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Abstract In this paper we use the theory of modular forms to find formulas for the
number of representations of a positive integer by certain class of quadratic forms in
eight variables, viz., forms of the form alx% + azx% + a3x§ + a4x‘21 + b (x% + x5x6 +
x%) —|—b2(x% + x7x3 +x§), where a; < a, < az < ag, by < by and a;’s € {1,2,3},
bi’s € {1,2,4}. We also determine formulas for the number of representations of
a positive integer by the quadratic forms (x% + X1X2 —|—x§) +c (x% + X3X4 —&—xﬁ) +
cz(xg + X5X¢ —&—x%) —|—C3(x% + x7x8 —|—x§), where ci,¢2,¢3 € {1,2,4,8}, ¢c1 < ¢z < c3..

1 Introduction

In this paper we consider the problem of finding the number of representations of
the following quadratic forms in eight variables given by

alx% +a2x% +a3x% —|—a4x421 + b (x% + X5X¢ —|—x%) + bz(x% 4 x7x38 —i—xé)7 (1

where the coefficients a; € {1,2,3}, 1 <i <4 and by,b, € {1,2,4}. Without loss
of generality we can assume that a; < ap < a3z < aq and by < by. In [3], A. Alaca
et. al considered similar types of quadratic forms in four variables, which are either
sums of four squares with coefficients 1,2,3,4 or 6 (7 such forms) or direct sum of
the sums of two squares with coefficients 1 or 3 and the quadratic form x> +xy + y?
with coefficients 1,2 or 4 (6 such forms). They used theta function identities to
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determine the representation formulas for these 13 quadratic forms. In our recent
work [17], we constructed bases for the space of modular forms of weight 4 for the
group I(48) with character, and used modular forms techniques to determine the
number of representations of a natural number n by certain octonary quadratic forms
with coefficients 1,2,3,4, 6. Finding formulas for the number of representations for
octonary quadratic forms with coefficients 1,2,3 or 6 were considered by various
authors using several methods (see for example [1, 2,4, 5, 6, 7]). In the present work,
we adopt similar (modular forms) techniques to obtain the representation formulas.
We show directly that the theta series corresponding to each of the quadratic form
considered belongs to the space of modular forms of weight 4 on I)(24) with some
character (depending on the coefficients). Now, by constructing a basis for the space
of modular forms My4(Iy(24), ) we find the required formulas. Here ¥ is either the
trivial Dirichlet character modulo 24 or one of the primitive Dirichlet characters
(modulo m) x,n = (2), m = 8,12,24. Since M4 (I5(24), %) C M4(I5(48), x), where
x is a Dirichlet character modulo 24, we get the required explict bases from the
basis of modular forms M4 (I(48), y), where v is a Dirichlet character modulo 48,
which was constructed in [17].

In the second part of the paper, we consider the quadratic forms of eight variables
given by:

(x% +x1x2 —|—x§) +c (x% + x3%4 —|—x421) —&—cz(x% + x5x¢ —&—xé) +c3 (x% 4 x7x8 —|—x§), 2)

where ¢; < ¢y < ¢3 and ¢j,¢2,¢3 € {1,2,4,8}. We note that for the ¢;’s in the
list, each of the quadratic form represents a theta series which belong to the space
My (I (24)). Therefore, using our methods adopted for the earlier case, we also de-
termine explicit formulas for the number of representations of a natural number by
these class of quadratic forms.

The total number of such quadratic forms given by (1) with coefficients a; €
{1,2,3} and b; € {1,2,4} is 90. Each quadratic form in this list is denoted as a sextu-
ple (ai1,az,a3,a4,b1,by) and we list them in Table 1. We also put them in four classes
corresponding to each of the modular forms space My (I5(24), x). Similarly, we list
the quadratic forms (total 19) given by (2) in Table 2. In this case all the correspond-
ing theta series belong to M4 (I5(24)). Among the cases in Table 1, the following 18
cases (for i, j € {1,2,4}, the cases (¢,1,t,t,i,j),t = 1,3 and (1, 1,3, 3,1, j)) were con-
sidered in [11]. The cases (1,1,1,1,1,1) and (1,1,1,1,1,2) were also considered in
[22]. The methods used in their works is different from our method and the corre-
sponding formulas are different from ours (they differ in the cusp form parts). As
for Table 2, we do not consider the case (1,1, 1,1) as the formula is already known
(see [21, Theorem 17.4]). It was shown that s3(n) = 2403(n) +21603(n/3). In our
notation (see §3) sg(n) = M(1,1,1, 1;n). Further, the cases (1,2,2,4) and (1,2,4,8)
has been proved in [10] by using convolution sums method. The same method was
used in [11] to get the cases (1,1,1,2),(1,1,1,4),(1,1,4,8),(1,2,2,2),(1,2,4,4)
and (1,2,8,8). The case (1,1,1,2) was also considered in [22].
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The paper is organized as follows. In §2 we present the theorems proved in this
article and in §3 we give some preliminary results which are needed in proving the
theorems. In §4 we give a proof of our theorems using the theory of modular forms.

