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Abstract. We give a list of (van der Pol type) identities for the Ramanujan tau
function. As consequences, we obtain congruences for the tau function and further
derive convolution sums and congruence relations involving the divisor functions.

1. Introduction

In 1916, S. Ramanujan [14] studied the function

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn, q = e2πiz, z ∈ C, Im(z) > 0,

which is the normalized cusp form of weight 12 on SL2(Z). Its n-th Fourier coeffi-
cient τ(n) is called the Ramanujan tau function and it is an important arithmetic
function having many applications in number theory. Ramanujan observed that the
logarithmic derivative of ∆(z) gives the Eisenstein series E2(z), which is a quasi-
modular form of weight 2 on SL2(Z). In fact he showed that
(1)

(1−n)τ(n) = 24(σ(1)τ(n−1)+σ(2)τ(n−2)+· · ·+σ(n−1)τ(1)) = 24
n−1∑
m=1

σ(m)τ(n−m),

where σ(n) is the number of divisors of n. Ramanujan also gave a recurrence formula
for τ(n) from which he calculated the first 30 values of τ(n). In the literature, there
are various works on finding a formula for τ(n) which involves the convolution sum
of the divisor functions. In 1951, B. van der Pol [12] derived identities relating τ(n)
to convolution sum of divisor functions by using differential equations satisfied by
∆(z). For example, he obtained the following formula:

(2) τ(n) = n2σ7(n)− 540
n−1∑
m=1

m(n−m)σ3(m)σ3(n−m),

where σk(n) =
∑
d|n

dk is the sum of the k-th powers of divisors of n and we write

σ(n) instead of σ1(n). In 1975, D. Niebur [11] used logarithmic derivatives of ∆(z)
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to derive a formula for τ(n) similar to (2), but has the feature that only the divisor
function σ(n) appears in the formula (see (xi) of Theorem 2.1 below). In 2004, D.
Lanphier [8] used differential operators studied by H. Maass [9] to prove identities
for τ(n) including (2). The identity of Niebur did not occur in the work of Lanphier.
As a consequence to these identities of τ(n), Lanphier deduced certain congruences
satisfied by τ(n). In [13], we used the Rankin-Cohen brackets (for both modular
and quasimodular forms) to prove all the identities derived by Lanphier and Niber’s
identity. Our method also gave rise to some more new identities for τ(n).

In this article, we show that holomorphic differential operators are sufficient to
get the identities. In fact, we show that in Lanphier’s proof one can replace the
Maass operator δk by the usual differential operator D := 1

2πi
d
dz

. Using the basic
theory of modular forms, it can be shown that they are cusp forms of weight 12 on
SL2(Z) and hence should be a multiple of ∆(z). We list all the identities of τ(n) as
one theorem and prove them using elementary methods. For each identity we give
a linear combination involving the Eisenstein series Ek (k ≥ 2) and its derivatives
and show that the linear combination is a cusp form of weight 12 on SL2(Z). The
corresponding identity for the τ(n) would then follow by equating the n-th Fourier
coefficient of the particular linear combination with τ(n). For some of the identities,
we use the fact that there is no cusp form of weight 14 on SL2(Z).

Our second theorem uses the identities of τ(n) obtained in Theorem 2.1 to derive
formulas for the convolution sums of the type

∑n−1
m=1m

kσr(m)σs(n − m). Such
sums have a long history, having been studied as early as the 19th century (see
[1], [4]). Several identities involving convolution sums were found by Ramanujan
[14]. Explicit evaluations of similar sums have been found by several authors (see
for example [5, 18] and the references therein).

Finally, as a consequence to our theorems, we get certain congruences for the τ(n)
and also for the divisor functions (Corollary 2.7 and Corollary 2.11 respectively).

2. Statement of results

Theorem 2.1.

