A SIMPLE EXTENSION OF RAMANUJAN-SERRE DERIVATIVE MAP
AND SOME APPLICATIONS
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ABSTRACT. If f(z) is a modular form of weight k, then the differential operator ¥ defined by

Ie(f) = 55 L f(2) — & Fa(2) f(2) (known as the Ramanujan-Serre derivative map) is a modular

form of weight k£ 4 2. In this paper, we obtain a simple extension of this map and use it to get
a general method to derive certain convolution sums of the divisor functions (using the theory
of modular forms). Explicit expressions are given for four types of convolution sums and we
provide many examples for all these types of sums.

1. INTRODUCTION

Let N denote the set of positive integers. For r,n € N, let o.(n) = Z d" be the divisor
dn,deN
function. If n is not a positive integer, set o,(n) = 0 and we write o(n) for o1(n). Fora,b,r,s,n €
N, we define W, (n) by

Worn) =Y or(l)os(m), (1)

l,meN
al+bm=n

These sums are referred to as the convolution sums of the divisor functions. When r = s = 1,
it is denoted simply by Wy ,(n). Further, we write Wi ,(n) = Wy 1(n) = Wey(n). Evaluation
of these sums has a long history, going back to the works of Besge, Glaisher and Ramanujan
[10, 16, 33]. In the literature there are various methods used to obtain these convolution sums
namely, elementary evaluation, using the theory of modular forms and quasimodular forms and
also using (p, k) parametrization etc. We refer to the book by K. S. Williams [39] for more
details about the history of this problem. In this paper, we look at a basic result in the theory
of modular forms and present a simple extension.

Let f(z) be a modular form of weight k& for the full modular group and let FE5(z) be the weight
2 Eisenstein series, which is a quasimodular form. An easy computation shows that the function
o f'(2) — £ Bs(2) f(2) is a modular form of weight k + 2 for the full modular group, where f'(z)
is the derivative of f with respect to z. The result holds when f is a modular form with level
(i.e., with respect to the congruence subgroup I'o(N)) as well. If f is a cusp form, then the
resulting function is also a cusp form. Let us denote this map by 9J; and write

k
U(f)(z) = Df(2) = 15 Ea(2) f(2),
where D = ﬁd%. This is called as the Ramanujan-Serre derivative map.
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By taking the logarithmic derivative of A(z), the normalized cusp form of weight 12, Ra-
manujan [33] derived the following recursion formula for 7(n), the n-th Fourier coefficient of
A(z) (for n > 2):

n—1

T(n) =< 2_4n > o(m)r(n—m). (2)
m=1

Note that applying ¥12 on A(z) gives a cusp form of weight 14 on SL(2,7Z) and therefore it must
be zero. ie., DA(z) = E3(z)A(z). Therefore, the above recursion formula also follows from
this fact. In the same work [33], Ramanujan extensively studied the convolution sums erf (n),
where r, s are odd positive integers. He expressed W{f (n) as a sum of a main term and an error
term, where the main term (arising from Eisenstein series) was given explicitly. The error term
corresponds to the coefficients coming from cusp forms. For some cases of (r, s) he also obtained
explicit expressions for these convolution sums.

In recent years, there have been many works on explicit evaluation of these convolution sums
using various methods: elementary evaluation using some combinatorial results, using the theory
of modular forms or quasimodular forms and using the (p, k) parametrization etc. In this paper,
we observe that the Ramanujan-Serre differential operator can be extended in a simple way
which can be used to evaluate the convolution sums in which one of the divisor functions is
o(n), i.e., when one of the integers r or s is equal to 1. If both are greater than 1, then E,1(az)
and Esy1(bz) are modular forms (see (6) for the definition) of weights r+1 and s+ 1 respectively
and so the product E,;1(az)Fs11(bz) is a modular form of weight r + s+ 2 for the group I'g(ab).
The required convolution sum Wg’s (n) follows by expressing this product as a linear combination
of basis elements and then compaﬁng the n-th Fourier coefficients. So, our method in this work
is needed only when one of the numbers 7 or s is equal to 1. Applying the extended Ramanujan-
Serre derivative map on modular forms (which involves the Eisenstein series Ea(z)), gives rise
to a modular form and so one can use a basis for the space of modular forms for the purpose of
evaluating the corresponding convolution sums.

Ramanujan also proved that 12D FEy — E% is a modular form of weight 4, which implies that
FE2(2) — 12DEy(z) = E4(z). In our work, we also give a simple extension of this result, from
which one can evaluate the convolution sums W, ,(n) for any a,b in terms of a basis for the
space of modular forms of weight 4 and level ab (here it is enough to consider the case when
ged(a,b) = 1). The advantage of our method is that it avoids the use of the structure of
quasimodular forms space in evaluating convolution sums involving the divisor function o(n),
which is (up to a constant) the n-th Fourier coefficient of the quasimodular form Fs(z).

More precisely, first we show that for positive integers a, b, the differential operator . (,p)
defined by

k
Do () = BDI(2) — 1o alr(az) (b2) @
maps the space My (M, x) into the space Myi2(N, x), where N = l.c.m(Mb, a).

Remark 1.1. To simplify the notation, we will be writing bD f(bz) as Df(bz). If f(z) has the
Fourier expansion ), -, ay (n)e?™% then the Fourier expansion of D f(bz) is given by

Df(bz) = Zn ap(n/b)e*™™ = bDf(bz).

n>0
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We also observe that the effect of the operator D on the Fourier expansion is consistent with
the SAGE calculations. When b = 1, both the operators D and D are the same.

In view of the above remark, we will modify the definition of U4 as follows:

Dusany () = DI(b2) — = als(az) 1 (b2). (3

When a = b = 1, then ¥, 1) is nothing but J5. In particular, by taking f(2) = Ei(2),
the weight k Eisenstein series for the full modular group, one obtains the convolution sums
T/Va1 ’f ~!(n) using a basis for the space My 2(N). In section §4.1, we give some examples using
our main result.

Our next result is about extending the fact that E3(z) — 12DF»(z) is a modular form of
weight 4. When a, b are relatively prime, we show that the function

%DEg(az) + %bDEQ(bZ) — Ea(az)E2(bz) (4)

is a modular form in the space My(ab). In terms of the operator D, the above is equivalent to
6 6
gDEg(az)—l—*DEz(bz)—Eg(az)Eg(bz). (4)
a

As an application, we obtain the convolution sum Wy 4(n) by using a basis for the space
My (ab). We provide some examples demonstrating our method in section §4.2. We remark here
that in [9], Aygin also evaluated the convolution sums Wi ,(n), Wy, po (1), Wi pip,(n), where
P, p1, p2 are prime numbers. The method used in this work is different from our method, though
both of these works make use of the fact that the resulting function is a modular form. In [9],
the author used the fact that Eo(z) — tFa(tz) is a modular form of weight 2 on I'g(t), where
t € N. It is also to be noted that in [9], the author obtained the required convolution sums by
using the already known sum W (n).