Table 1.
List of quadratic forms in 8 variables given in (1)
(a1,a2,a3,a4,b1,b7) space
(1,1,1,1,1,1),(1,1,1,1,1,2),(1,1,1,1,1,4),(1,1,1,1,2,2)
(1,171,1,2,4),(1,1,1 1,4,4),(1,1,2,2,1,1),(1,1,2,2,1,2)
(1,1,2,2,1,4),(1,1,2,2,2,2),(1,1,2,2,2,4),(1,1,2,2,4,4)
(1,1,3,3,1,1),(1,1,3,3,1,2),(1,1,3,3,1,4),(1,1,3,3,2,2)
(1,1,3,3,2,4),(1,1,3,3,4,4),(2,2,2,2,1,1),(2,2,2,2,1,2)|  M4(I3(24))
(2,2,2,2,1,4),(2,2,2,2,2,2),(2,2,2,2,2,4),(2,2,2,2,4,4)
(2,2,3,3,1,1),(2,2,3,3,1,2),(2,2,3,3,1,4),(2,2,3,3,2,2)
(2,2,3,3,2,4),(2,2,3,3,4,4),(3,3,3,3,1,1),(3,3,3,3,1,2)
(3,3,3,3,1,4),(3,3,3,3,2,2),(3,3,3,3,2,4),(3,3,3,3,4,4)
(1,1,1,2,1,1),(1,1,1,2,1,2),(1,1,1,2,1,4),(1,1,1,2,2,2)

(1,1,1,2,2,4),(1,1,1,2,4,4),(1,2,2,2,1,1,(1,2,2,2,1,2)
1, 1,2,2,2,2,2), (1,2,2,2,2,4),(1,2,272,4,4) My(Ip(24), xs)
1,2,3,3,172),(1,2,3,3,1,4),(1,2,3,3,2,2)
1,2,3,3,2,4),(1,2,3,3,4,4)
1,1,1,3,1,2),(1,1,1,3,1,4),(1,1,1,3,2,2)
(1,1,1,3,2,4),(1,1,1,3,4,4),(1,2,2,2,1,1,(1,2,2,3,1,2)
2,2,3,2,2),(1,2,2,3,2,4),(1,2,2,3,4,4) M4 (Ip(24), x12)
,3,3,3,1,2),(1,3,3,3,1,4),(1,3,3,3,2,2)
3 3
1

)
,3,3,2,4),(1,3,3,3,4,4
1,2,3,1,2),
,1,2,3,4,4),
)
)
)

)

My(I5(24), x24)

— — — —

(

(
12,2,3,2,4),(2,2,2,3,4,4
13,3,3,1,4),(2,3,3,3,2,2
,3,3,3,4,4

»3,3,3,1,2),

1
1
1
1
2,2,2,3,1,1),(2,2,2,3,1,2
2
2

.3,3,3,2,4),(2

1
1
1
1
1
2,2,2,3,2,2),
2
2

( )
( )
( )
(1,1,2,3,1,4),(1,1,2,3,2,2
( )
( )
( )
( )

Table 2.

List of quadratic forms in (2) indicated by (1,¢1,¢2,¢3).
( c 7027C3) space

(1,1,2,4
)5(152’2’2)?M4(1—6(24))
(1,2,8,8
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2 Statement of results

Let N,Ny and Z denote the set of positive integers, non-negative integers and inte-
gers respectively. For (ay,az,a3,a4,b1,b>) as in Table 1, we define

N(ai,az,a3,a4,b1,b2;n) ==

4
#{(}q,...,Xg) € Z8|n = Zaixiz—kbl(x% + X5x6 +x2) + by (63 4 x7x3 —|—x§)} .
i—1

i=

to be the number of representations of n by the quadratic form (1). Note that
N(ay,az,a3,a4,b1,b7;0) = 1. The formulas corresponding to Table 1 are stated in
the following theorem. Formulas are divided into four parts each corresponding to
one of the four spaces of modular forms M4 (I9(24),%).

