)

1C1—00 Cy—o0 T

1C1+00 1Co+00 22
=e(—rty) / T° (/ e (—— - rz) dz)e(—m') dr
iC1—00 1Co—00 T

iC1 400 5 2

T r’r
—e(—rt (T ) e LD ) e(—nr)dr.
e( TO)/Z'Cl—oo T (2zm> e(4m>e( nt)dr

If 2 > 4nm then we can deform the integral at C; = co to get Co1(n,r) = 0. If
s _s—4
(i
272 (s — 3)
Similarly we can compute the contribution corresponding to the second part of Cj.

Hence we get the contribution of Cy in (n,r)-Fourier coefficient, which we denote
by Co(n, ).

r2 < dnm then we have Coi(n,r) = e(—rto)a;m* D2, where a, =

Co(n,r) = aym' D2 (e(—rty) + (—1)*e(rty)). (10)

Contribution of the sum corresponding to a = 0 in (9) is due to matrices £ (? _ll> :
l € Z, which we denote by Ay. Then

gl (5 (GE) ()

I,VEZ T+l

+ (=) (r+ D7 (;1;) e <T_j2z> ' (_(_TLH;&U - W)]

==Y {(T + 1) ke ((1/ —t0)A (1T +1) + 22(v — t0)>

LVEZL

+ (=1)F(r + 1) Ftreem ((u —t0)? (T + 1) + 22(ty — u)ﬂ .
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Calculating as before we get the contribution of Ay to (n,r)-Fourier coefficient,
which we denote by Ag(n,r)

Ao(n,r) =0, r* > 4nm,
and if 72 < 4nm then we get

Ao(n, ) = (=1)7(2im) ey, yma*FDF 1 (1 4 (< 1)), (11)

1
2

Now assume ac # 0. The contribution of the sum correspoding to terms ac # 0
in (9), which we denote by By, is

2 -5 _(_z Y
B eom | —CZ ar +b ol (G tv—t)
By = Z (er +d) e (CT—l—d) (CT+d) ‘ ( arth

ac#0 cT+d
(a,c)=1,v€Z

S E () e (a5 e (o)

ac#0
(a,C):l,VEZ

z+ v—to

- 5 ) ) e

ac#0
(a,c)=1,vEZ

2
o eyt )
- 2 wam) (od) O

ac#0(a,c a
o,BEL
v(a),b(ax)

x ™ ((V - t0)2§)

b i
= Y atR, (r + 2242 ”) e ((v - to)QE)
_1 a a a

ac#0(a,c)
v(a),b(ax)

where
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Contribution of the terms with ac > 0 in F,, to (n,r)-Fourier coefficients, which we
denote by I, (n,r), is given by

iC1 400 c 1 —k+s iCo+400 Z2
Fr (n,7) :/ (— - T) TF </ e " (—) e(—rz) dz)e(—m’) dr
’ 1C1—00 a a=T 1Co—00 T
1C1+o00 1 —k+s 1Co+00 2
:/ <ET — _2> T—s/ (em (—Z— — rz) dz)e(—nT) dr
iC1—o0 a a iCag—00 T
LG5 G )
= -T— = TN —=— ) e| — |7dT
iC1—co \ @ a 2im dm

If r* > 4nm then again above integral becomes 0. If r? < 4nm then we make the
change of variable 7 — 2it to get

iCy+o0 —k+s 1
! 1 t \? o.((—D
Fr (n,r) = / it — = (Laty= (L) e (== ) Lt ) Ziat
’ i1 —oo a? c 2cm dm )¢ ) ¢

—s+3 C+ioco .\ —k+s
_ 2 1 1 -D
=(-1) £ (E) — (t + %) t5tae " < (—> gt) dt.
c V2m Jo—ico a m ) c

Using the fact

1 C+ioc0o B » b1
27 Jos (t+ o) (t+ ) eptdt:mp’” Le P Py (e + vs (B — a)p)

for Re(p,v) > 0,p € C, we have

(2m)F 3 (—1) 7 (2)k525/2 ki ~F(—D)k~3 L, . (D)
Ft — = Filk—sk—552 '
oa(n,T) L= 1) 1Filk—sk 5 2miy

Similarly for ac < 0 we replace (a, ¢) by (a, —c). and perform the similar calculations.
Finally we have contribution of By to (n,r)-Fourier coefficient which we denote by
By(n,r), is given by

_ (@03 (=1)F 2kt k(D) AN
Polror) = G- > (1)

2

(a,c)=1,ac>0

—t —1p)? / 1 2miD
Z e[ rZ—22) e =ty)'c e 5 1Filk—s,k— < -
a a a 2" dmac
c’=1  (mod a),v(a)

() (2 e 2]
(12)

Now the theorem follows from (10), (11) and (12). O
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9

Proof of Theorem 2.2. Given positive inetger m, n and r we show that w(n,r) is

non zero for large k. On contrary let w(n,r) =0 i.e.