In §3, we use the operator ¥y 9.(4,1) on the modular form of weight k + 2 given by (3) (with
f(2) = Ex(2)) and the operator ¥y,(,,1) on the modular form of weight 4 given by (4) to get
explicit expressions for the following convolution sums:

S ooy Y lo(o(m), 5)

l,meN l,meN
al+bm=n al+bm=n

respectively. We give some explicit examples in §4.3 and §4.4.

2. PRELIMINARIES AND MAIN RESULTS

Let k,M € N and M (M, x) (resp. Sk(M,x)) denote the finite dimensional vector space of
modular forms (resp. cusp forms) of weight k on I'g(M ), where x is a Dirichlet character such
that x(—1) = (—1)¥. When M = 1, the space is denoted as My (resp. Si) and when y is the
principal character, the spaces are denoted as My (M) and Sy (M) respectively. The dimension
of the vector space My (M) is denoted by Ap(M). For an even integer k > 4, let

Bi(s) =1- 23 oy ()", (6)
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be the Eisenstein series in M}, where ¢ = €2™* and B, is the k-th Bernoulli number. For k = 2,
we denote the weight 2 Fisenstein series by Es(z), which is given by

Ey(2)=1-24 Z o(n)q". (7)
n>1
It is a quasimodular form for the full modular group. For the basic theory of modular forms,
we refer to [36].

The following is the main result of this paper.

Theorem 2.1. Let a,b be positive integers and let f be a modular form in Myg(M,x), where
k,M are positive integers, x is a Dirichlet character modulo M such that x(—1) = (—1)*.
Then Vyyap)(f) is a modular form in Myio(N,x), where N = l.em(Mb,a) and Oy, qp) is
the extended operator defined by (3). Furthermore, if a,b are relatively prime, the function
% DF>(az)+ %bDEg(bz) — Es(az)Es(bz) is a modular form in the space My(ab). In other words,
SDE>(az) + SDE3(b2) — Ea(az)Ey(bz) is a modular form in the space My(ab).

Before proceeding to the proof of this theorem, we shall make some observations and deduce
some applications.

Remark 2.1. As observed earlier, when a = b = 1, the differential operator Jy,(; 1) is nothing
but Y. In this case, our second result in the above theorem is nothing but the fact that
12DE, — E2 = —Ey, as proved by Ramanujan. Though there is no need to assume relatively
prime condition in the second part of the theorem, for the application part, it is sufficient to
assume this condition.

Let {fi(2)]1 < i < Agyo(ab)} be a basis of the vector space My o(ab) and denote the n-th
Fourier coefficient of f;(z) by a;(n). Here a,b are relatively prime positive integers. Using our
main theorem, we obtain the following corollaries. By taking f(z) = Ex(z) (with & > 4 and
an even integer) and assuming that a and b are relatively prime positive integers in the above

theorem, we obtain the convolution sum Wi ’f “!(n) in terms of the a;(n).

Corollary 2.2. Let k > 4 be an even integer and f(z) = Ex(z). If a,b are relatively prime
positive integers, then there exist constants a; € C, 1 < i < \gya(ab) such that

By 1 n By Ak42(ab)

1,k—1

WA ) = Dhotnfa)+ (55 - g o) - oy > el (9
=1

where By, is the k-th Bernoulli number and a;(n), 1 < i < Agio(ab) are the n-th Fourier
coefficients of a basis for the space My o(ab).

Proof. When f(z) = Ey(z), then the function DE}(bz) — %GEQ(CLZ)Ek(bZ) belongs to My 2(ab).
Let us denote a basis of My 2(ab) by fi(z), 1 < i < Agyo(ab), whose n-th Fourier coefficients
are given by a;(n). Then the above modular form can be expressed as a linear combination of
these basis elements. Therefore, there exists constants «;, 1 < i < A\pio(ab) such that

Ak42(ab)

DEy(bz) — %aEg(az)Ek(bz) = Z a; fi(2).
i=1
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Now, by comparing the n-th Fourier coefficients on both sides of the above identity, we get

2% k2a Ak2a A 2(ob)
_gknak_l(n/b) + 2kac(n/a) + G?Uk 1(n/b) — B Walf—l(n) = ; a;ai(n).
Simplifying, we get
Ag+2(ab)

1k-1, \ _ Bk 1 n By,
Wa7b (n) = ok o(n/a) + (24

%)ak_l( n/b) — o Z aiai(n).
O

Let gi(z), 1 < i < A\y(ab) denote a basis of My(ab) whose n-th Fourier coefficients are denoted
by b;(n). By using the second part of the above theorem, expressing (4) as a linear combination
of gi(z) and comparing the n-th Fourier coefficients, we obtain the following corollary.

Corollary 2.3. If a,b are relatively prime positive integers, then there exist constants 3; € C,
1 <1 < A\y(ab) such that

A4 (ab)
Weap(n) = ﬂ(l — 6?n)a(n/a) + %(1 — %) 576 Z Bibi( 9)

where bj(n), 1 < i < \y(ab) are the n-th Fourier coefficients of a basis of M4(ab).

Proof of Theorem 2.1. Let N = l.c.m(Mb,a) and let A = <3 B) € I'o(N). Then we have

)
A= pb €To(M) and A" = o pa € SL(2,Z). Since f € My(M,x), we have the
’)//b 5 0 "}’/(I 5 ) . k » X))
following transformation:
F(bAz) = f(A'(b2)) = x(8)(v= + 6)" f(b2). (10)
Differentiating (10) with respect to z and using the fact that D = %m%, we get
k
D(bA2) = X(8)(7z + 6)F 2D f (b2) + x(8) 5= (v + 6)* 1 £ (b2). (11)
The transformation formula for Es(az) is given by
12
By(adz) = By(A"(02)) = (y2 +6)*Ba(a2) + 5= (72 + ). (12)
Using equations (10), (11) and (12), it follows easily that
DD (bAZ) — 2 By(aAz) [(bA2) = X(0)(rz + 0) 2 (BDF (1) — e Br(a) (b)), (13)

from which it follows that the function bD f(bz) — %2 E(az) f (b2) is a modular form and belongs
to My42(NV, X).

To get the second part of the theorem, we take A € I'yg(IN), N = ab. Differentiating (12) with
respect to z, we get

DEs(aAz) = (v2 + 0)*DEs(az) + 22” (72 + 6)° Balaz) + =2 D40 ()
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and a similar identity replacing a by b. Using these two identities, it is easy to see that

b
8 By(adz) + %DEg(bAz) — By(aAz)Ea(bA2)

b
6a 6b (15)
= (yz 4 6)* (bDEg(az) + EDEg(bz) - E2(&2)E2(b2)> ,
from which the modular property follows. This completes the proof. O

3. CONVOLUTION SUMS OF ANOTHER TYPE

As an application of the extended Ramanujan-Serre derivative map, one can evaluate another
type of convolution sum, which is defined as follows. Let e,r, s be natural numbers with r, s
being odd integers. For natural numbers a, b with ged(a,b) = 1, define a sum as follows.