Theorem 2.1 Letn € N.
(1) For each entry (ay,az,as,as,b1,b2) in Table 1 corresponding to the space
My (I5(24)), we have

16
N(a1,az,a3,a4,b1,b2:n) = Y aiA(n), 3)
i=1

where A;(n) are the Fourier coefficients of the basis elements f; defined in §4.1 and
the values of the constants ;s are given in Table 3.

(ii) For each entry (ay,az,as,as,by,by) in Table 1 corresponding to the space
My (I5(24), x3), we have

14
N(ai,az,a3,a4,b1,b2:n) = Y. BiBi(n), 4)
i=1

where B;(n) are the Fourier coefficients of the basis elements g; defined in §4.2 and
the values of the constants B;’s are given in Table 4.

(iii) For each entry (ay,az,as,a4,by,by) in Table 1 corresponding to the space
Mu(I5(24), x12), we have

16
N(ai,az,a3,a4,b1,b2:n) = Y %Ci(n), (5)
i=1

where C;(n) are the Fourier coefficients of the basis elements h; defined in §4.3 and
the values of the constants Y;’s are given in Table 5.

(iv) For each entry (ay,ay,as,as,by1,by) in Table 1 corresponding to the space
My(I5(24), x24), we have

14

N(alaa27a37a47b1;b2;n):ZaiDi(n)7 (6)
i=1
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where D;(n) are the Fourier coefficients of the basis elements F; defined in §4.4 and
the values of the constants 8;’s are given in Table 6.

Now we consider the class of quadratic forms given by (2). For (1,c;,c2,¢3) as in
Table 2, we define

M(1,c1,c2,c33n) 1=

3
# { (x1,...,x8) €Z°) n=(x+xix2+x3) + Y € (X4 + X2 11242 +x%t+2)}

t=1

to be the number of representations of n by the quadratic form (2). Note that
M(1,c1,¢2,¢3;0) = 1. The formulas corresponding to Table 2 are stated in the fol-
lowing theorem.

Theorem 2.2 Letn € N.
For each entry (1,c1,c2,c¢3;n) in Table 2, we have

16
M(1,c1,c2,¢3:n) = Y Vidi(n), @)
i=1

where A;(n) are the Fourier coefficients of the basis elements f; defined in §4.1 and
the values of the constants V;s are given in Table 7.

Remark 2.1. Since one can write down the exact formulas using the explicit Fourier
coefficients of the basis elements and using the coefficients tables given in each of
the cases, we have not stated explicit formulas in the theorems (due to large number
of such formulas). However, in §5 (at the end of the Tables), we give some sample
formulas corresponding to each case.

3 Preliminaries

In this section we present some preliminary facts on modular forms. For k € %Z,
let M. (Iy(N), x) denote the space of modular forms of weight k for the congruence
subgroup Iy(N) with character ¥ and Si(I9(N), x) be the subspace of cusp forms of
weight k for Io(N) with character . We assume 4|N when £ is not an integer and
in that case, the character )y (which is a Dirichlet character modulo N) is an even
character. When Y is the trivial (principal) character modulo N, we shall denote the
spaces by M (Ip(N)) and Si(Iy(N)) respectively. Further, when k > 4 is an integer
and N = 1, we shall denote these vector spaces by M; and Sy respectively.

For an integer k > 4, let E; denote the normalized Eisenstein series of weight k
in M;, given by



6 B. Ramakrishnan, Brundaban Sahu and Anup Kumar Singh

E —l—fZle ,

n>1
where g = %™, 6,(n) is the sum of the rth powers of the positive divisors of n, and
By is the k-th Bernoulli number defined by 71 =

The classical theta function which is fundamental to the theory of modular forms
of half-integral weight is defined by

=Y 4", ®)

neZ

and is a modular form in the space M, /(I(4)). Another function which is mainly
used in our work is the Dedekind eta function 7(z) and it is given by

=g [T -q". )

n>1

An eta-quotient is a finite product of integer powers of 1(z) and we denote it as
follows:

N
[In"(diz) :=d}'az?---ay, (10)
i=1

where d;’s are positive integers and r;’s are non-zero integers.
We denote the theta series associated to the quadratic form x> + xy + y* by

=Y g7 (11)

x,yeZ

This function is referred to as the Borweins’ two dimensional theta function in
the literature. By [18, Theorem 4], it follows that % (z) is a modular form in
My (I(3),x—3). Here and in the sequel, for m < 0, the character ), is the odd
Dirichlet character modulo |m| given by (=2).