(i) τ(n) = n2σ7(n)− 540
n−1∑
m=1

m(n−m)σ3(m)σ3(n−m),

(ii) τ(n) = −5

4
n2σ7(n) +

9

4
n2σ3(n) + 540

n−1∑
m=1

m2σ3(m)σ3(n−m),

(iii) τ(n) = −11

24
nσ9(n) +

35

24
nσ5(n) + 350

n−1∑
m=1

(n−m)σ3(m)σ5(n−m),

(iv) τ(n) =
11

36
nσ9(n) +

25

36
nσ3(n)− 350

n−1∑
m=1

mσ3(m)σ5(n−m),
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(v) τ(n) =
1

6
nσ9(n) +

5

6
nσ3(n)− 420

n

n−1∑
m=1

m2σ3(m)σ5(n−m),

(vi) τ(n) =
65

756
σ11(n) +

691

756
σ5(n)− 1382

3n

n−1∑
m=1

mσ5(m)σ5(n−m),

(vii) τ(n) = − 91

600
σ11(n) +

691

600
σ3(n) +

2764

5n

n−1∑
m=1

mσ3(m)σ7(n−m),

(viii) τ(n) = − 91

600
σ11(n) +

691

600
σ7(n) +

1382

5n

n−1∑
m=1

(n−m)σ3(m)σ7(n−m),

(ix) τ(n) =
5

12
nσ3(n) +

7

12
nσ5(n) + 70

n−1∑
m=1

(2n− 5m)σ3(m)σ5(n−m),

(x) τ(n) = n2σ3(n) + 60
n−1∑
m=1

(9m2 − 5mn)σ3(m)σ3(n−m),

(xi) τ(n) = n4σ(n)− 24
n−1∑
m=1

(35m4 − 52m3n+ 18m2n2)σ(m)σ(n−m),

(xii) τ(n) = n4(7σ(n)− 6σ3(n))− 168
n−1∑
m=1

(5m4 − 4m3n)σ(m)σ(n−m),

(xiii) τ(n) =
15

32
nσ(n)− 33

32
nσ9(n) +

25

16
n2σ7(n) + 225

n−1∑
m=1

mσ(m)σ7(n−m),

(xiv) τ(n) =
6

7
n2σ(n)− 9

7
n3σ5(n) +

10

7
n2σ7(n)− 432

n−1∑
m=1

m2σ(m)σ5(n−m),

(xv) τ(n) =
14

5
n3σ(n) +

12

5
n4σ3(n)− 21

5
n3σ5(n) + 672

n−1∑
m=1

m3σ(m)σ3(n−m),

(xvi) τ(n) =
5

12
nσ(n) +

25

24
nσ7(n)− 11

24
nσ9(n) + 25

n−1∑
m=1

(9m− n)σ(m)σ7(n−m),

(xvii) τ(n) =
9

14
n2σ(n) +

5

14
n2σ7(n)− 108

n−1∑
m=1

(4m2 −mn)σ(m)σ5(n−m),

(xviii) τ(n) =
8

5
n3σ(n)− 3

5
n3σ5(n) + 96

n−1∑
m=1

(7m3 − 3m2n)σ(m)σ3(n−m),

(xix) τ(n) =
1

2
n2σ(n) +

1

2
n2σ5(n)− 12

n−1∑
m=1

(36m2 − 16mn+ n2)σ(m)σ5(n−m),

(xx) τ(n) = n3σ(n)− 24
n−1∑
m=1

(21m2n− 28m3 − 3mn2)σ(m)σ3(n−m).
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Remark 2.2. All the identities in Theorem 2.1 also appeared in [13, Theorems 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7], where we use Rankin-Cohen brackets of modular and
quasimodular forms to prove these identities.

Remark 2.3. In the above theorem, identity (i) was proved by B. van der Pol [12],
identity (xi) was proved by D. Niebur [11] and identities (i) to (viii) were obtained
by D. Lanphier [8].

Remark 2.4. In [3, Proposition 6.8] A. M. El Gradechi presents a general approach
using the Lie theoretic structure on spaces of modular forms of integral weight that
arises through the Rankin-Cohen bracket. However, only the identities (i), (ii) and
(ix) follow from this approach. In fact, to get (i) and (ii) one uses the bracket
[E4, E4]2 and Theorem 3.1 (i). To get (ix), one uses the bracket [E4, E6]1. The other
identity comes from the bracket [E6, E6]0 and is given in Theorem 3.1 (iv). (In [3,
Table 3] these are given by (A5), (A4) and (A3) respectively.)

Remark 2.5. We note that the identity (x) in Theorem 2.1 has other possible
expressions like in equation (1) in [13]:

τ(n) = n2σ3(n) + 60
n−1∑
m=1

(2n− 3m)(n− 3m)σ3(m)σ3(n−m),

and as given by Resnikoff [16] or in [3, p. 428]:

τ(n) = n2σ3(n) + 60
n−1∑
m=1

(4n2 − 13mn+ 9m2)σ3(m)σ3(n−m).