Wert(n) = Y Ifop(l)os(m). (16)

l.meN
al+bm=n

In this section, we use the theta operator ¥y 9.(,,1) on the modular form defined by (3) (with
f(z) = Ey(z)) and the operator ¥4,(,;) on the modular form defined by (4) to evaluate the
convolution sums W:"*(n) withe =r =1,s =k—1 and e = r = s = 1 respectively. We obtain
these applications in the next two subsections.

3.1. Evaluation of the convolution sum ), ., lo(l)or_1(m). By Theorem 2.1, the
function DEy(bz) — £ aEs(az) Ey(bz) is a modular form in My 2(ab), where a and b are relatively
prime positive integers. Now applying the operator ¥}, (4,1) on this function, we get

(k+2)
12

D(DEy(bz) — %aEg(az)Ek(bz)) — aEs(az)(DEg(bz) — %aEg(az)Ek(bz)),

and by Theorem 2.1 it belongs to My 4(ab). To simplify the above function we use the fact that
E3(az) = 2DFs(az)+ E4(az) and also the fact that Fy(az)Ej(bz) € Myy4(ab) to conclude that
the following function is a modular form. In fact, we have

k+1)

D2Ey(bz) + %(kz + 1)DEs(az)Ex(bz) — ol 5 Es(az)DEy(bz) € Myi4(ad),

where D"f(bz) = >, 5on"ap(n/b)g". Let hi(z), 1 < i < Agya(ad) be a basis for the space
M1 4(ab). Therefore, there exists constants ~y;, 1 < ¢ < Agi4(ab) such that

ka a(k+1) A ra(ab)
D2Ey(bz) + 5 (k+ 1)DEx(a2) By(b2) — —— Fa(az)DEy(bz) = > iha(z).
I=1

Let us denote the n-th Fourier coefficients of these basis elements as ¢;(n). Then by comparing
the n-th Fourier coefficients on both the sides of the above identity and using the fact that

b Y mo(op_i(m) =nW,y (n)—a Y lo(l)og_1(m), (17)
al+bm=n al+bm=n

we obtain the following theorem, where Wa1 f _1(n) is given by Corollary 2.2.



EXTENSION OF RAMANUJAN-SERRE DERIVATIVE MAP 7

Theorem 3.1. Let k > 4 be an even integer and a,b be positive integers such that ged(a,b) = 1.
Then for n > 2, there exists constants v;, 1 < i < Agy4q(ad), such that

nz—a/ n
S to(oram) = o I )+ 5 no(n/a)

Pt 12a2(k+1)(k+2) 2a(k + 2)
al+bm=n
18
on B, k44 (ab) (18)
k=1 "
ot er M mE T ) ; vici(n)

where By, is the k-th Bernoulli number, Agy4(ab) is the dimension of the space Myy4(ab). The
convolution sum Wj’f_l(n) is given by (8) and c¢;(n) are the n-th Fourier coefficients of a basis

of My+a(ab).

Remark 3.1. We provide some examples for the above convolution sums in §4.3 by taking par-
ticular values of a, b, k.

3.2. Evaluation of the convolution sum }_ ., . lo(l)o(m). We now make use of the
weight 4 modular form given by (4) and apply the operator ¥4,,,1) on this function to get a
formula for the convolution sum ;... lo(l)o(m). In fact, this implies that the function

D(gDEQ(az) + gDEg(bz) ~ Bx(a2)B(b2) ) ~ & B (a2) (gDEg(az) + SDEQ(bz) ~ Ex(a2)Ba(b2))

is a modular form in Mg(ab). Simplifying, we see that the function

% (aD?Ey(az) + bD?Ey(bz)) — Ea(az) (3DEs(bz) + %“DEQ(M)) + By (b2) (3DB3(az) + § Ba(a2))

belongs to Mg(ab), where a,b are positive integers with ged(a,b) = 1. Let {F;(z) : 1 < i <
X6(ab)} be a basis for the space Mg(ab) whose n-th Fourier coefficients are denoted by A;(n),

1 < i < Xg(ab). Expressing the above modular form in terms of the basis elements Fj;, and
comparing the n-th Fourier coefficients, we obtain the following theorem.

Theorem 3.2. Let a and b be positive integers such that ged(a,b) = 1 and assume that at least
one of them is greater than 1. Then for n > 2, there exists constants d;, 1 < i < \g(ab), such
that

2 la(l)a(m)zmlzla(g n® + 3n %Tn>a(”/a) 1414 <6" —an +3> o(n/b) - 2?6 3(n/a)

Ao (ab
n ) 1,3 a
+ 5 Wap(n) + Wy, ()+3bl+§_:/la(l)a(m e Z::

(19)

where A;(n) are the n-th Fourier coefficients of a basis of Mg(ab), Wbl;’(n) is given by (8) and
the sum ), . lo(l)a(m) is given by (20) (see the remark below).
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Remark 3.2. When a = b = 1, the convolution sum ), Ilo(l)o(m) is given by the following
formula:

> lo()o(m) = ——nos(n) — ——(6n* — n)o(n) (20)
l+m=n
The above is obtained by differentiating the identity F3(z2) = 12D FEs(2) + E4(2) and comparing
the n-th Fourier coefficients. In §4.4, we illustrate Theorem 3.2 with some examples.

Remark 3.3. To be revised.

4. EXAMPLES

In this section we shall provide explicit examples for the evaluation of the convolution sums
obtained in Corollaries 2.2, 2.3 and Theorems 3.1, 3.2. For this purpose, we use explicit bases for
the spaces of modular forms for a few values of k, a,b. In fact, once we know the explicit basis
for the space of modular forms of weight k, level IV, then all the formulas for the convolution
sums derived in sections 2 and 3 can be obtained explicitly.

The basis elements used here are expressed in terms of Eisenstein series (with their dupli-
cations) and newforms, which generate the space of cusp forms. As mentioned earlier, Ej(z)
given by (6) denotes the normalized Eisenstein series of weight & for the full modular group. We
denote by Ay n(2), the unique (normalised) newform of weight &, level N and Ay, y.; denotes the
jth (normalised) newform of weight k, level N, when the space of newforms has dimension > 1.
These newforms are ordered as per the list provided in LMFDB. The n-th Fourier coefficient of
the unique newform is denoted by 7 ny(n) and the n-th Fourier coefficient of the j-th newform
of weight k, level N is denoted as 75 n.j(n). Explicit expressions for the newforms used in our
bases are presented in the Appendix.

For the examples provided in this paper, we use the following basis for the space of modular
forms M (N) for the values of k, N listed in the table below.

