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Abstract. Given a fixed Hilbert modular form, we consider a family of linear maps
between the spaces of Hilbert cusp forms by using the Rankin-Cohen brackets and
then we compute the adjoint maps of these linear maps with respect to the Petersson
scalar product. The Fourier coefficients of the Hilbert cusp forms constructed using
this method involve special values of certain Dirichlet series of Rankin-Selberg type
associated to Hilbert cusp forms.

1. Introduction

W. Kohnen [16] constructed certain linear maps between spaces of modular forms
with the property that the Fourier coefficients of image of a modular form involve
special values of certain Dirichlet series attached to these forms using the existence of
adjoint linear maps and properties of Poincaré series. In fact, Kohnen constructed the
adjoint map with respect to the usual Petersson scalar product of the product map
by a fixed cusp form. This result has been generalized by several authors to other
automorphic forms (see the list [17, 19, 4, 22]). In particular, M. H. Lee [18], X. Wang
and D. Pei [23] and Wang [24] have analogous results for Hilbert modular forms.

There are many interesting connections between differential operators and modular
forms and many interesting results have been found. In [20, 21], R. A. Rankin gave a
general description of the differential operators which send modular forms to modular
forms. In [7], H. Cohen constructed bilinear operators and obtained elliptic modular
forms with interesting Fourier coefficients. In [25, 26], D. Zagier studied the algebraic
properties of these bilinear operators and called them Rankin–Cohen brackets.

Recently the work of Kohnen in [16] has been generalized by S. D. Herrero in [15],
where the author constructed the adjoint map using the Rankin-Cohen brackets by
a fixed cusp form instead of product map. Rankin–Cohen brackets for Jacobi forms
were studied by Y. Choie [1, 2] by using the heat operator. The Rankin-Cohen type
differential operators for Siegel modular forms of genus two were studied by Choie
and W. Eholzer [3] explicitly and the existence of such operators for general genus
were established by W. Eholzer and T. Ibukiyama [8]. A. K. Jha and second author
generalized the work of Herrero to the case of Jacobi forms in [12, 14] and to Siegel
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modular forms of degree two in [13]. We generalize the work of Herrero to the case of
Hilbert modular forms in this article. As an application one can give a different proof
of a result of Y. Choie, H. Kim and O. K. Richter ([5], Theorem 3) using our method.

2. Preliminaries

Let K be a totally real number field over Q with degree n and OK be the ring of its
algebraic integers. Let

ΓK = SL2(OK) :=

{(
a b
c d

)
| a, b, c, d ∈ OK , ad− bc = 1

}
.

Let H be the upper half plane. For γ =

((
a1 b1

c1 d1

)
, · · · ,

(
an bn
cn dn

))
∈ SL2(R)n

and z = (z1, · · · , zn) ∈ Hn define the action,

γ ◦ z =

(
a1z1 + b1

c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
.

Let σ1, σ2, ..., σn be all the embedding of K into R, then ΓK can be embedded into
SL2(R)n by (

a b
c d

)
−→

((
σ1(a) σ1(b)
σ1(c) σ1(d)

)
, · · · ,

(
σn(a) σn(b)
σn(c) σn(d)

))
.

We write αi = σi(α) for α ∈ K and 1 6 i 6 n. The trace and norm of α ∈ K are defined
by tr(α) =

∑n
i=1 αi and N(α) =

∏n
i=1 αi. The trace and norm of an element α ∈ Cn are

given by the sum and by the product of its components, respectively. More generally,
if c = (c1, · · · , cn), d = (d1, · · · , dn), k = (k1, · · · , kn) and m = (m1,m2, · · · ,mn) ∈ Cn,
then the trace and norm are defined by

tr(mz) :=
n∑
i=1

mizi

and

(cz + d)k :=
n∏
i=1

(cizi + di)
ki .

Let k = (k1, · · · , kn) ∈ Nn
0 . For γ =

((
a1 b1

c1 d1

)
, · · · ,

(
an bn
cn dn

))
∈ SL2(R)n and

a function f : Hn → C define the slash operator

(f |k γ) (z) = j(γ, z)−kf (γ ◦ z) , where j(γ, z) = (cz + d).