():@gnlszf%<e@4rm)+-p-mke@ug)

+ (=1)*(2im)zoy,_ +1m2+s kDh=s= 1<1—|— )
3
2

s ()

(a,c)=1,ac>0

gf2km1—k(_D)k
)

nc’ 1 —2miD
Y R (k- .
e( a) ! 1(k Sk = 2’ dmac )]

1 k=15 _ 3 k—s
e N G
aym'=sD5 2 (e(—rto) + (—1)ke(rt0)>f‘(k: — 1) (ao)=Lac>0 ¢

a
c’=1 (mod a),v(a

— t)? / 1 -2 D
IEY B G (DI WY (I BN miD\ |
a a 2 dmac

Taking modulus, we have

| Creimta,

mats—k pk—s—1
asml=* D" (6(—7%) + (—U’“e(rto)) ’

(2t (—1)*F" 23— D
a0 el-rta) + <—1>ke<rto>)r<k )

a k—s
— a]ik
C

(a,)=1,ac>0

c’=1 (mod a),v(a)

_ 2 oA :
Lem (v —to)*c o =ne Flk sk 1 —2miD |
a a 2 dmac

=1 (moda)w(a)e(L;m) {6_ (”_to ) (%) ( TokTy
> o

1 21D

2" 4dmac

2" 4dmac

2" 4dmac

1 27D

rv—to)\ [ _, e\ nd
| S (B P

1 21D

(28 (-r () o

)

)

)
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Fors:§+%1—(5—it’wehave

1<

(Qm)%ak_s_‘r%m%-i-s—kafsfl ‘
agm!=s D53 (e(—rto) + (—l)ke(rto))

(2 b (1) 7 23St H (D)
ayml=sDs2 (e(—rto) + (—=1)ke(rto)I'(k — %))

where L is a constant independent of k. We denote the first and second part of (13)
as I and I,. Now we estimate I; and I, separately.

1 1
5 5+s—k nk—s—1
(2m)3oy_,,ym#+D ‘

+

I, =
agml=sDs~3 (e(—rtg) + (—l)ke(rto))
B V2mz=2D» T2 |T(E -1 —5—it)
— 2 — 1.
F(§ —i+5+2t’)

5%
(e(—rto) + (—1)ke(rt0))
The only term depending on k is the ratio of gamma functions. By [13.2.1, [1]] we
have y

<k:)25+22t F(% o 4_11 5= Ztl>

2 Tk —14654+it)
Hence I; — 0 as k — oo. Now consider

— 1, as k — oo.

I — (2m)F~2(—1)"2 22 2kml-k(—D)k2 ‘L
a0 (e(=rta) + (1¥e(ro)T (k- 1))
I < (2m)k=223 ka5 D3 At 2540 ‘r(g )
- E_s_1 1
(etrt) + (Capetraree - ) 70 TR
(2m)k=225 " 2ypi=3 0 D55t 2519
- kE_s_1
<e(—7‘to) + (=1D)ke(rto)T'(k — %)) [
. ! - -o-it)
(k=k=3) ]+ T(5]+2)

r(5—1—5—it')
(5]

— 0 as k — oo. Hence Iy — 0 as k — oo. This gives contradiction to (13) and the

theorem follows. 0

The first term tends to zero, as before the ratio of gamma functions

Remark 3.1. In the above proof one can calculate kg explicitly such that I < % and
IQ<%fOI'k'>l{30.
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Proof of Theorem 2.3. Fist we prove statement of Theorem 2.3 for the region on the
right of line of symmetry g — %. Let s = % + % —0—it' with 0 < < %, t' € R and
B, be a basis of Hecke eigenforms. Then

. < QFm g >
QZ;,S(T7Z) = Z -

to,s?
$iEBy

< @i, i > éilT2).