Table 1. Basis for the space My (N).

k | N | dim Basis
4 |30 22 {E4(t12) Zt1|30, A475 (tQZ) 1t2|6, A476(t32) Zt3|5, A4710(t4z) : t4|3,
Ayi51(t52), Agas2(tez) 1 ts, t6]2, Aa30,1(2), Aaz02(2)}

6 4 4 {EG(Z),E6(2Z),E6(4Z),A674(2)}

6 6 7 {Eﬁ(tZ),t‘6,A673(Z),A6’3(2Z),A6’6(Z)}

8 4 5 {Eg(z),E8(2Z),E8(4Z),Ag’2(z),A872(22)}

8 6 9 {Eg(tz),t|6, A&Q(Z),A&Q(SZ),A&?,(Z), A&g(QZ),A&G(Z)}

10 4] 6 {F10(2), F10(22), E10(42), A10,2(2), A102(22), A104(2)}

10 6 | 11 {E10(tz),t]6; A1p,2(2), A10,2(22), A10,3:1(2),
Aq0,3:1(22), A1p3:2(2), A10,3:2(22), A1g6(2) }

12 4 7 {Elg(z),E12(2z),E12(4z),A(z),A(2z),A(4z),A12,4(z)}

12 6 13 {Elg(tlz),t1|6;A(t22),t2|6;A1273(Z),A1273(22),

A12,6;1(2‘), A12,6;2(2), A12,6;3(2)}

Note that when N = 2 or 3, we get a basis for My () as a subset of the above basis for My (4)
or My(6). So, when the level is 2 or 3, we make use of this fact. We also use a similar fact when
we consider the space My(d), where d|30 for the convolution sums W, ;(n).
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4.1. Examples for the convolution sums VVa1 ’If _1(n). The following table gives some known

results for the evaluation of this type of convolution sum. Here we list when k = 4, 6,8, 10, 12.

Table 2. Known convolution sums VVa1 ’f “Ln).

k (a,b) References
1,1) 33, 19, 20, 12, 34]
1,2),(2.1) [17, 12, 23, 24, 34]
4 (1,3),(3,1) [40]
(.4, (4,1) 2
(1,6),(6,1), (2,3), (3,2) [18]
LD 33, 19, 20, 34]
6 1,2),(2.1), (1, 4), (4, 1) [12, 23, 24, 34]
8 | (1,1),(1,2),(2, 1), (1,4), 4 1) | [33, 19, 20, 12]
10| (1,1),(1,2),(2.1),(1,4), (4,1) | [33, 19, 20, 12]
12 1,1) 33, 19, 20]

To illustrate our method, we prove the identities obtained in [12, Theorems 4.2, 5.2, 6.2, 7.2],
when k = 4,6,8,10 and (a,b) = (1,2),(2,1),(1,4), (4,1) using Corollary 2.2. In the following
we express DEy(bz) — (k/12)aFs(az)Ex(bz) as a linear combination of basis elements of Mg(ab).
Comparing the n-th Fourier coefficients, the results obtained in Theorems 4.2, 5.2, 6.2, 7.2 of
[12] follow directly. In some cases, the cusp forms appearing in the formulas of [12] differ from
our cusp forms (which are mentioned after these expressions).
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DE,(22) — %Ez(z)E4(2z) =
DEy(2) — §E2(22)E4(Z) =
DE,(42) — éEQ(z)Eﬁl(le) =
DEy(2) — §E2(42)E4(Z) =
DEg(2z) — %EQ(Z)EG(ZZ) =
DEg(z) — E2(22)Eg(2) =

DEg(4z) — %Ez(z)Eﬁ(‘lz) =
DEg(z) — 2E2(42)Eg(2) =
DE3(2z) — ;EQ(Z)E8(2Z) =
DEg(z) — §E2(22)E8(Z) =
DEFEg(4z) — %EQ(z)Es(4Z> =

DEg(z) — §E2(4Z)E8(Z) =

DEw0(22) — L Fa(2) Buo(22) =

DE1o(2) — 2E2(22)E10(2) =

_%EG(Z) — %E(;(Zz), (21)
_gEG(Z) - %E@)(ZZ), (22)
_WlogEG(z) - %Ed?z) - %Eﬁ(42) + ?AGA(Z), (23)
—%Ee*(Z) - %EG(QZ) - %Eﬁ(zlz) — 120A6.4(2), (24)
~ i Bs() — s Ba(22) + 2 Asa(2), (25)
_%Eg(z) _ %Eg@z) + %7 Aga(2), (26)
_1061380 8(z) = 1068380E8(2z) - %EB(%) + %Asg(z)

+ %Ag,g(zz), (27)
_%Es(z) - %Eg(QZ) - %Eg(@) + @ Aga(2)

20?(7564 Ay a(22), o
_%Elo(z) — %Elo(%) + %Alo,z(z), (29)
_% 10(2) — %Em@z) — 727?0&072(2), (30)
B 1301944E10(Z) - 43867548E10(22> - %Elo(‘lz) + %Alog(z)
- %Amz(%) + %A10,4(z), (31)
_11077203E10(Z) - % 10(22) — % 10(42) + %Aw,z(fz)

_ 239361160 A102(22) — 1680A10.4(2), (32)
o)~ P + B0A ) T2 Ao (33)
_%EH(Z) — 180712;E12(2Z) n 146898196A(Z)

1 255820 (22, (34)

691
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5 1 341 682 599445
PEo12) = G2 Fiolt2) = =15 F12(2) = 559100 P12(22) — g Prade) - ppnp AC)
2130975 19999584 825
5528 A(QZ) + 7691 A(4Z) ESAH 4( ) (35)
10 341 341 2048 4999896
DElo(Z) — §E2(4Z)E10(2) = —@Elg(z) — %Elg@z) 319 E12(4 ) + WA(Z)
272764 28522752
4 212704800 \ (5 4 9289227520 \ (4 ) 6600A154(). (36)

691 691

We make some remarks and the theorem numbers mentioned in these remarks are from the
work of Cheng and Williams [12].