A Hilbert modular form of weight k ∈ Nn
0 for the group ΓK is a holomorphic function

f : Hn → C such that f |k γ = f, for all γ ∈ ΓK . In addition, f is called a cusp form
if f vanishes at all cusps of ΓK . Let Mk(ΓK) denotes the space of Hilbert modular
forms of weight k ∈ Nn

0 for the group ΓK and Sk(ΓK) be the subspace of cusp forms.
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These are finite dimensional complex vector spaces and Sk(ΓK) is a Hilbert space with
respect to the Petersson inner product

〈f, g〉 :=

∫
ΓK\Hn

f(z)g(z)yk
dxdy

y2
, (1)

where z = x+ iy, dx = dx1 · · · dxn and dy = dy1 · · · dyn.
For α ∈ OK , by α � 0 we mean either α = 0 or α is totally positive (all the

conjugates of α are positive) and by α� 0 we mean α is totally positive. By Koecher
principle, f ∈Mk(ΓK) has a Fourier expansion at the cusp ∞ of the form

f(z) =
∑
m∈O∗K
m�0

ame
2πitr(mz),

where O∗K = {µ ∈ K | tr(µλ) ∈ Z for all λ ∈ OK}. For an integer x ∈ N0, we denote
−→x := (x, · · · , x) ∈ Nn

0 . For ν = (ν1, · · · , νn) ∈ Nn
0 and z = (z1, · · · , zn) ∈ Cn, we denote

|ν| =
n∑
i=1

νi, ν! =
n∏
i=1

νi! and zν =
n∏
i=1

zνii .

One has the following growth condition on the Fourier coefficients of a Hilbert modular
form.

Proposition 2.1. (Hecke) Let f(z) =
∑

m∈O∗K
m�0

ame
2πitr(mz) ∈Mk(ΓK), then

am � mk−−→1 , (2)

If f is a cusp form, then

am � m
k
2 . (3)

For a proof, we refer to [10].

2.1. Eisenstein series. Let Γ∞ =

{(
1 t
0 1

)
| t ∈ OK

}
and let

−→
k = (k, · · · , k) ∈

Nn
0 . Define

Ek(z) :=
∑

γ∈Γ∞\ΓK

(1|−→
k
γ)(z), (4)

the Hilbert Eisenstein series. It is well known that (see [10]) Ek is a Hilbert modular

form of weight
−→
k on ΓK for k > 2.

2.2. Poincaré series. For µ ∈ OK , µ� 0 and k = (k1, · · · , kn) ∈ Nn
0 , define

Pk,µ(z) :=
∑

γ∈Γ∞\ΓK

(e2πitr(µz)|kγ)(z). (5)

It is well known that Pk,µ ∈ Sk(ΓK) if µ� 0 and kj > 2 for all 1 6 j 6 n.

One has the following characterization:
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Theorem 2.2. [10] If f(z) =
∑

m∈O∗
K

m�0

ame
2πitr(mz) ∈ Sk(ΓK), then

〈f,Pk,µ〉 = vol(OK/Rn)
(k −−→2 )!

(4πµ)k−
−→
1
aµ. (6)

For more details on the theory of Hilbert modular forms, we refer to [10].

2.3. Rankin-Cohen Brackets. For t = (t1, · · · , tn) ∈ Nn
0 , let f (t) := ∂|t|

∂z
t1
1 ∂z

t2
2 ...∂ztnn

f(z).

Let fi : Hn → C be holomorphic for i = 1, 2 and k = (k1, · · · , kn), l = (l1, · · · , ln) ∈ Nn
0 .

For all ν = (ν1, · · · , νn) ∈ Nn
0 , define the ν-th Rankin-Cohen bracket by

[f1, f2]ν :=
∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
f

(t)
1 (z)f

(ν−t)
2 (z). (7)

Theorem 2.3. [5] For all M ∈ SL2(R)n,

[f1|kM, f2|lM ]ν = [f1, f2]|k+l+2νM. (8)

In particular, if f1 ∈Mk(ΓK) and f2 ∈Ml(ΓK) then

[f1, f2]ν ∈Mk+l+2ν(ΓK),

and if ν 6= 0, then

[f1, f2]ν ∈ Sk+l+2ν(ΓK).