In the following we shall present some facts about modular forms of integral
and half-integral weights, which we shall be using in our proof. We state them as
lemmas, whose proofs follow from elementary theory of modular forms (of integral
and half-integral weights).

Lemma 1. (Duplication of modular forms)

If f is a modular form in Mi(I3(N), x), then for a positive integer d, the function
f(dz) is a modular form in My(Iy(dN), ), if k is an integer and it belongs to the
space My(Io(dN), xxa), if k is a half-integer.

Lemma 2. For positive integers r, ri, 12, dy, dy, we have
Mr/2(1—6(4d1)7Xd|) if ris Odd,

O’ (diz) € § Myy(Io(4dy), x-a) if r=2 (mod4), (12)
M, /5(Io(4d)) if r=0 (mod4).
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For odd positive integers ry,r>, we have

. . Mm (1—(‘)(4[d17d2])aX(7d1d2)) ifri+mn=2 (mod 4),
0" (diz) -0 (dyz) € z . _
M# (R)(4[d1,d2]),%(d1d2)) ifri+r =0 (mod4).
(13)

Lemma 3. If f; € My, (Io(M;), y;), i = 1,2, then the product fi - f> is a modular form
in My, 1, To(M), v l//z) where M = lem(M;,M,).

Lemma 4. The vector space My(I1(N)) is decomposed as a direct sum:

where the direct sum varies over all Dirichlet characters modulo N if the weight k
is a positive integer and varies over all even Dirichlet characters modulo N, 4|N,
if the weight k is half-integer. Further, if k is an integer, one has My(Ig(N),x) =
{0}, if x(—1) # (=1)*. We also have the following decomposition of the space into
subspaces of Eisenstein series and cusp forms:

Mk(l—é(N)7X):gk(l_b(N)aX)@Sk(I_b(N)aX)v (15)

where &(Ig(N),x) is the space generated by the Eisenstein series of weight k on
I3(N) with character ¥.

Lemma 5. By the Atkin-Lehner theory of newforms, the space Si(Iy(N),x) can be
decomposed into the space of newforms and oldforms:

Sk(Io(N), ) = S (In(N), 2) @ S (I (N), %), (16)

where the above is an orthogonal direct sum (with respect to the Petersson scalar
product) and

S (Ig = P ST, x)B(d). 17
r|N,r<N
rd|N

In the above, S} (I(N), ) is the space of newforms and S¢'¢(I5(N), x) is the
space of oldforms and the operator B(d) is given by f(z) — f(dz).

Lemma 6. Suppose that X and  are primitive Dirichlet characters with conductors
M and N, respectively. For a positive integer k, let

Ery.y(2) —co+2<2w x(n/d)d"" 1>q, (18)
n>1 \d|n

where

0 ifM>1,
R TV )
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and By denotes generalized Bernoulli number with respect to the character .
Then, the Eisenstein series Ey y /() belongs to the space My(Io(MN), x /), pro-
vided (—1)y(—1) = (=1)* and MN # 1. When = y = 1 (i.e., when M =N = 1)
and k > 4, we have Ey y y(z) = —%Ek(z), where E} is the normalized Eisenstein
series of integer weight k as defined before. We refer to [16, 20] for details.

We give a notation to the inner sum in (18):

Ot-1z.y(n) = Z‘w(d) g (nfd)d . (19)
dln

For more details on the theory of modular forms of integral and half-integral
weights, we refer to [8, 9, 12, 16, 18, 19].

4 Proofs of Theorems

In this section, we shall give a proof of our results. As mentioned in the introduction,
we shall be using the theory of modular forms.

The basic functions for the two types of quadratic forms considered in this paper
are O(z) and #(z). To each quadratic form in (1) with coefficients
(a1,a2,a3,a4,b1,by) as in Table 1, the associated theta series is given by

0(a12)0(a22)0 (a32) O (asz)-F (b12)-F (b22).

Using Lemma 1 and 2 along with the fact that % (z) € M (I(3), x—3), it follows that
the above product is a modular form in My(Iy(24), %), where the character ¥ is one
of the four characters that appear in Table 1 and it is determined by the coefficients
ai,az,as,as. As remarked earlier, the theta series corresponding to the form 2+
xy -+ y? is given by (11) and it belongs to the space M;(I§(3),x_3). Therefore, the
associated modular form corresponding to the quadratic forms defined by (2) is
given explicitly by

F(2)F (c12)F (c22) F (c32).