Remark 4.1. Our identities for W, (n), W, (n), W2 (n), W, (n) (resulting from (21)-(24))
match with the formulas obtained in Theorem 4.2. Note that the Fourier coefficient a(n) ap-
pearing in Theorem 4.2 is nothing but 76 4(n). Similarly, the formulas for W117’25(n), W21”15 (n),
W2 (n), WP (n) (following from (25)-(28)) are identical with the formulas in Theorem 5.2 (i),
(iiij, (iv), (V1) In this case the Fourier coefficient b(n) in their formulas is the n-th Fourier
coefficient of the newform Ags(z). Formulas for VVl1 ’29(n), W21 ’19 (n) obtained from (33), (34) are
the same formulas given in Theorem 7.2 (i), (v). 7 7

Remark 4.2. From the identity (29) we derive the following. For a natural number n > 1,
(2 3n)

1
o1(n/2) — o (n) + gmoa(n).  (37)
Comparing the above identity with [12, Theorem 6.2 (i)], we get
c(n) + 32d(n) = 110,2(n),

the n-th Fourier coefficient of the normalised newform Ajg2(z), where ¢(n) and d(n) are Fourier
coefficients of certain eta-products [12, Eq.(6.1), Eq.(6.2)]. Therefore, we have

Ao2(2) = n'%(2)n*(22) + 32 (2)n* (22)n® (42), (38)
where n(z) = ¢*/# [I,>1(1 —¢"), is the Dedekind eta-function, ¢ = e?™. We obtain a similar

1 17
Wi (1) = $1egg@o () + 23370(n/2) +

conclusion from our convolution sum W21 17 (n) obtained from (30), which corresponds to Theorem

6.2 (ii). However, the formulas arising from (31) and (32) for the sums W1147(n) and Wif(n) do
not match with the formulas in Theorem 6.2 (v) and (viii). The reason is that in their work,
Cheng and Williams use different cusp forms C(z), D(z) and E(z) (refer [12, Egs. (6.1), (6.2),
(6.3)]. Comparing our formulas and their formulas, we obtain the following relations for all
natural numbers n > 1:

529 625 109 39 97 .
=2 d(n) + =—e(n) = _ 5
2539520(”) T 15372 (n) + 9926(”) 31744710,2(71) 1984710,2("1/ )+ 3192 10: a(n),
109 625 1058 27 78
e c(n) — ood _ 2L . 9) _
39686(n) 248 ( ) 31 e(n) 9927'10,2(71) 317_1072(”/ ) 128710,4(n))

where ¢(n),d(n), e(n) are the n-th Fourier coefficients of C'(z), D(z) and E(z) respectively.
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Remark 4.3. We now consider the sums Wllf(n), W4119(n) In the notation of [12], these are
denoted respectively by Uy 1(n) and Uy g(n). Using the identities (35) and (36) and comparing
the n-th Fourier coefficients, we obtain for n > 1,

W) = () + oo (n/2) + ot on(n/4) + O gy 4 o)
e (n) — o r(n]2) — () — ()

WE () = gocon(n) + 1igeson (n/2) + 5o oy (n/4) + (102;5”” o(n) + gero(n/4)
— ) — TP (n2) — S (/) 4 iz a(n).

In [12], Cheng and Williams used the Fourier coefficient f(n) of the eta quotient F(z) = 7773;78?
(apart from the Eisenstein series E12(z) and A(z)) to express the convolution sums U ;(n) and
Uio(n). (It is to be noted that the modular form F(z) is not a cusp form.) However, we use
the Eisenstein series E12(z) and the two cusp forms A(z) and A2 4(z) to express our formulas.
Therefore, our formulas presented above do not match with the formulas obtained in [12]. Noting

that

1 1 347
F2)= —— Big(2) — —— Biy(22) — — ot A
(2) = 03018720 °2*) ~ 293018720 2 %%) ~ GTomoea P
475 5
_ 20 A2 - AU+ —— A
2830336 (29 ~ 2142 + Tgge082124(2)

and comparing the n-th coefficients one can get an expression for f(n) in terms of o11(n), 7(n)
and 7i24(n). Substituting this expression (for f(n)) in Theorem 7.2, (vi) and (x), we obtain
Us,a(n) = Wi (n) and Ug(n) = Wy (n).

In the following, we give some new formulas for W ’ ( ). Specifically, we give below the
formulas corresponding to the cases (a,b) = (1,3), (3 1) (1,6),(6,1),(2,3),(3,2), when k =
4,6,8,10. To get these formulas we make use of the basis for My 2(6) given in Table 1. Using
our method, the following formulas hold for all n € N.

W) = oostn) + soos(n3) + o n/3) - o)+ loman),

Wadn) = ogos(n) + qogos(n/3) + oy Loa(n) = Siso(n/3) - piimatn)

W) = grios(n) + sosos(n/2) + —oos(n/3) + 2 as(n/6) + T oy f6)
51570+ a0 (n) + 208 (1/2) + ool
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W) = ﬁ%( )+ 5205(n/2) + 13;05@/3)%05@/6” B2 m)
—5350(/6) ~ o) — sores(n/2) — S ms(n),

W) = sos(n) + aos(n/2) + 7258 S(n/3) + 961as<n/6>+(2;§”‘)03<n/3>
5150 (2) 4 Tosra(n) + T Ta(0/2) — s Te(n),

Wi = ﬁa () + £oz05(1/2) + mors(n/3) + o os(n/6) + o D osny2)

—5350(/3) — () — —Ems(n/2) + Tomes(n),

WES ) = o070 — ot ga(n/3) + 1 2 g/ + 5(1)4 (n >+32—78083<>

W) = oy () — o y(n3) + O 2 () 1 Lon/3) 4 Oy,

WE ) = coetson(n) + gosc07(n/2) + soson(n/3) + sy (n/6) + U 2 sy
be(n) — Tema(n) = £omsa(n/3) - Tma(n) — —oma(n/2) — Toe(n),

Wor(n) = 839614007(n) - 3123507("/ 2+ 23;12007(”/ 3+ 2?1;25”7("/ 6+ (37_2n) 75(n)
Fe70(0/6) — T a(n) — To7sa(nf3) — 2 mss(n) — 1 ma(n/2) — omen),

Wi (n) = 8324007(") * 219855507("/ 2+ 2322007("/ 3+ %‘77( f6)+ & 24n) 75(n/3)
Fer10(1/2) = 1ooTsa(n) — T ma(n/3) — sosms(n) — 2 Tsa(n/2) + seme(n),

WiS(n) = getoon(n) + so07(n/2) + ool o1 (n/3) + s or(nf6) + =2 o5 (nj2)
e 10(0/3) = s Tsa(n) = 2 omsa(n/3) - ﬁTs 3(n) — 5 783(1/2) + <sT(n),