Remark 2.1. For each ν ∈ Nn
0 , [ , ]ν is a bilinear operator on the space of Hilbert

modular forms.

Remark 2.2. Let s = (s1, · · · , sn) ∈ Cn. The series∑
m∈O∗K
m�0

1

ms

converges absolutely if Re(si) > n for some i, 1 ≤ i ≤ n.

Remark 2.3. Let s = (s1, · · · , sn) ∈ Cn. Then the series∑
m,n∈O∗K
n>0,m�0

1

(m+ n)s
,

converges absolutely if Re(si) > 2n for some i, 1 ≤ i ≤ n.
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3. Statement of the theorem

For a fixed g ∈Ml(ΓK) and ν ∈ Nn
0 , consider the linear map,

Tg,ν : Sk(ΓK) −→ Sk+l+2ν(ΓK)

defined by
f 7−→ [f, g]ν . (9)

Since Sk(ΓK) is a finite dimensional Hilbert space, there exists the adjoint map

T ∗g,ν : Sk+l+2ν(ΓK) −→ Sk(ΓK) (10)

satisfying

〈T ∗g,ν f, h〉 = 〈f, Tg,νh〉, ∀ f ∈ Sk+l+2ν(ΓK) and h ∈ Sk(ΓK).

We compute the Fourier coefficients of T ∗g,ν(f) explicitly which involve certain Dirichlet
series associated to the Fourier coefficients of f and g.

Theorem 3.1. Suppose k, l, ν ∈ Nn
0 with ki > 4n+ 2 for some i. Let g ∈Ml(ΓK) with

Fourier expansion

g(z) =
∑
m∈O∗K
m�0

bme
2πitr(mz).

Suppose that either (a) g is a cusp form or (b) g is not cusp form and ki − li > 4n for
some i. Then the image of any cusp form f(z) ∈ Sk+l+2ν with Fourier expansion

f(z) =
∑
m∈O∗K
m�0

ame
2πitr(mz),

under T ∗g,ν is given by

T ∗g,ν(f)(z) =
∑
µ∈O∗K
µ�0

cµe
2πitr(µz),

where

cµ =
Γ(k + l + 2ν −−→1 )

(4π)l+2νΓ(k −−→1 )
µk−

−→
1
∑
m∈O∗K
m�0

am+µbm

(m+ µ)k+l+2ν−−→1
εk,l,νµ,m (11)

and

εk,l,νµ,m =
∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
µtmν−t. (12)

Remark 3.1. Using the estimates in Proposition 2.1, we observe that the series in (11)
converges absolutely.

Remark 3.2. The above result generalises the work of Wang and Pei [23] and Wang
[24] where the authors computed the adjoint map for ν = 0.
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We need the following Lemma.

Lemma 3.2. Let f and g be Hilbert modular forms with Fourier coefficients am and
bm respectively as in Theorem 3.1. Then the series∑

n,m∈O∗K
n�0,m�0

|anbmmν |
(n+m+ µ)k+l+2ν−−→1

(13)

converges.

Proof. Using Proposition 2.1, we have an � n
k+l+2ν

2 and bm � m
l
2 (if g is a Hilbert

cusp form). Hence the series (13) satisfies

�
∑

n,m∈O∗K
n�0,m�0

1

(n+m+ µ)k/2−
−→
1
,

which converges absolutely using Remark 2.3 as ki ≥ 4n + 2 for some i. If g is not a
cusp form, then bm � ml−1 and the series (13) satisfies

�
∑

n,m∈O∗K
n�0,m�0

1

(n+m+ µ)k/2−l/2
,

which converges absolutely using Remark 2.3 as ki − li > 4n for some i. �

Proposition 3.3. Let f and g be Hilbert modular forms as in Theorem 3.1 and
µ(� 0) ∈ O∗K . Then the series∑

γ∈Γ∞\ΓK

∫
ΓK\Hn

|f(z)[e2πitr(µz)|kγ, g]ν(z) yk+l+2ν |dxdy
y2

(14)

converges.