We see that the differences of the convolution sums on the right hand side of the
above three identities are of the form

∑n−1
m=1 p(n,m)σ3(m)σ3(n−m) where p(x, y) is a

polynomial in two variables with the property that p(n, n−m) = −p(n,m) and with
this condition, one concludes that

∑n−1
m=1 p(n,m)σ3(m)σ3(n−m) = 0. Therefore, all

the three identities are equivalent. In fact, we observe that

n−1∑
m=1

(9m2 − 5mn)σ3(m)σ3(n−m) =
n−1∑
m=1

(2n− 3m)(n− 3m)σ3(m)σ3(n−m)

=
n−1∑
m=1

(4n2 − 13mn+ 9m2)σ3(m)σ3(n−m).

The difference of the first two identities is equal to

2n
n−1∑
m=1

(n− 2m)σ3(m)σ3(n−m) = 0.

Remark 2.6. In [8], Lanphier also derived the following identities for τ(n). How-
ever, these identities are not new as they can be obtained using some of the identities
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of Theorem 2.1.

(a) τ(n) = n2σ7(n)− 1080

n

n−1∑
m=1

m2(n−m)σ3(m)σ3(n−m),

(b) τ(n) = −1

2
n2σ7(n) +

3

2
n2σ3(n) +

360

n

n−1∑
m=1

m3σ3(m)σ3(n−m),

(c) τ(n) = nσ9(n)− 2100

n

n−1∑
m=1

m(n−m)σ3(m)σ5(n−m),

(d) τ(n) = −1

4
nσ9(n) +

5

4
nσ5(n) +

300

n

n−1∑
m=1

(n−m)2σ3(m)σ5(n−m).

Taking derivative of the modular form identity giving (i) (see the proof of Theo-
rem 2.1) and then comparing the n-th Fourier coefficients, we obtain (a). Similarly,
taking the derivative of the modular form identity for (ii) and then using (a), we
get (b). Multiplying identity (v) by 5/6 and subtracting it from identity (iv), we
get (c). Identity (d) follows from the fact that 4D∆ − 1

264
D2E10 + 5

504
D2E6E4 is a

cusp form of weight 14 on SL2(Z) and hence it is zero. To prove this fact, we use
identity (iii). We also get the following identities by using identities (xi) and (xii).

(e) τ(n) = n4σ3(n)− 168
n−1∑
m=1

(5m4 − 8m3n+ 3m2n2)σ(m)σ(n−m),

(f) τ(n) =
n4

3
(7σ(n)− 4σ3(n))− 56

n−1∑
m=1

(15m4 − 20m3n+ 6m2n2)σ(m)σ(n−m).

To get (e), we multiply (xi) by 7 and subtract (xii) from it. Identity (f) is obtained
by adding 7 times (xi) and 2 times (xii).

In the following we derive certain congruences for τ(n), which are consequences
of the identities given in Theorem 2.1.

Corollary 2.7.

(i) τ(n) ≡ n3σ(n) ≡ n4σ(n) (mod 23 · 3),

(ii) τ(n) ≡ n2σ3(n) (mod 22 · 3 · 5),

(iii) τ(n) ≡ n2σ(n) (mod 22 · 3),

(iv) 5τ(n) ≡ n3(8σ(n)− 3σ5(n)) (mod 25 · 3),

(v) τ(n) ≡ n4(7σ(n)− 6σ3(n)) (mod 23 · 3 · 7).

Proof. Since the identities (i) to (viii) are already known due to Lanphier (and van
der Pol), we use only the identities (ix) to (xx) of Theorem 2.1. Below we give the
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corresponding congruence relation which follows from each of the identity.

(a) 12τ(n) ≡ 5nσ3(n) + 7nσ5(n) (mod 23 · 3 · 5 · 7),

(b) τ(n) ≡ n2σ3(n) (mod 22 · 3 · 5),

(c) τ(n) ≡ n4σ(n) (mod 23 · 3),

(d) τ(n) ≡ n4(7σ(n)− 6σ3(n)) (mod 23 · 3 · 7),

(e) 32τ(n) ≡ 15nσ(n) + 50n2σ7(n)− 33nσ9(n) (mod 25 · 32 · 52),

(f) 7τ(n) ≡ 6n2σ(n)− 9n3σ5(n) + 10n2σ7(n) (mod 24 · 33 · 7),

(g) 5τ(n) ≡ 14n3σ(n) + 12n4σ3(n)− 21n3σ5(n) (mod 25 · 3 · 5 · 7),

(h) 24τ(n) ≡ 10nσ(n) + 25nσ7(n)− 11nσ9(n) (mod 23 · 3 · 52),

(i) 14τ(n) ≡ 9n2σ(n) + 5n2σ7(n) (mod 23 · 33 · 7),

(j) 5τ(n) ≡ 8n3σ(n)− 3n3σ5(n) (mod 25 · 3 · 5),

(k) 2τ(n) ≡ n2(σ(n) + σ5(n)) (mod 23 · 3),

(l) τ(n) ≡ n3σ(n) (mod 23 · 3).