Again by using Lemmas 1, 2 and 3 it follows that the above product is a mod-
ular form in M4(I5(24)). Therefore, in order to get the required formulae for
N(ai,az,a3,a4,b1,by;n) and M(1,cq,c2,c3;n) we need a basis for the above spaces
of modular forms of level 24. (We have used the L-functions and modular forms
database [13] and [15] to get some of the cusp forms of weight 4.)
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4.1 A basis for M4(I)(24)) and proof of Theorem 2.1(i).

The vector space M4(I(24)) has dimension 16 and we have dim¢ &4(I5(24)) = 8
and dimc S4(I9(24)) = 8. For d = 6,8,12 and 24, 5" (I5(d)) is one-dimensional.
Let us define some eta-quotients and use them to give an explicit basis for S4(I5(24)).
Let

fao(z) = 17223267 := Y ay6(n)q", fas(z) =24 := Y ass(n)q", (20)

n>1 n>1

fann(z) = 171223362127 — 1P2237 147162127 .= Y au1n(n)q",  (21)

n>1

faoa(z) = 172M1374473611273 .= ¥ ayu(n)g”.  (22)

n>1

We use the following notation in the sequel. For a Dirichlet character )} and a
function f with Fourier expansion f(z) = Y~ a(n)q", we define the twisted func-
tion f ® x(z) as follows.

fox@=Y x 23)

n>1
A basis for the space My (I5(24)) is given in the following proposition.

Proposition 4.1 A basis for the Eisenstein series space &,(I(24)) is given by
{E4(tz),1]24} (24)
and a basis for the space of cusp forms S4(Iy(24)) is given by
{fas(ti2),11|4; fa8(122), 12|35 fa12(132),13|2: fa.24 @ xa(2) } - (25)

Together they form a basis for Ms(I5(24)).

For the sake of simplicity in the formulae, we list these basis elements as { f;(z)|1

i < 16}, where fi(z) = E4(2), f2(z) = E4(22), f3(z) = E4(32), fa(z) = Ea(42),
f5(2) = Ea(62), fo(z) = Ea(82), f1(z) = Ea(122).f3(2) = Ea(242), fo(2) = fas(2),
J10(2) = fa6(22), f11(2) = fae(42), f12(2) = fas(2), f13(2) = fas(32), fia(z) =
f112(2), f15(2) = f212(22), f16(2) = fa24 @ xa(z)

For 1 <i < 16, we denote the Fourier coefficients of the basis functions f;(z) as

=Y Ai(n)q"
n>1
We are now ready to prove the theorem. Noting that all the 36 cases corresponding

to the trivial character in Table 1, the resulting functions belong to the space of
modular forms of weight 4 on I(24) with trivial character (using Lemmas 1 to 3).
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So, we can express these theta functions as a linear combination of the basis given
in Proposition 4.1 as follows.

0(a12)0(a22)@(a32)O(as2).F (b12)F (bpz) = Za,f, (26)

where ¢;’s are some explicit constants. Comparing the n-th Fourier coefficients on
both the sides, we get

N(ai,a2,a3,a4,b1,b2;n) = Y 04Ai(n)
i=1

Explicit values for the constants ¢;, 1 < i < 16 corresponding to these 36 cases are
given in Table 3.

4.2 A basis for M4(I(24), x3) and proof of Theorem 2.1(ii).

The vector space My (Iy(24), x3) has dimension 14 and we have dim¢ &4 (I9(24), x3))
=4 and dim¢ S4(I9(24), xg)) = 10. For d = 6 and 12, S} (I5(d), xs) = {0}. Also
Sue(Io(8), x8) is 2-dimensional and S (I5(24), xg) is 6-dimensional.

In order to give explicit basis for this space,we define the following

Es1(2) = 5+ Y 0s(0)q", Eiga@) = Y 31" Q7
n>1 n>1

fagpe1(z) = 17221147382 =% 1 asg 4.:1(n)q", (28)

fasg2(z) =122734M872:= ¥~ asg 4,2(n)q". (29)

For the space of Eisenstein series we use the basis elements of &4(Iy(8), xs) given
in (27).A basis for S (I(8), xs) is given in (28) and (29). The following six eta-
quotients span the space 53" (I9(24), xs)-

faza g (z) = 172137%416198% 1274 .= Y a4 y51(n)d", (30)
n>1

fazagn(z) = 1'23371416%87124" .= Y a4 04 0 (n)q", (31)
n>1

fanagea(z) = 17124316781 1212471 = Zla4,24,xg;3(n)q", (32)
n>

froagga(z) = 1772%4%6'8%121 .= 204,24.;58;4(”)61", (33)

n=z
fazages(z) =21372416%12224% := Y ay 04 4:5(n)q", (34)

n>1



Quadratic forms in eight variables 11

faage6(z) = 1702146872121 1= Y a4 p6(n)q" (35)

n>1
A basis for the space My (Iy(24), xs) is given in the following proposition.