WH) = sorcosin)t o oo(n/3) + C 2 or(n/3) — oot + iz mosa(n)
+m710,3;2(n),

Wel(n) = cotoo(n) + oo oan/3) + D orn) — Zoa(n/3) + Smosa(n)
—L71032( )s

176
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o) + 2 o0(n/2) + T oo(nf3) — 1 oo(n6)
—1—(2;8371)07@/6) — @U(n) + ﬁTlo’g(n) + 221 T10.2(n/3) + 13176710’3;1(71)
+1§i7ﬁo 3;1(n/2) + mnog;z(n) - mno,g;g(nﬂ) 29104710 6(n),
%Ug(n) + %ag(nﬂ) + 72;1;2209(11/3) + %gg(n/ﬁ)
+(496n) or(n) — 4;0 (n/6) — % T10,2(n) — 2237710 g(n/B) + mﬁo,s;l(n)
+26£147103 1(n/2) + 3272710,3;2( ) — ﬁﬁogz( n/2) — ﬁﬁo 6(n),
W"g(") * 3433165"9("/ )+ 1;281228‘79(”/ 9+ 22226131"9("/ 6)
B3 1 n/3) — 2so(n/2) — —=mi0a(n) — om0 s+ B ()
+1262447710 31(n/2) — ﬁﬂo,m( ) 326877'10 32(n/2) + 3637—10 6(n),
5494%6409(71) + %Ug(nﬂ) + %O’g(n/?ﬂ + %gg(nm)
+ (21;8”) o7(n/2) — 4;0 (n/3) + 717147'10,2(”) + %no 2(n/3) + éTloyg;l(n)
2—?71031( /2) — 47;471032( )+ 99?1871032( /2) — %7106( n),
mO’n(n) + 4(6)22?14 1(n/3) + (2((]511) 9(n/3) + 2:54 (n) — 359%7-(71)
%T(”/?’) 495647—12 3(n),
406375144011(n) * %an(nﬂi) + (51_2(2170‘79( )+ %4 (n/3) + 5382723657'(71)
1028034 A5
11747 4964
m‘m(”) + %Ull(n/@ + %011@/3) + %
+(51_2gn) o(n/6) + 264 o(n) - 161971155687(n) - %TW 2) + 118172995127(71/ 3)
252877433537—(71/6) — 4331985687-12,3(71) + 2??32471273(71/2) - 11;457-1276;1(71)
641 1
~ 1935500 "1262(") — T3 T268(n),;

0'11(71/6)
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Lo 298811 85888 610173 2519424
’ _ 20000 90090 9) 4 9 3) 4 20T TRER 6
Wor () = si837560 7 M T Gassae05 7 2 T 1s3612500 71 /3 T 359167015 11 7/ 0)
(5 — n) 1 75811 722624 15109983
g 09 + 5o (n/6) + Zreo s T + Seaar TV — —sogs T(/3)
720135360 265545 92730240 112
ittt e 2) = —riae
Trar "6+ Gerara28(n) = —apaemm23(n/2) = eTiaen(n)
1D 6a(n) — ey ga(n)
527'12,6;2 n 287'12,6;3 n),
Lo 31 128 686433 257664
’ S =0 9) 4 0299 3) 4 0% 6
Wais (M) = sxg37560 7 ™ * 757401625 7 2 Ta3612520 7 (3) + 29951565711 (7/0)
(5 — 3n) 1 2303 109760 9297433
Wz on — o(n/2) — _ 2
90 700/3) + 5520 (0/2) = 5oea ™M) — To5723 7 (/) F 5340207 (/3)
267872 o, 983 LU0 12 )
T — T — =T - T12,6;
11747 863736 27 107967 %3 11745 1261
_35 (n)_,_i (n)
42127_12,6;2 847_12,6;3 )
671 298811 19683 610173
W) = — - _ 2200 9) 4 002 3y p o2 6
320 = 5ros37560 7 (™) T 137700300 71 ) F S010737720 71 (M3 F 15903130711 (M 6)
(5 — 2n) 1 11291 75811 11252115
L= 2+ —o(n/3 9) — 222000 /3
190 0002 F 5550 (0/3) + eaers T F Traa05 72 T Tigroma TV/3)
15109983 10665 265545 7
Eehtehiiditg _ 92) — ,
1747 T6) ~ Ti356 1280 F Sigrg M23(n/2) = fp 26 (n)
2 asa(n) + s (n)
g0 712622 148 "126:3(1)-

Remark 4.4. Formulas for VVl1 if’(n) and W31 13 (n) were evaluated by Yao and Xia [40] using (p, k)
parametrization method. Our formulas for these sums presented above are the same as obtained
by Yao and Xia. Using the same method ((p, k) parametrization), in [18], Kokliice derived
the convolution sums Walg’(n), where (a,b) = (1,6),(6,1),(2,3),(3,2). Our formulas presented
above match with the formulas obtained by Kokliice modulo the cusp form part. In his formulas,
Kokliice used the following cusp forms given by a linear combination of eta-products:

> ui(n)g = —4n(2)°n(22)°n(32)n(62) + 105n(2)°n(32)® + 972n(2)n(22)n(32)°n(62)°,

n>1

> ua(n)g™ = =72n(2)°n(22)°n(32)1(62) + 70n(2)°n(32)° + 24n(2)n(22)n(32)°n(62)°,

n>1

> us(n)g" = 4n(2)°n(22)°n(32)n(62) + 14n(2)°n(32)° + 120n(2)n(22)n(32)°n(62)°,
n>1

> ug(n)g" = —101n(2)n(22)°n(32)n(62) + 1050(2)°n(32)° — 27n(2)n(22)n(32)°n(62)°.

n>1

For these cases, our formulas involve the cusp forms Ag 3(z), Ag 3(22), Ag6(2). Comparing our
formulas with the corresponding formulas obtained in [18], we get the following expressions for
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uj(n), 1 < j <4 in terms of 76 3(n) and 76.6(n):

u1(n) = 4976 3(n) + 44876 3(n/2) + 5276,6(n),
3ua(n) = 9876,3(n) + 89676 3(n/2) — 10476 6(n),
3us(n) = 2876,3(n) + 11276 3(n/2) + 2676 6(n),

ug(n) = 5676 3(n) + 39276 3(n/2) — 5276 6(1)

From these relations, we obtain the newform Agg(z) in terms of eta-products, which we give

below.

A 5(2) = n(2)"n(22)°n(32)n(62) + In(2)n(22)n(32)°n(62)°.

Note that our expression for this newform (given in the Appendix) is different from the above

expression.

4.2. Examples for the convolution sums W, ;(n). We begin by giving the references to the
earlier works in evaluating this type of convolution sums. The list may be incomplete.

Table 3. Known convolution sums W 4(n).