Some of the above congruences are already known (for example (f) and (g) are
corresponding to (7.15) and (5.6) of [7]) and some are new. We now prove the
congruences of the corollary using the above list of congruences. The congruences
(c) and (l) give the congruence (i) and (b) gives the congruence (ii). The rest of the
congruences (iii), (iv), (v) follow from (h), (j) and (d) respectively. From (iv) we
also get the following congruence:

(3) τ(n) ≡ n3σ(n) (mod 24).

�

Our next theorem gives identities for the convolution sums of the divisor functions,
which is a consequence of Theorem 2.1.

Theorem 2.8.

(i)
n−1∑
m=1

m2σ(m)σ3(n−m) = − 1

240
n2σ(n)− 1

120
n3σ3(n) +

1

80
n2σ5(n),

(ii)
n−1∑
m=1

mσ(m)σ3(n−m) = − 1

240
nσ(n)− 1

40
n2σ3(n) +

7

240
nσ5(n),

(iii)
n−1∑
m=1

mσ(m)σ5(n−m) =
1

504
nσ(n)− 1

84
n2σ5(n) +

5

504
nσ7(n),

(iv)
n−1∑
m=1

σ(m)σ5(n−m) =
1

504
σ(n)− 1

12
nσ5(n) +

1

24
σ5(n) +

5

126
σ7(n),

(v)
n−1∑
m=1

σ(m)σ7(n−m) = − 1

480
σ(n) +

1

24
σ7(n) +

11

480
σ9(n)− 1

16
nσ7(n),
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(vi)
n−1∑
m=1

mσ3(m)σ3(n−m) =
n

240
(σ7(n)− σ3(n)),

(vii)
n−1∑
m=1

σ3(m)σ5(n−m) =
11

5040
σ9(n) +

1

504
σ3(n)− 1

240
σ5(n),

(viii)
n−1∑
m=1

mσ(m)σ(n−m) =
1

24
n(1− 6n)σ(n) +

5

24
nσ3(n),

(ix)
n−1∑
m=1

m2σ(m)σ(n−m) =
1

8
n2σ3(n)− 1

24
n2(4n− 1)σ(n),

(x)
n−1∑
m=1

m3σ(m)σ(n−m) =
1

12
n3σ3(n)− 1

24
n3(3n− 1)σ(n).

Remark 2.9. We note that the identities (viii) and (implicitly) (ix) were derived
by J. W. L. Glaisher [4] and the identities (iv), (v), (vii) appear in the work of
Ramanujan [14, Table IV], [15, p. 146]. On the other hand, P. A. MacMahon [10,
p.203] obtained the identities (ii), (iv). All the identities appear in the work of D.
B. Lahiri [6] (the corresponding numbers in the work of Lahiri are given by (5.8),
(5.4), (7.7), (7.2), (9.2), (7.5), (9.1), (3.2), (3.4) and (3.6)) and also in the work of
J. G. Huard et. al [5].

Using the convolution identity (x) of Theorem 2.8 in Theorem 2.1 (xii), we get
another identity for τ(n), which is given in the following corollary.

Corollary 2.10.

(4) τ(n) = 50n4σ3(n)− 7n4(12n− 5)σ(n)− 840
n−1∑
m=1

m4σ(m)σ(n−m).

We end this section by stating some congruence relations among the divisor func-
tions. Each congruence is obtained corresponding to each of the identity in Theo-
rem 2.8. We observe that all these congruences were derived by Lahiri [6].

Corollary 2.11.