Proposition 4.2 A basis for the space M4(I)(24),x3) is given by

{Ea1.25(t12); Ea 1(12),113; fa 8 51 (112), fa 8 5:2.(112),11135 fa 24, 151 (2),
Ta2475:2(2), 3.24,05:3(2) f4.24, 504 (2) fa 20 255 (2) s 228 06 (2) }

where E4 1,4, (2) and E4 y, 1(2) are defined in (27), fa 8 y,.i(2), i = 1,2 are defined in
(28), (29) and fu 24 44:;(2), 1 < j < 6 are defined by (30) — (35).

For the sake of simplifying the notation, we shall list the basis in Proposition 4.2 as

gi(z) =) Bi(n)q", 1 <i< 14,

n>1

where g1(2) = E41,5,(2), 82(2) = E4,1,24(32), 83(2) = Ea,51(2), 84(2) = E4,3.1(32),
85(2) = fa8.45:1(2)s 86(2) = fa8.25:1(32), 87(2) = fa8,45:2(2):88(2) = fa8,45:2(32),
89(2) = fa.24,45:1(2), 810(2) = fa24,15:2(2), 811(2) = fa.24,35:3(2), 812(2) = fa,24 34 (2)s
813(2) = fa24.24:5(2), 814(2) = f4.24, 156 (2)

We now prove Theorem 2.1(ii). In this case, for all the 18 sextuples corresponding
to the yg character space (in Table 1), the resulting products of theta functions are
modular forms of weight 4 on Iy(24) with character g (By Lemma 1 to 3). So, we
can express these products of theta functions as a linear combination of the basis
given in Proposition 4.2:

14
0(a12)0(a22)0(a32) @ (asz).F (b12).7 (baz) = Y, Bigi(2)- (36)
i=1
Comparing the n-th Fourier coefficients on both the sides, we get
14
N(ai,az,a3,a4,b1,b2;n) = Y BiBi(n).
i=1

Explicit values for the constants f3;, 1 < i < 14 corresponding to these 18 cases are
given in Table 4.

4.3 A basis for M4(I)(24), x12) and proof of Theorem 2.1(iii).

The dimension of the space in this case is 16, with dimc &4(I9(24), x12) = 8 and
dimg S4(I9(24), x12) = 8. The old class is spanned by the space S;*(I5(12), x12),
which is 4 dimensional with spanning functions given by the following four eta-
quotients:
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frizgpa(2) = 2713%26°127%, fuingn() = 3*4%67212%, (3)
frzgma(z) = 223%47167427 fainy,u(z) =1%71672127.  (38)

We write the Fourier expansions of these forms as f4 12,,,:/(2) = Y a4.12,4,,:i(n)q".

n>1

1 < j <4.1In the following proposition we give a basis for the space Ma (I5(24), x12)-

Proposition 4.3 A basis for the space M4(Iy(24), x12) is given by

{E4¢1~,112 (tZ) ) E4,}(12,1 (IZ)7E47Z,47)(73 (tz),E47xi37xi4 ([Z)’t 2,
fa12,(12),11[2,1 < j <4},

where the Eisenstein series in the basis are defined by (18).

Let us denote the 16 basis elements in the above proposition as follows.

{hi(z)|1 <i< 16}, where hi(z) =Es1,y,,(2), h2(2) =Ea 4,,1(2), h3(z) =Ea 5 4.5 5(2),
ha(z) =Eay 55 4(2), hs(2) = Ea1,5,,(22), h6(2) = Ea,21,1(22) .7 (2) = Ea 5, 5 5(22),
hg(2) = Eay_5.54(22).h8+(2) = fa12,212:5(2): 1 < J <4 hiogj(2) = fan2.01:6(22)
1<j<4.