Proof. For any γ =
(
a b
c d

)
∈ ΓK , changing the variable z to γ−1 ◦ z for each integral,

the sum (14) equals to∑
γ∈Γ∞\ΓK

∫
γ(ΓK\Hn)

|f(γ−1 ◦ z)[e2πitr(µz)|kγ, g]ν(γ
−1 ◦ z)| yk+l+2ν

|j(γ−1, z)|2(k+l+2ν)

dxdy

y2

By (8), the sum is equal to∑
γ∈Γ∞\ΓK

∫
γ(ΓK\Hn)

|f(z)[e2πitr(µz), g]ν(z)|yk+l+2ν dxdy

y2
.

Now using the Rankin-Selberg unfolding argument, the above sum is equal to∫
Γ∞\Hn

|f(z)[e2πitr(µz), g]ν(z)|yk+l+2ν dxdy

y2
.
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Replacing f(z) and g(z) with their Fourier expansions and using the definition of
Rankin-Cohen brackets, the last integral is majorized by∑

t∈Nn0
06ti6νi

αν,µ(t)

∫
Γ∞\Hn

∑
n,m∈O∗K
n�0
m�0

|anbmmν−te2πitr(nz)e2πitr((m+µ)z)|yk+l+2ν dxdy

y2
.

where

αν,µ(t) = |(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
(2πiµ)t|.

The above sum is a finite sum and now it suffices to show that the integral

It =

∫
Γ∞\Hn

∑
n,m∈O∗K
n�0
m�0

|anbmmν−te2πitr(nz)e2πitr((m+µ)z)|yk+l+2ν dxdy

y2

is finite for each t. We choose Rn \ O∗K × (0,∞)n as a fundamental domain for the
action of Γ∞ on Hn and integrating over it, we have

�
∑

n,m∈O∗K
n�0,m�0

|anbmmν |
(n+m+ µ)k+l+2ν−−→1

.

Using Lemma 3.2, the above series converges.
�

Now we give a proof of the Theorem 3.1.

Proof. Let T ∗g,ν(f)(z) =
∑

µ∈O∗K
µ�0

cµe
2πitr(µz). Using Theorem 2.2 we have

vol(OK/Rn)(4πµ)
−→
1 −k(k −−→2 )! cµ = 〈T ∗g,νf ,Pk,µ〉

= 〈f , Tg,ν(Pk,µ)〉
= 〈f , [Pk,µ, g]ν〉

=

∫
ΓK\Hn

f(z)[Pk,µ, g]ν(z)yk+l+2ν dxdy

y2

=

∫
ΓK\Hn

∑
γ∈Γ∞\ΓK

f(z)[e2πitr(µz)|kγ, g]ν(z) yk+l+2ν dxdy

y2
.

By Proposition 3.3, the above expression is absolutely convergent, hence one can in-
terchange the summation and the integration. The change of variable z to γ−1 ◦ z for
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each integral gives

vol(OK/Rn)(4πµ)
−→
1 −k(k−−→2 )!cµ =

∑
γ∈Γ∞\ΓK

∫
γ(ΓK\Hn)

f(z)[e2πitr(µz), g]ν(z) yk+l+2ν dxdy

y2
.

(15)
Using the Rankin-Selberg unfolding argument, the right hand side of (15) is equal to∫

Γ∞\Hn
f(z)[e2πitr(µz), g]ν(z) yk+l+2ν dxdy

y2
. (16)

Using the definition of Rankin-Cohen bracket (7), the above integral is equal to∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)∫
Γ∞\Hn

f(z)e2πitr(µz)(t)g(ν−t)(z) yk+l+2ν dxdy

y2
.

Substituting f(z) and g(z) by their Fourier expansions and observing the repeated
action of differential operators,

e2πitr(µz)(t) = (2πiµ)te2πitr(µz)

g(ν−t)(z) =
∑
m∈O∗K
m�0

(2πim)ν−tbme
2πitr(mz),

the integral (16) equals∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
(2πiµ)t

×
∫
Rn\O∗K×(0,∞)n

∑
n,m∈O∗K
n�0
m�0

anbm(2iπm)ν−te2iπtr(nz)e2πitr((m+µ)z)yk+l+2ν dxdy

y2
.