(i) 3σ5(n) ≡ σ(n) + 2nσ3(n) (mod 24 · 3 · 5), gcd(n, 30) = 1,

(ii) 7σ5(n) ≡ σ(n) + 6nσ3(n) (mod 24 · 3 · 5), gcd(n, 30) = 1,

(iii) 6nσ5(n) ≡ σ(n) + 5σ7(n) (mod 23 · 32 · 7), gcd(n, 42) = 1,

(iv) 21(2n− 1)σ5(n) ≡ σ(n) + 20σ7(n) (mod 23 · 32 · 7), gcd(n, 42) = 1,

(v) 11σ9(n) ≡ σ(n) + 10(3n− 2)σ7(n) (mod 25 · 3 · 5), gcd(n, 30) = 1,
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(vi) σ3(n) ≡ σ7(n) (mod 24 · 3 · 5), gcd(n, 30) = 1,

(vii) 21σ5(n) ≡ 11σ9(n) + 10σ3(n) (mod 24 · 32 · 5 · 7), gcd(n, 210) = 1,

(viii) (6n− 1)σ(n) ≡ 5σ3(n) (mod 23 · 3), gcd(n, 6) = 1,

(ix) (4n− 1)σ(n) ≡ 3σ3(n) (mod 23 · 3), gcd(n, 6) = 1,

(x) (3n− 1)σ(n) ≡ 2σ3(n) (mod 23 · 3), gcd(n, 6) = 1.

Remark 2.12. The congruences (i) and (ii) of the above corollary give the following.

(5) nσ3(n) ≡ σ5(n) (mod 60), if gcd(n, 30) = 1.

Similarly, congruences (iii) and (iv) give the congruence

(6) (12n− 7)σ5(n) ≡ 5σ7(n) (mod 168), if gcd(n, 42) = 1.

From (ix) and (x), we see that

(7) nσ(n) ≡ σ3(n) (mod 24), if gcd(n, 6) = 1,

and using this in the congruence (viii) we get

(8) (n− 1)σ(n) ≡ 0 (mod 24), if gcd(n, 6) = 1.

3. Preliminaries

In this section we shall provide some well-known facts about modular forms which
are needed to prove the results. For basic details of the theory of modular forms
and quasimodular forms, we refer to [17, 2].

For an even integer k ≥ 4, let Mk(1) (resp. Sk(1)) denote the vector space of
modular forms (resp. cusp forms) of weight k for the full modular group SL2(Z).
Let Ek be the normalized Eisenstein series of weight k in Mk(1), given by

(9) Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where Bk is the k-th Bernoulli number defined by
x

ex − 1
=

∞∑
m=0

Bm

m!
xm. The first

few Eisenstein series are given below.

E4(z) = 1 + 240
∑
n≥1

σ3(n)qn, E6(z) = 1− 504
∑
n≥1

σ5(n)qn, E8(z) = 1 + 480
∑
n≥1

σ7(n)qn,

E10(z) = 1− 264
∑
n≥1

σ9(n)qn, E12(z) = 1 +
65520

691

∑
n≥1

σ11(n)qn.

(10)

Further, the Eisenstein series E2(z) has the following Fourier expansion:

E2(z) = 1− 24
∑
n≥1

σ(n)qn.

Since the space Mk(1) is one-dimensional for 4 ≤ k ≤ 10 and for k = 14 and
S12(1) is one-dimensional, we have the following well-known identities:
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Theorem 3.1.

(i) E8(z) = E2
4(z), (iii) E12(z)− E8(z)E4(z) =

(
65520

691
− 720

)
∆(z),

(ii) E10(z) = E4(z)E6(z), (iv) E12(z)− E2
6(z) =

(
65520

691
+ 1008

)
∆(z).

4. proofs

4.1. Proof of Theorem 2.1. As mentioned in the Introduction, all the identities of
Theorem 2.1 follow using basic theory of modular forms. In this section we present a

proof using elementary methods. For γ =

(
a b
c d

)
∈ SL2(Z), we have the following

transformation properties of the Eisenstein series Ek(z), k ≥ 2.

(11)

(i) Ek(γ(z)) = (cz+d)kEk(z) (k ≥ 4); (ii) E2(γ(z)) = (cz+d)2E2(z)−6ic

π
(cz+d),

where γ(z) = az+b
cz+d

.
The space of cusp forms of weight 12 on SL2(Z) is one dimensional, generated by

∆(z). A direct verification using (11)(i) shows that D2E8− 9
2
(DE4)

2 = 480∆, since
the space of cusp forms of weight 12 on SL2(Z) is one-dimensional generated by
∆(z). Comparing the n-th Fourier coefficients of the above identity proves (i). The
remaining identities follow in a similar way. In the following we list only the mod-
ular identities, whose proof uses both the transformations in (11). The respective
identities would follow by comparing the n-th Fourier coefficients both the sides.

