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Abstract. We construct Jacobi cusp forms by computing the adjoint of a cer-

tain linear map constructed using bilinear holomorphic differential operators

with respect to the Petersson scalar product. The Fourier coefficients of the
Jacobi cusp forms constructed involve special values of the shifted convolution

of Dirichlet series of Rankin-Selberg type.

1. Introduction

The derivative of a modular form is not in general a modular form, but one can
construct modular forms by using certain combinations of derivatives of modular
forms. Rankin [13, 14] gave a general description of differential operators which
map modular forms to modular forms. For every non-negative integer ν, Cohen [7]
explicitly constructed certain bilinear operators from Mk ×Ml to Mk+l+2ν , where
Mi denotes the space of holomorphic modular forms of weight i for the group
SL2(Z). Zagier [16] studied algebraic properties of these bilinear operators and
called them Rankin-Cohen brackets. For example, the first bracket [·, ·]1 satisfies
the Jacobi identity

[[f, g]1, h]1 + [[g, h]1, f ]1 + [[h, f ]1, g]1 = 0, (f ∈Mk, g ∈Ml, h ∈Mm)

giving M∗ the structure of a graded Lie algebra. Kohnen [12] constructed certain
elliptic cusp forms whose Fourier coefficients involve special values of certain Dirich-
let series of Rankin-Selberg type by computing the adjoint of the product map (i.e.
the map f 7→ fg, for a fixed modular form g) with respect to the Petersson scalar
product. Recently, Herrero [10] generalized the work of Kohnen by computing
the adjoint of certain linear maps constructed using Rankin-Cohen brackets with
respect to the Petersson scalar product. Herrero constructed cusp forms whose
Fourier coefficients involve special values of Dirichlet series similar to those which
appeared in the work of Kohnen, with additional factors arising due to the binomial
coefficients appearing in the Rankin-Cohen brackets.

The work of Kohnen [12] has been generalized by Choie, Kim and Knopp [5]
and Sakata [15] to the case of Jacobi forms. Choie [2, 3] studied the Rankin-
Cohen brackets for Jacobi forms by using the heat operator acting on Jacobi forms.
Recently in [11], we generalized the work of Herrero to the case of Jacobi forms. We
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explicitly computed the adjoint of certain linear maps constructed using Rankin-
Cohen brackets with respect to the Petersson scalar product. Böecherer [1] studied
the general bilinear holomorphic differential operators on the Jacobi group by using
the Maass operator and proved that the space of bilinear holomorphic differential
operators raising the weight by ν is in general of dimension equal to bν2 c+ 1. Choie
and Eholzer [4] explicitly constructed a family of dimension bν2 c + 1 of Rankin-
Cohen type operators defined on the space of Jacobi forms raising the weight by
ν ∈ N.

In this article, we consider certain linear maps defined on the space of Jacobi
forms which are constructed using Rankin-Cohen type operators (studied in [4]).
We explicitly compute their adjoints with respect to the Petersson scalar product.
The Fourier coefficients of the image of a Jacobi cusp forms under the adjoint maps
involve special values of shifted convolutions of Dirichlet series of Rankin-Selberg
type.

2. Preliminaries on Jacobi forms of scalar index

Let C and H be the complex plane and the complex upper half-plane, respec-
tively. The Jacobi group ΓJ := SL2(Z) n (Z× Z) acts on H× C in the usual way
by ((

a b
c d

)
, (λ, µ)

)
· (τ, z) =

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Let k and m be fixed positive integers. If γ =

((
a b
c d

)
, (λ, µ)

)
∈ ΓJ and φ is a

complex-valued function defined on H× C, then define

φ|k,mγ := (cτ + d)−ke2πim(− c(z+λτ+µ)
2

cτ+d +λ2τ+2λz) φ(γ · (τ, z)).

Let Jk,m be the space of Jacobi forms of weight k and index m on ΓJ , i.e. the space
of holomorphic functions φ : H× C→ C satisfying φ|k,mγ = φ, for all γ ∈ ΓJ and
having a Fourier expansion of the form

φ(τ, z) =
∑
n,r∈Z,

4nm−r2≥0

c(n, r)qnζr (q = e2πiτ , ζ = e2πiz).