Type of (a,b) (a,b) Level N = ab | References
(1,1) (1,1) 1 [10, 16, 33]
1,p) (1,2),(1,3),(L5), (L 7), (L 11) 2,3,5,7,11, |9, 11, 13, 14, 17, 21, 32]
(1,13), (1,17), (1,23), (1,29), (1,41) | 13,17,23,29, 41
(1,47), (59), (1, 71) 47,59, 71
(p1,p2) (2,3),(2,5),(2,7),(3,5),(3,7) 6,10,14,15,21 |[8, 9, 15, 29, 32]
(L pip2) | (L,6),(1,10), (1,14), (1, 15), (1,21) | 6,10,14,15,21 | [8, 9, 29, 32, 34]
(1,p%) (1,4),(1,8),(1,9),(1,16), 4,8,9, 16, [5, 6, 17, 37, 38, 41]
(1,25), (1,27), (1,32) 95,27, 32
(1,pip§) (1,12),(1,18), (1,20), 12,18, 20, (2, 4, 15, 30, 32]
(1,24),(1,28),(1, 36) 24,28, 36
(pi,pd) (3,4),(2,9), (4,5), 12,18, 20, (3, 4, 15, 30, 32]
(3,8), (4,7), (4,9) 24,28, 36

The following examples are for the convolution sums obtained in Corollary 2.3. Here we
mention one set of examples when the level of the modular forms space is 30. Let n € N, then
we have the following formulas for the convolution sums W, ;(n) with ab|30, ged(a,b) = 1. To
get these examples, we make use of the basis of My(30) presented in Table 1, which consists of
22 elements (for the convolution sums when ab is a proper divisor of 30, we use the basis for the
level ab, which is a subset of these basis elements). Using Corollary 2.3, we get the following

formulas for natural numbers n > 1:

Wis(n) = oa(n) + %Ug(n/?)) + 622—5403(71/5) + %ag(n/w) + (51_25”)0(@
A0 ) - s n) - s (1/3) — Srisa(n) — -

24 455 455 80 84

Ta,15:2(n), (40)
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Was(n) = = os(n) + soos(n/3) + acos(n/5) + osos(n/15) + =0 g3
200 5) — horisn) — poemas(nf3) + raasa () — rmsa(n), (41)
Whis(n) = oo0s(n) + wo08(n/2) + 1o 3(0/3) + oos(n/5) + 5o 03(n/6)
+ %603(71/10) + %ag(n/m) 303(n/30) + (5125”)0(71/2) + (1;43”)0(71/15)
_%”’5(") 4?5745( /3= 9170745(”/ 5~ 45545745("/ 6~ 75074’6(”) 124746("/ )
1;0“0() 4307410(”/3) 52074151() 13074151(”/2) 2;274152()
— aasa(1/2) — geTian () — Tpsmaa(n), (12)
Wato(n) = 55o03(n) + =e=03(0/2) + Tors03(n/3) + —03(0/5) + e03(1/6)
b 20as(n/10) + g o(n/15) + 1oasn/30) + O I g ns3) + 2 5 10)
_%”’5(") 4(;5745( /2) - 9170745(”/ 3= 45545745("/ 6) = g )
124746( n/5) = 155 T10(n) = 4307410(n/3) + pag s (n) + 12074151(”/2)
— g Tasa(n) — geriasa(n/2) + Zeriana () + Tporiana(n) (43)
Was(n) = siosoa(n) + =503(0/2) + 1ors08(1/3) + cooa(n/5) + 52503(n/6)
F 203 (n/10) + g o(n/15) + Loasn/30) + P a(nys) + O g6
— srpTs(n) - 4‘25745( /2) = roms(n/3) - %‘5745@/6) %m( )
124 (n/5) = 120 mi0(n) ¥ 43074 to(n/3) + 52074151( ) 120”151("/2)
+ o masa(n) = grraisa(n/2) + s (n) = Tporina(n) (49)
Wao(n) = ss508(n) + =o03(n/2) + 1opsos(n/3) + = 0(n/5) + 5o503(n/6)
+%03(n/10)+%03(n/15) gog(n/%) (51;()”)0(11) “;f’”‘)a(n/:a())
— saTis(n) = =T (1/2) — T (1/3) — 2eTas(n/6) — = ae(n)
—% 6(n /5)—% Ta,10(n )—%7410( /3)—% Ta,151 (7 )—% 74,151 (1/2)
—% Ta,15:2(1 )_671374152(71/2)_% Ta,30:1(7 )—% 74,302(72)- (45)
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Remark 4.5. We note that the identities for Wis(n) and W3 5(n) were evaluated earlier by the
first two authors in [29, Theorem 2.2] by a different method. However, the coefficients of the
newforms Ay 15.1(z) and Ay 15.2(2), were incorrectly given in those formulas (coefficients were
interchanged). The above identities (40) and (41) rectify this mistake.

Remark 4.6. In [1, 25, 26], the authors consider evaluation of the sum W, ;(n) using the theory
of modular forms for several cases of ab and in [27], the author studied the same for general ab.
Further, in [28], the author evaluates the convolution sums Walg (n) for some cases of ab and all
the above works make use of the theory of modular forms to evaluate these sums. Our approach
in this paper is different from their method. In all the works mentioned above, the authors make
use of these convolution sums to find formulas for the number of representations of a natural
number by certain quadratic forms in 8 or 12 variables. It is to be noted that the theory of
modular forms can be used directly to find these formulas (for the representation numbers) as
demonstrated in our earlier work [31].

4.3. Examples for the convolution sums ), , _ lo(l)ox_1(m). In this section, we give
some examples for Theorem 3.1. We take (a,b) = (1,2),(1,3) when k = 4,6,8 and for k = 10,
we take (a,b) = (1,2). Basis for the corresponding space of modular forms are listed in Table 1.
Our method gives the following convolution sums for all natural numbers n > 1.

n2
1
/ 36752~ 1o —— 46
,;N oos(m 720 o5(n )+36 05(n/2) = 4503(n/2) = 240 o(n) + 3572(n); (46)
+2m=n
> ol P )+ S as(n3) — oo (n)3) — o) + e r5(n)
LmeN o(Bas(m ~ 31207 1047°\" 2073\ 240 o1 68"
I4+3m=n
1
+ 350782(0); (47)
> tolt)estm) = ghesor(n) + o <n/>—f (/2) + o(n) — —==7(n)
l+,2'm:n
1
~ grai02(); (48)
n 273n n? n
lo(l -
l%e:N U( )US(m) 7872007( ) 26240 ( /3) (n/3) 504 ( ) 131207—8,3(n)
l+’3m:n
_L (n)—i <n> (49)
3024 710,3;1 8647_10’3;2 ,
Z lo(l)o og(n) + 17n0 (n/2)+—20 (n/2) — (n)—LT (n)
et r(m) = 725579 + F7g7s 14477 150 51807102
+2m=n

1 2
+ gosr(n) + 7(n/2) (50)
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2

n 123n .

= o 2 2 _n n .

Z;N lo(Dor(m) = 57010070 *+ 5684070V 2) + 1557(7/2) 480 o(n) + go35 03 (n)
l-i:3m=n

™m 1
B ' 850 1
2376052 T g5 - 170 m(n/3) + 2040712 3(n), (51)
Sin n’ 21n

! e 2

Z;N o)on(m) = s oni(n) + 1o ason(1/2) = gasoa(n/2) + 5c0(n) — reer(n/2)
4+2m=n

Lo (n) — — iy aa(n) .

704 121\ = 2oeTi,2,2(1).

Remark 4.7. We have used some of the formulas for Wi ’f 71(71) presented in §3.1 to get the
above expressions.