To prove Theorem 2.1(iii), we consider the case of 18 sextuples corresponding to
the character ¥, in Table 1. The resulting products of theta functions are modular
forms of weight 4 on I)(24) with character y;» (once again we use Lemams 1 to 3
to get this). So, we can express each of these products of theta functions as a linear
combination of the basis given in Proposition 4.3 as follows.

16
O (a12)0(a22)0 (a32) O (a42) F (b12) 7 (b2z) = Y %igi(2)- (39)
i=1
Comparing the n-th Fourier coefficients on both the sides, we get
16
N(a1,az,a3,a4,b1,b2:n) = Y %Ci(n).
i=1

Explicit values of the constants %, 1 <i < 16 corresponding to these 18 cases are
given in Table 5.

4.4 A basis for My(1y(24), x24) and proof of Theorem 2.1(iv).

We have dime M4 (I0(24), x24) = 14 and dim¢ 64(I9(24), x24) = 4. To get the span
of the Eisenstein series space &4(I(24), x24), we use the Eisenstein series E4 y y(2)
defined in (18), where x,y € {1,x_3,X—12, 24} Note that for d= 6,8 and 12,
Si(Io(d), x24) = {0} and the space S;°"(I(24), x24) is spanned by the follow-
ing ten eta-quotients (notation as in (10)):
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fioa e (2) = 3726781232473 fangynin(z) = 3247673872124,

) =3%4736'8%122, fa24me4(z) = 3267383125241,
Fanas(z) = 32426 387123247 fana p6(z) = 3241618721272248,
faa7(2) = 32416'8721272248 fy044,,8(2) = 1137161872121248,
fanapyo(z) =223%416 7382 fiou pi10(z) = 3247671274242,

Ja24,204:3(2

We write the Fourier expansions as f424.y,,:i(2) = Y,>10424 3,,:j(n)q". We now
give a basis for the space M4 (I)(24), x24) in the following proposition.

Proposition 4.4 The following functions span the space Ma(I5(24), X24).

{E4A1JC24 (Z)7E47%2471(Z)aE4,lfs7l73 (Z)»E4,xf37xfs7(Z)7f4,24,xz4;j(z)v 1<j<10; } :
(40)

We list these basis elements as {Fj(z)|1 < i < 14}, where Fi(z) = E41 4,,(2),
F2(2) = E4 3p,1(2), F3(2) = Ea g 5 5(2), Fa(2) = Eay 5 4,(2) F5(2 ) J124504:1 (2),
F5(2) = fa24,004:2(2)s F1(2) = fa24,254:3(2), F3(2) = fa24,104:4(2)s Fo(2) = fa 24,3045 (2)
F10(2) = f224,04:6(2)s F11(2) = fa.24,354:7(2), F12(2) = fa24,34:8(2),
F13(2) = f124,004:9(2)> F14(2) = fa24.04:10(2),
As in the previous cases, we denote the Fourier coefficients of these basis functions
by

2)= Y Di(n)q", 1<i< 14,

n>1

To get the formula in Theorem 2.1(iv), we note that for all the 18 sextuples corre-
sponding to the character Y4 in Table 1, the resulting functions belong to the space
M4 (I5(24), x24), by using Lemmas 1 to 3. So, as before, we express these theta
functions as linear combinations of the basis elements:

O(a12)0(a22)0(a3z2)0 (asz).7 (b1z).7 (brz) = Z 0igi(2) 41)
Comparing the n-th Fourier coefficients on both the sides, we get
N(ai,az,a3,a4,b1,b2;n) = Y 8:Di(n)
i=1

Explicit values of the constants §;, 1 < i < 14 corresponding to these 18 cases cor-
responding to character )4 are given in Table 6.

4.5 Proof of Theorem 2.2

This theorem is corresponding to Table 2 and in this case all the product functions
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F(2)-F (c12)F (€22)F (c32)
belong to the space Mu(I5(24)). Therefore, proceeding as in the proof of Theo-

rem 2.1(i), we express these theta functions as linear combinations of the basis ele-
ments:

16
() F (12).F (€22) F (c32) = Y Vifi(2)- (42)
i=1
Comparing the n-th Fourier coefficients on both the sides, we get
16
M(1,c1,c2,c33n) = Z ViAi(n).
i=1

The constants v;, 1 < i < 16 corresponding to the 19 cases of table 2 are given in
Table 7.

S List of tables and sample formulas

In this section we list the remaining tables mentioned in the theorems and provide
explicit sample formulas in some cases. In the first subsection we list the tables and
in the second subsection we give the sample formulas.