Furthermore, we say φ is a cusp form if and only if c(n, r) 6= 0 =⇒ n > r2/4m.
We denote the space of all Jacobi cusp forms by Jcuspk,m . We define the Petersson

scalar product on Jcuspk,m as

〈φ, ψ〉 =

∫
ΓJ\H×C

φ(τ, z)ψ(τ, z)vke
−4πmy2

v dVJ ,

where τ = u + iv, z = x + iy and dVJ =
dudvdxdy

v3
is an invariant measure under

the action of ΓJ on H×C. The space (Jcuspk,m , 〈. , .〉) is a finite dimensional Hilbert

space. For more details on the theory of Jacobi forms, we refer the reader to [8].
The following lemma describes the growth of the Fourier coefficients of a Jacobi
form.
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Lemma 2.1. If k > 3 and φ ∈ Jk,m has Fourier coefficients c(n, r), then

c(n, r)� |r2 − 4nm|k− 3
2 ,

and, moreover if φ is a cusp form, then

c(n, r)� |r2 − 4nm| k2− 1
2 .

For a proof, we refer to [6].

2.1. Poincaré series. Let m,n and r be fixed integers such that r2 < 4mn.
Let

ΓJ∞ :=

{((
1 t
0 1

)
, (0, µ)

)
: t, µ ∈ Z

}
be the stabilizer of qnζr in ΓJ . Let

(2.1) Pk,m;(n,r)(τ, z) :=
∑

γ∈ΓJ∞\ΓJ
e2πi(nτ+rz)|k,mγ

be the (n, r)-th Poincaŕe series of weight k and index m. It is well-known that
Pk,m;(n,r) ∈ Jcuspk,m for k > 2 [9]. This series has the following property:

Lemma 2.2. Let φ ∈ Jcuspk,m has the Fourier expansion

φ(τ, z) =
∑
n,r∈Z,

4nm−r2>0

c(n, r)qnζr.

Then

(2.2) 〈φ, Pk,m;(n,r)〉 =
mk−2Γ(k − 3

2 )(4mn− r2)
3
2−k

2πk−
3
2

c(n, r),

where Γ(·) denotes the usual gamma function.

One can get explicit Fourier expansion of Pk,m;(n,r), for details and a proof of
the Lemma 2.2, we refer to [9].

2.2. Differential operators on Jacobi forms. For an integer m, we define
the heat operator

Lm :=
1

(2πi)2
(8πim ∂τ − ∂2

z ),

where ∂τ and ∂z are the derivative with respect to τ and z, respectively. Note that

Lm(e(2πi(nτ+rz))) = (4mn− r2)e(2πi(nτ+rz)).

Let k1, k2,m1 and m2 be positive integers, and let φ and ψ be two complex-valued
holomorphic functions defined on H × C. Then, for any complex number X and
non-negative integer ν, define the 2ν-th and (2ν+1)-th Rankin-Cohen type brackets
of φ and ψ as

[φ, ψ]k1,k2,m1,m2

X, 2ν :=
∑

α,β,γ∈N∪{0}
α+β+γ=ν

Cα,β,γ(k1, k2)(1 +m1X)β(2−m2X)αLγm1+m2

(
Lαm1

(φ)Lβm2
(ψ)
)
,

[φ, ψ]k1,k2,m1,m2

X, 2ν+1 := m1[φ, ∂zψ]k1,k2,m1,m2

X, 2ν −m2[∂zφ, ψ]k1,k2,m1,m2

X, 2ν ,
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where the coefficients Cα,β,γ(k1, k2) are given by

Cα,β,γ(k1, k2) =
(k1 + ν − 3/2)β+γ

α!

(k2 + ν − 3/2)α+γ

β!

(−(k1 + k2 + ν − 3/2))α+β

γ!
,

and
(x)m =

∏
06i6m−1

(x− i),

with x! = Γ(x+ 1). Using the action of the heat operator, one can verify that

(2.3) [φ|k1,m1γ, ψ|k2,m2γ]k1,k2,m1,m2

X,ν = [φ, ψ]k1,k2,m1,m2

X,ν |k1+k2+ν,m1+m2γ, ∀γ ∈ ΓJ .

This implies the following result, which was proved in [4].