4.4. Examples for the convolution sums ), , . lo(l)o(m). In this case the correspond-
ing vector space of modular forms has weight 6. We consider the levels 2,3, 4,6 and obtain the
following sums. The basis elements for these levels appear in Table 1. Also, we give formulas
for the cases (a,b) = (1,2),(1,3),(1,4), (1,6), (2,3). For these values, the formulas for the pair
(b,a) can be obtained by observing the following relation valid for relatively prime integers a
and b (for n € N):

by I m) =nWap(n) —a Y lo(l)o(m). (53)
l,meN l,meN
bl+am=n al+bm=n

Let n € N. Then we have

n n n2 —MNn n2
Z lo(l)o(m) = ﬂag(n) + 603(71/2) — (224)0(n) - Ea(n/2), (54)
- n mn n2 — on n2
S loWo(m) = Tosin) + oyn/3) ~ I o) I on/) — Tman), (55)
a n n n n2 —n
S toWalm) = foyn) + Losn/2) + Los(n/a) - ()
e n2 1
— Ea(n/él) — %7'6,4(71), (56)
n n n n2 — on
S to(otm) = saas(n) + osn/2) + ay(n/3) + ay(n/6) - B o)
o n? 1

— —0(n/6) — %07'476(71) = g8 - %7'6 3(n/2) — ﬁ% 6(n), (57)
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n n n n2 — 3n
> lo(lo(m) = o3(n) + —ooa(n/2) + gy (n/3) + Sy /) — BT o)

2
~ o (n/3) — pasme(n) — seemea(n) — sma(n/2) — somen). (59)

Comparing the last two expressions, we obtain the following relation for all n € N.

2 2

23" lo(o(m) — 3 lo(l)o(m) = (2”7;3”)0@) - (4"7;3") (n/2) 2 (n/3) + " o(n/6)

l,meN l,meN
2l+3m=n I+6m=n

(59)

Note that the right-hand side of the above identity involves only the divisor function o(n).

Remark 4.8. The convolution sum given by (54) is the same as obtained in [7, Theorem 4.1].
By using (53) and the sum Ws(n), we can derive the sum Z lo(l)o(m), which is exactly the

l,meN
2l+m=n

second sum appearing in [7, Theorem 4.1].
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to perform our calculations.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated
or analysed during the current study.

APPENDIX

Here we give the expressions for the newforms appearing in Table 1:

Weight 4:
Ao 15(2) = n(z)n(32)n(5z)n(152),
Ass(z) = n'(2)n'(52),
Ags(z) = 1n*(2)n*(22)n*(32)n*(62)
572(2)n (52
z 5 z
Asisa(2) = Das(2) +9845(32) + 545 15(2) + 277?723)27)777((155))’

Agis2(2) = Ags(2) +9045(32) + TA3 15(2),

Agz01(2) = q—2¢°+3¢ 4+ 4¢* +5¢° — 6¢° +32¢" — 8¢° + 9¢° — 10¢'° — 60¢'! + 12¢"2
—34¢"3 — 64¢™ + 15¢"° + 16¢'¢ + 42¢'7 — 18¢'® — 76¢"° + 20¢*° + 96¢*!
+120¢%% — 24¢** + 25¢*° + O(¢*%),
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Ag302(2) = g+ 2q2 + 3q3 + 4q4 — 5q5 + 6q6 — 4q7 + 8q8 + 9q9 - 10q10 — 48q11 + 12q12
+2¢" — 8¢ — 15¢'° + 16¢*® — 114¢'7 + 18¢*® 4 140¢*° — 20¢%° — 12¢**
—96¢%% + 72¢% + 24¢** + 25¢% + O(¢*°).

Weight 6:
Nes(z) = n°(2)n°(32),
Nea(z) = n'%(22),
Bos(s) = { 0 Bo(2) + rr Bo(22) + S0 p(32) + Son Be(62) + = s (2)
+7?—§OA6,3(22) + %DE4(z) — E2(6z)E4(z)} .
Weight 8:
Aga(z) = 17 (2)1°(22),

Ag3(z) = n"(2)n*(32) + 81n°(2)n* (32)n° (92) + 18n° (2)n™ (32)n° (92),
1

Agg(z) = 240(E4(Z)E4(6z) — E4(22)E4(32)).
Weight 10:
31716(22) 4
A = — E ——F — Fp(2
02) = G350y Pl ~ggrg Fro()+ 5575 Fro(22),
45 45 3355
Buoan(2) =~y o) + gy B3 + 535 (Bu(e) - a(39) Bo(2)
61
—@A&?,(Z)EAL(Z),
9 9 671
A10,3;2(75) = _mElo(Z) + mEIO(Sz) + m (E4(Z) - E4(3Z))E6(z)
11
—@A6,3(Z)E4(Z),

Apa(z) = q+228¢3 —666¢° — 6328¢" + 32301¢" — 30420¢'! — 32338¢" — 151848¢1°
+590994¢'7 + 34676¢" — 1442784¢% + 1048536¢% — 1509569¢%° + O(¢%),

143 11 1408 7
Aqop(z) = —%Alo,z(Z) —297A102(32) + §A10,3;1(Z) + 7&0,3;1(22) + EA10,3;2(Z)
896 11
———A1qp13.3(22) — —A B .
o7 10,3:3(22) 156 1,6(2)E6(2)
Weight 12:
98 275562 17
A1273(Z) = 871A(Z) — 81 A(?)Z) — 8TA673(Z)E6(Z),
203 928 147987 676512 2727
ANDY = ——A — —A(22) — A(3z) — A(6z) — —A
12,61(2) 330 (8) — 338(22) = o AB2) = =g = AG2) — o A2s(2)
21600 783 29
—A 2 —A E ——A Fg(2
+ 203 12.3( Z)+266 6,3(2)Es(62) 566 6,3(2)F6(22),
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Aja4(2) = q—516¢> —10530¢° + 49304¢" + 89109¢° — 3094204 — 1723594¢"3
+5433480¢'5 — 2279502¢'7 + 4550444¢° — 25440864¢%" — 7282872¢*
+62052775¢% + O(¢*9),

16051 153728 4781511 340028928 168021
Aizea(2) = =3 A0) — a7 AR2)F e AB) g ime— A62) - 129200A123()
27648 10989 27
LN a(22) + —22 Ag 5(2)E, 2T N () Es(22) — Ay g(2)E
Fagg A128(22) + 5300 R63(2) F(62) — 5305 863(2) s (22) — 55 Ba6(2) s (2),
679 112384 311283 11477376 6223
NP _ 2o SO0 (22) 4 SO A(3) — O A () 4 2250 A
12,63(2) ss1a )+ g A28 e AG2) 303 202+ 5168 123(2)
25600 927 407
2O A a(22) — LA 20A 22) + —A .
393 12,3(22) 133 6,3(2)Es (62)+3591 6,3(2)Ee( 2)+432 1,6(2)Es(2)
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