(ii) 384∆ = −D2E8 + 18
5
E4D

2E4,

(iii) 576∆ = DE10 − 5
3
E4DE6,

(iv) 864∆ = −DE10 + 5
2
E6DE4,

(vi) Apply the D operator on 762048
691

∆ = E12 − E2
6 ,

(vii) Apply the D operator on −432000
691

∆ = E12 − E3
4 and replace E2

4 = E8,

(ix) 1728∆ = 2E4DE6 − 3E6DE4,

(x) 960∆ = 4E4D
2E4 − 5(DE4)

2,

(xi) 24∆ = −E2D
4E2 + 16DE2D

3E2 − 18(D2E2)
2,

(xii) 24∆ = −7E2D
4E2 + 28(D3E2)DE2 − 3

5
D4E4,
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(xiii) 256
5

∆ = −DE2E8 + 1
5
DE10 + 1

6
D2E8,

(xiv) 28∆ = −E6D
2E2 + 1

12
D2E8 + 1

14
D3E6,

(xv) 60
7

∆ = −E4D
3E2 + 1

14
D3E6 + 3

35
D4E4,

(xvi) 2304
5

∆ = E2DE8 − 8DE2E8 + 4
5
DE10,

(xvii) 224∆ = 2DE2DE6 − 6D2E2E6 + 1
6
D2E8,

(xviii) 60∆ = 3D2E2DE4 − 4D3E2E4 + 1
14
D3E6,

(xix) 1008∆ = −E2D
2E6 + 14DE2DE6 − 21E6D

2E2,

(xx) 240∆ = −3DE2D
2E4 + 15D2E2DE4 − 10E4D

3E2.

It remains to prove (v) and (viii). First we prove (v). Differentiating identities (iii)
and (iv), we get

576D∆ = D2E10 −
5

3
DE4DE6 −

5

3
E4D

2E6,

864D∆ = −D2E10 +
5

2
DE4DE6 +

5

2
E6D

2E4.

As there is no non-zero cusp form of weight 14 for SL2(Z), we get the following
identity:

10E4D
2E6 − 35DE4DE6 + 21E6D

2E4 = 0.

Using this, substitute E4D
2E6 in the first identity for D∆ and eliminate the term

DE4DE6 to get

3168D∆ = −2D2E10 + 11E6D
2E4,

from which (v) follows. Now we prove (viii). Note that E8DE4 = 1
2
E4DE8, this also

follows from the fact that there is no non-zero cusp form of weight 14. Use this in
the identity −432000

691
D∆ = D(E12 − E4E8) to get (viii). This completes the proof.

4.2. Proof of Theorem 2.8. Subtracting identity (xviii) from (xv) in Theorem 2.1
gives the identity (i). Similarly, identities (ii) and (iii) follow using the identities
(xviii), (xx) and the identities (xiv), (xvii) of Theorem 2.1 respectively. Using
identities (xiv) and (xix) of Theorem 2.1 and identity (iii) of Theorem 2.8, we get
(iv). To get identity (v) we use (xiii) and (xvi) of Theorem 2.1 and to get identity
(vi), we use (i) and (ii) of Theorem 2.1. Identity (vii) follows using (iii) and (iv) of
Theorem 2.1. It can also be derived using Theorem 3.1 (ii) (by comparing the n-th
Fourier coefficients). Now we prove the identity (viii). Ramanujan discovered the
following (see [2, Proposition 15]).

(12) 12DE2(z) = E2
2(z)− E4(z).
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Taking derivative of the above and comparing the n-th Fourier coefficients, we obtain
the identity (viii). Observing that the sums of the type

∑
p(m,n)σ(m)σ(n − m)

can be symmetrized by 1
2

∑
(p(m,n) + p(n−m,n))σ(m)σ(n−m), we see that

(13)
n−1∑
m=1

(2m3 − 3m2n+mn2)σ(m)σ(n−m) = 0,

as 2m3−3m2n+mn2 = −(2(n−m)3−3(n−m)2n+ (n−m)n2). Using the identity
for
∑
mσ(m)σ(n−m) from (viii) in equation (13), we obtain the following:

(14)
n−1∑
m=1

(2m3 − 3m2n)σ(m)σ(n−m) = − 1

24
n3σ(n) +

1

4
n4σ(n)− 5

24
n3σ3(n).

Moreover, subtracting identity (xi) from (xii) of Theorem 2.1, we get the following:

(15)
n−1∑
m=1

(4m3 − 3m2n)σ(m)σ(n−m) =
1

24
n3σ(n)− 1

24
n3σ3(n).

Now the identities (ix) and (x) are derived using equations (14) and (15). The proof
of Theorem 2.8 is now complete.
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