Theorem 2.3. Let φ ∈ Jk1, m1
and ψ ∈ Jk2, m2

, where k1, k2,m1 and m2

are positive integers. Then, for any X ∈ C and any non-negative integer ν, the

function [φ, ψ]k1,k2,m1,m2

X,ν is a Jacobi form of weight k1 +k2 +ν and index m1 +m2.

Moreover, [φ, ψ]k1,k2,m1,m2

X,ν is a Jacobi cusp form for ν > 1. In fact, [ , ]k1,k2,m1,m2

X,ν

is a bilinear map from Jk1, m1
× Jk2, m2

to Jk1+k2+ν, m1+m2
.

Remark 2.1. For ν ∈ 2N, the operator

(
d

dX

)ν/2
[φ, ψ]k1,k2,m1,m2

X,ν is, up to

a scalar multiple of the Rankin-Cohen bracket, studied in [2]. If we take ν = 1
in Theorem 2.3, we obtain Theorem 9.5 [8]. These are some applications of the
Rankin-Cohen brackets.

3. Statement of the Theorems

Let ψ ∈ Jcuspk2, m2
and ν be a non-negative integer. For a complex number X, we

define the map
Tψ,X,ν : Jcuspk1, m1

→ Jcuspk1+k2+ν, m1+m2

by

Tψ,X,ν(φ) = [φ, ψ]k1,k2,m1,m2

X,ν .

This is a C-linear map of finite dimensional Hilbert spaces and therefore there exists
an adjoint map

T ∗ψ,X,ν : Jcuspk1+k2+ν, m1+m2
→ Jcuspk1, m1

,

such that
〈φ, Tψ,X,ν(ω)〉 = 〈T ∗ψ, X, ν(φ), ω〉,

for all φ ∈ Jcuspk1+k2+ν, m1+m2
and ω ∈ Jcuspk1, m1

.

As an application one can obtain certain arithmetic information of Fourier
coefficients of Jacobi forms using T ∗ψ,X,ν (refer to [11]) and analogous results in the

case modular forms (refer to [12, 10]). In the following theorems, we exhibit the
Fourier coefficients of T ∗ψ,X,ν(φ) for φ ∈ Jcuspk1+k2+ν, m1+m2

for ν even and odd. These
Fourier coefficients involve special values of certain shifted convolution of Dirichlet
series of Rankin-Selberg type associated to φ and ψ.

Theorem 3.1. Let k1, k2,m1,m2 be positive integers, such that k1 > 4, k2 > 3
and ν be a non-negative integer. Let ψ ∈ Jcuspk2, m2

has Fourier expansion

ψ(τ, z) =
∑

n1,r1∈Z,
4m2n1−r21>0

a(n1, r1)qn1ζr1 .
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Then the image of any cusp form φ ∈ Jcuspk1+k2+2ν, m1+m2
with Fourier expansion

φ(τ, z) =
∑

n2,r2∈Z,
4(m1+m2)n2−r22>0

b(n2, r2)qn2ζr2

under T ∗ψ,X,2ν is given by

T ∗ψ,X,2ν(φ)(τ, z) =
∑
n,r∈Z,

4m1n−r2>0

cν,X(n, r)qnζr,

where

cν,X(n, r) =
(4m1n− r2)k1−3/2 (m1 +m2)k1+k2+2ν−2 Γ(k1 + k2 + 2ν − 3

2 )

πk2+2ν mk1−2
1 Γ(k1 − 3

2 )

×
∑

α+β+γ=ν

Cα,β,γ(k1, k2)(1 +m1X)β(2−m2X)α (4m1n− r2)α

×
∑

n1,r1∈Z
4m2n1−r21>0

4(m1+m2)(n+n1)−(r+r1)2>0

(4m2n1 − r2
1)β a(n1, r1) b(n+ n1, r + r1)

(4(m1 +m2)(n+ n1)− (r + r1)2)k1+k2+2ν−(γ+ 3
2 )
.

Theorem 3.2. Let k1, k2,m1 and m2 be positive integers such that k1 > 4, k2 >
3 and ν be a non-negative integer. Let ψ ∈ Jcuspk2, m2

has Fourier expansion

ψ(τ, z) =
∑

n1,r1∈Z,
4m2n1−r21>0

a(n1, r1)qn1ζr1 .