Writing z = x + iy and choosing Rn \ O∗K × (0,∞)n as a fundamental domain for
Γ∞ \Hn (see [10]) the above expression equals∑

t∈Nn0
06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
(2πiµ)t

×
∫
Rn\O∗K×(0,∞)n

∑
n,m∈O∗K
n�0
m�0

anbm(2iπm)ν−te2iπtr((n−(m+µ))x)e−2πtr((n+(m+µ))y)yk+l+2ν dxdy

y2
.
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Integrating over x first, we have ([10])∫
Rn\O∗K

e2iπtr((n−(m+µ))x)dx = vol(Rn \O∗K) (17)

if n = m+µ and zero, otherwise. Using (17) in the previous integral, the integral (16)
equals

= vol(Rn \O∗K)
∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
(2πiµ)t

×
∫

(0,∞)n

∑
m∈O∗K
m�0

a(m+µ)bm(2πim)ν−te−4πtr((m+µ)y) yk+l+2ν dy

y2
.

Integrating over y, we have∫
(0,∞)n

e−4πtr((m+µ)y) yk+l+2ν dy

y2
=

Γ(k + l + 2ν −−→1 )

(4π)k+l+2ν−−→1

1

(m+ µ)k+l+2ν−−→1
, (18)

where Γ(k + l + 2ν −−→1 ) =
∏n

i=1 Γ(ki + li + 2νi − 1). Finally, substituting (18) in the
previous integral, the integral (16) is equal to

∑
t∈Nn0

06ti6νi

(−1)|t|
(
k + ν −−→1
ν − t

)(
l + ν −−→1

t

)
(2πiµ)tvol(OK/Rn)

× Γ(k + l + 2ν −−→1 )

(4π)k+l+2ν−−→1

∑
m∈O∗K
m�0

am+µbm(2πim)ν−t

(m+ µ)k+l+2ν−−→1
.

Hence,

cµ =
(2πi)|ν|Γ(k + l + 2ν −−→1 )

(4π)l+2νΓ(k −−→1 )
µk−

−→
1
∑
m∈O∗K
m�0

am+µbm

(m+ µ)k+l+2ν−−→1
εk,l,νµ,m , (19)

where εk,l,νµ,m is given by (12). This completes the proof. �

As an application one can give a different proof of Theorem 3, [5]. Choie, Kim
and Richter [5] computed the Petersson scalar product 〈f, [Ek, g]ν〉 in terms of special
values of a certain Rankin-Selberg convolution of Hilbert modular forms f, g which
generalises the work of Zagier for the case of modular forms [25].
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Theorem 3.4. [5] Let k > 2 be a natural number and l, ν ∈ Nn
0 with k − li > 2n for

some i, 1 ≤ i ≤ n. Suppose that f ∈ Sk+l+2ν(ΓK) with Fourier expansion

f(z) =
∑
m∈O∗K
m�0

ame
2πitr(mz),

and g ∈Ml(ΓK) with Fourier expansion

g(z) =
∑
m∈O∗K
m�0

bne
2πitr(mz).

Then

〈f, [Ek, g]ν〉 = vol(OK/Rn)(2iπ)|ν|
(
−→
k + l + 2ν −−→2 )!(

−→
k + ν −−→1 )!

(4π)|
−→
k +l+2ν−−→1 |(

−→
k −−→1 )!ν!

∑
n∈O∗K
n�0

anbn

nk+l+ν−−→1
.

Following the method of Zagier [25], the authors [5] expressed [Ek, g]ν as a linear
combination of Hilbert-Poincaré series and then used the characterization property of
Hilbert Poincaré series given in Theorem 2.2 to compute the inner product. Following
the method of proof of Theorem 3.1, one can give a different proof of Theorem 3.4 by
evaluating the integral ∫

ΓK\Hn
f(z)[Ek, g]νy

k+l+2ν dxdy

y2

using the Rankin-Selberg unfolding argument.
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