Comparing the (n,r)-Fourier coefficient of both sides and using Theorem 2.2 for
given s, there exist ko such that for k > ko, w(n,r) # 0. Hence there exists a Hecke
eigenform ¢;, € Ji''¥ such that

2m
™ F(k _ 3/2> 1 Z e;pp(—Qﬂ'Z',uto)Au(gb_iov k‘—S) 7é 0.

p=1

< QP By >= ; 2m
to,s ¢ 0 Qk—2pmis/2 1"(5 _ 1/2)F(k‘ — 8) 2m

Hence there exists a Hecke egienform ¢;, and u € {1,2, ..., 2m} such that A, (¢;,, %—
}L—HS +it") # 0. Now using the functional equation given in Theorem 1.4, there exists
B€{1,2,...,2m} such that Ag(ey,, £ —1—5—it') # 0. Hence the theorem follows. [J

0327 4

4. NONVANISHING OF JACOBI POINCARE SERIES

Let Pr™ be the (n,r)-th Poincaré series of weight & and index m (of exponential
type) defined by

P,’f”T(T, z) = Z e(nt +72)|gmy(T, 2),
YETI\TY,

T’ :{((é ?),(o,y)) |nEZ,y€Z}

with pim(n’,r') its (n, ") coefficients. For the explicit expression for pi7"(n’,7’) one
may refer to [5].

This is well known that P¥™ n € Zxo,r € Z generate the space T - Similar to
the case of modular forms, one can ask the non-vanishing of Jacobi Poincaré series
P,’f,’q” In this direction, Das [3] considered the non-vanishing of a Jacobi Poincaré
series (for the general Jacobi group of any genus) analogous to Rankin’s result [12]

for the case of modular forms. We mention here the result for the case g = 1.

where

Theorem 4.1. [3] Suppose m|r. Then there exists an integer ko and constant B >
3 log2 such that for all even k > kg, the Jacobi Poincaré series Pfj” does not vanish
identically when (here D = 4nm — r?)

D B log(k —3/2)
k—3/2< —— < (k—3/2)!+%/° — :
/2s 2m — ( /2) “rp log log(k —3/2)

Further Das [3] gave conditions of non-vanishing of the Poincaré series Pff;” in-
dependent of the weight k.
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Theorem 4.2. Suppose that 7D > 2m (where D = 4nm — r?). Then PF™ # 0
provided

By log(wD/m) md7 (2 B4 16\ 2
— D)D
«rp ( log log2(wD/m) 70(D)D < 29717 \ G2 | 2566 it ’
where oo(D) = > yp 1.

As a consequence of our Theorem 2.2, we deduce nonvanishing of Jacobi Poincaré
series. One can express the kernel function in terms of Poincaré series.

Proposition 4.3. [11] Let k and m be positive integers with k > 6 and ty €
(2m)~'Z. If s € C with 1 < Re(s) < k — 3, then

(27.(.)5 1/2 1

k,m
Qto s( ) ems/ZF(S _ 1/2) Z exp 27”/”0)
00 D s—3/2 (14)
k,m
. ]; (R) PDyi2) a7 2)-
4m\D+’,u2

Now comparing the (n',r’) coefficients both sides of the above expression (14),

(27T>s—1/2 D\* 3/2k,m
wn',r') = o2 (5 ~ 1/2) \/_ Z exp( 27rzuto)z o p(D+M2)/4m,u(n,’ ),
4m|D+,u
equivalently,
s— i 5—3/2 2
/A (27T> 12 1 D k,m (D+M )
= — —2mipt — T .
w(” T ) 67”’8/21—‘(8 . 1/2) \/— Z exp ’/T/L/-L 0); Am pn ,T 4m, w
4m|D+,u

As mentioned in Remark 3.1 we have w(n/,r") # 0 for k > ko (one can take ky =
3 (2v/2m? (xD') ) w 2 ,

max {5 + 26727”-”0 (ke 442 mD’ e for s = k/2 — ¢ which

we got using gamma function inequalities [9]). Then there exist pu, D with 4m|D+ p?

such that pfl’,?:, ((D + p?)/4m, ) # 0 which implies P, # 0. Hence we have the
following theorem.

nr’

Theorem 4.4. Given positive integers m,n’ and r' with m 1 1’, choose 6 such
that 3 — 20 € (%ﬁ,l) then for k > ko the Poincare series P " # 0, where

3 (2v/2m? (7 D’) 1+46) s N’
k’o = max {5 + 26_271_”%0 n (_1)k€27ri7"’t07 442 WD €.

Remark 4.1. Kohnen proved that 7 (1) # 0 for large k in [7]. Using similar argu-
ments for any given n one can prove that r;4(n) # 0 for large k& and deduce the
nonvanishing of Poincaré Series in case of modular forms.
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