Then the image of any cusp form φ ∈ Jcuspk1+k2+2ν+1, m1+m2
with Fourier expansion

φ(τ, z) =
∑

n2,r2∈Z,
4(m1+m2)n2−r22>0

b(n2, r2)qn2ζr2

under T ∗ψ,X,2ν+1 is given by

T ∗ψ,X,2ν+1(φ)(τ, z) =
∑
n,r∈Z,

4m1n−r2>0

cν,X(n, r)qnζr,

where

cν,X(n, r) =
2i(4m1n− r2)k1−3/2 (m1 +m2)k1+k2+2ν−1 Γ(k1 + k2 + 2ν − 1

2 )

πk2+2ν mk1−2
1 Γ(k1 − 3

2 )

×
∑

α+β+γ=ν

Cα,β,γ(k1, k2)(1 +m1X)β(2−m2X)α (4m1n− r2)α

×
∑

n1,r1∈Z
4m2n1−r21>0

4(m1+m2)(n+n1)−(r+r1)2>0

(4m2n1 − r2
1)β (m1r1 −m2r)a(n1, r1) b(n+ n1, r + r1)

(4(m1 +m2)(n+ n1)− (r + r1)2)k1+k2+2ν−(γ+ 1
2 )

.
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4. Proofs

We follow the same exposition as in the proof of Theorem 3.1 in [11]. The
following lemma is used to prove the above theorems.

Lemma 4.1. Using the same notation as in Theorem 3.1, we have∑
γ∈ΓJ∞\ΓJ

∫
ΓJ\H×C

| φ(τ, z)
[
e2πi(nτ+rz) |k1,m1 γ, ψ(τ, z)

]k1,k2,m1,m2

X,2ν
=(τ)k1+k2+2νe

−4π(m1+m2)(=(z))2

=(τ) | dVJ

converges.

Proof. The proof is analogous to that of Lemma 4.1 in [11]. �

We now give a proof of Theorem 3.1. Write

T ∗ψ,X,2ν(φ)(τ, z) =
∑
n,r∈Z,

4m1n−r2>0

cν,X(n, r)qnζr.

Consider the (n, r)-th Poincaŕe series of weight k1 and index m1, as given in (2.1).
Using Lemma 2.2, we have

〈T ∗ψ, X, 2νφ, Pk1,m1;(n,r)〉 =
mk1−2

1 Γ(k1 − 3
2 )(4m1n− r2)

3
2−k1

2πk1−
3
2

cν,X(n, r).

On the other hand, by the definition of the adjoint map, we have

〈T ∗ψ, X, 2ν φ, Pk1,m1;(n,r)〉 = 〈φ, Tψ, X, 2ν (Pk1,m1;(n,r))〉 = 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X,2ν 〉.
Hence, we obtain

(4.1) cν,X(n, r) =
2πk1−

3
2 (4m1n− r2)k1−

3
2

mk1−2
1 Γ(k1 − 3

2 )
〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X,2ν 〉.

By definition,

〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X, 2ν 〉 =∫
ΓJ\H×C

φ(τ, z)
[
Pk1,m1;(n,r)(τ, z), ψ(τ, z)

]k1,k2,m1,m2

X, 2ν
=(τ)k1+k2+2νe

−4π(m1+m2)(=(z))2

=(τ) dVJ

=

∫
ΓJ\H×C

∑
γ∈ΓJ∞\ΓJ

φ(τ, z)
[
e2πi(nτ+rz) |k1,m1

γ, ψ(τ, z)
]k1,k2,m1,m2

X, 2ν
=(τ)k1+k2+2νe

−4π(m1+m2)(=(z))2

=(τ) dVJ .

By Lemma 4.1, we can interchange the order of summation and integration in the

above equation. Hence, 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X, 2ν 〉 equals∑
γ∈ΓJ∞\ΓJ

∫
ΓJ\H×C

φ(τ, z)
[
e2πi(nτ+rz) |k1,m1 γ, ψ(τ, z)

]k1,k2,m1,m2

X, 2ν
=(τ)k1+k2+2ν e

−4π(m1+m2)(=(z))2

=(τ) dVJ .

Using equation (2.3), the fact that

φ(τ, z)ψ |k,m γ(τ, z) =(τ)k e
−4πm=(z)2

=(τ) = φ(γ(τ, z))ψ |k,m γ(τ, z) =(γτ)k e
−4πm=(z)2

=(γτ)

and the change of variable (τ, z) 7→ γ−1 · (τ, z) and equation (2.3), the above equals∑
γ∈ΓJ∞\ΓJ

∫
γ·ΓJ\H×C

φ(τ, z)
[
e2πi(nτ+rz), ψ(τ, z)

]k1,k2,m1,m2

X, 2ν
=(τ)k1+k2+2ν e

−4π(m1+m2)(=(z))2

=(τ) dVJ .
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Using Rankin’s unfolding argument, 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X,2ν 〉 equals∫
ΓJ∞\H×C

φ(τ, z)
[
e2πi(nτ+rz), ψ(τ, z)

]k1,k2,m1,m2

X, 2ν
=(τ)k1+k2+2ν e

−4π(m1+m2)(=(z))2

=(τ) dVJ

=
∑

α,β,γ∈N∪{0}
α+β+γ=ν

Cα,β,γ(k1, k2) (1 +m1X)β (2−m2X)α

×
∫

ΓJ∞\H×C

φ(τ, z)Lγm1+m2

(
Lαm1

(e2πi(nτ+rz))Lβm2(ψ(τ, z))
)
=(τ)k1+k2+2ν e

−4π(m1+m2)(=(z))2

=(τ) dVJ .

Inserting the Fourier expansions of φ and ψ and using the iterated action of the
heat operators Lm1

, Lm2
:

Lαm1
(e(2πi(nτ+rz))) = (4m1n− r2)αe(2πi(nτ+rz)),

Lβm2
ψ(τ, z) =

∑
n1,r1∈Z,

4m2n1−r21>0

(4m2n1 − r2
1)βa(n1, r1)e(2πi(n1τ+r1z)),

and Lm1+m2
using (2.2), 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X, 2ν 〉 equals∑
α,β,γ∈N∪{0}
α+β+γ=ν

Cα,β,γ(k1, k2) (1 +m1X)β (2−m2X)α (4m1n− r2)α

×
∑

n2,r2∈Z,
4(m1+m2)n2−r22>0

b(n2, r2)
∑

n1,r1∈Z
4m2n1−r21>0

(4m2n1 − r2
1)β(4(m1 +m2)(n+ n1)− (r + r1)2)γ a(n1, r1)

×
∫

ΓJ∞\H×C

e2πi(n2τ+r2z) e2πi((n+n1)τ+(r+r1)z) =(τ)k1+k2+2ν e
−4π(m1+m2)(=(z))2

=(τ) dVJ .

A fundamental domain for the action of ΓJ∞ on H× C is given by the set

{(u, v, x, y) : u ∈ [0, 1], v ∈ [0,∞], x ∈ [0, 1], y ∈ R}.

Integrating in this region, 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X, 2ν 〉 equals

(m1 +m2)k1+k2+2ν−2Γ(k1 + k2 + 2ν − 3
2 )

2πk1+k2+2ν− 3
2

∑
α,β,γ∈N∪{0}
α+β+γ=ν

Cα,β,γ(k1, k2)(1 +m1X)β(2−m2X)α

× (4m1n− r2)α
∑

n1,r1∈Z
4m2n1−r21>0

4(m1+m2)(n+n1)−(r+r1)2>0

(4m2n1 − r2
1)β a(n1, r1) b(n+ n1, r + r1)

(4(m1 +m2)(n+ n1)− (r + r1)2)k1+k2+2ν−(γ+ 3
2 )
.

In the above, we use the orthogonality relations for the exponential function to
compute the integrals in x and u, the Gaussian integral to compute the integral in
y and the integral representation of the Gamma function to compute the integral

in v. Inserting the expression for 〈φ, [Pk1,m1;(n,r), ψ]k1,k2,m1,m2

X, 2ν 〉 in (4.1), we obtain

the required expression for cν,X(n, r) given in Theorem 3.1.
The proof of Theorem 3.2 is analogous to that of Theorem 3.1.
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