5.1 List of tables

In this section, we list the tables 3, 4, 5, 6 and 7 which give the explicit coefficients
that appear in the formulas of Theorem 2.1 and Theorem 2.2.
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Table 3. (Theorem 2.1 (i))
ag

(ayapazag,byby)| o | o | o3 | oy | o5 | o | o7 |og a0 | @y |op
7 -7 -9 | =28 27 36 —72 | =288
(111, 11) 7|0 |3 ||| 03|05 o]0
13 —13 9 26 =27 18 48 96
(1111,12) 300 | 200 | T00 | 75 200 0 25 0 5 = 0 0
(1111,14) ol o [l o o [ 3 [o|=8] 2] o |0
(1111,22) Wl o [l o o [ 3o 2= 0 |0
2y Bl add (| B || o [Blo| 2% oo
7 7 —9 | =28 | =27 36 18 2
(H1L44) 05| 700 [q00 |75 [@00 | © |30 5| 5| 0 |°©
7 =7 =9 7 9 =28 =9 | 36| =36 —768
(122,11 T50 | 150 |50 |300| 50 |75 |00 255 | |5 | P
7l =7 =92 | 9 |=28[=936] -0 -8 | =3
(122.14) | 60 | o0 | 200 (300 | 200 | 75 |00 || 5 | ¢ |5 |2
13 —13 9 —13 —9 26 —9 | 18 6 96 3
(1122.24) | 755 | 2400 | 800 |00 | 800 | 75 |200 (25| S | 2 | 5 | © 2
7 —7 —9 7 9 =28 =9 |36 9 —48 3
(1122,44) | 7260 | 2200 | 500 | 300 | 800 |75 |00 |25 5 | © |5 | © 2
(1133,11) Zla |l %@ o |3 |o[#]2)] 0o 0
(1133,12) il & o]&]ofo 0 o |o
(1133,22) S| B S|SB0 3|02 % 0o |o
1 (=3 =2 =3 6
(1133,24) Pz} o | 50 | 5 0 0 3 0 0 0 0 0
7 91 =27 | =7 | =117 | =28 | 27 |36 | =36 | =312 | =768
(2222.11) 700 | 1200 | 700 | T00 | @00 | 75 | 100 |25 |5 | TS 5|73
13 —247 | 27 13 | =171 26 27 | 18 18 84 9 15
(2222,12) 800 | 2400 | 800 | 200 |00 | 75 |00 (25| 5 | 5 | 5 |2
7 27| 7 | 171 | =28 | =27 |36 | 18| —24 | =48 | =3
(2222,14) 500 00 |00 | 800 |75 |0 [BS|TS | 5|5 |2
13 —13 9 26 | =27 |18 48 96
(2222,29) O 30| 200|100 |7 [200]5] ] 5|5 |°
@244 | o | g0 o g Ao (B 0| B0
1 =1 3 —1 =3 8 =3 |24| 24 768
(2233,11) |7 |5 | 0| B | 5|05 8|0
L= =3l 3 | =2]=3]6 -7
(2233.12) |0 | W || W | |@]|s| 0| 12] %7
@319 | 3 | 500 | o |0 | Too | 75 | s |34 3| e | ¥ |3
P T I T IO R O IO Y (O Y% I 288
(2233.22) | 550 | 300 |70 [ TS0 | To0 | 75 | S0 |35 3| 2| O|!
1 —1 -3 1 3 =2 3|6
(2233,24) 70 | W0 [Te0 |10 | Te0 | 5 |20 |5 | O 0| O |2
L=t |3 =1 =358 |[=3[2]o9 48 | -1
(2233.44) | 100 | 200 | 300 [ 150 | 00 | 75 | S0 || s | 6| S |2
(3333,11) sl |27 Ao | Blo[ZF]| %] o]0
333,14 [ ab | o |fh| 72| 0 Blo| & |20 |o
(3333,22) Bl 0 [Tl T o o [Blo|=] %] oo
L[ =1 || o2 | =3 26 4| 2
(3333.24) oo | 700 |20 | 5 [@o0 | O | |0 5| T 0[O
@334 || abo |00 | 75 [0 | O | B[0P F 0 |0
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Table 4. (Theorem 2.1 (ii))

ajapaz | By | B | B3 By Bs Be By Bg Bo | Bio | Pir | Pz | P13 | Pia
ay.biby
11211 | =26 | 108 | 6656 | 27648 | 168 | 11448 | —2496 | =17280 | 24 | 936 | 144 | —384 | 4032 | —d8
’ 451 | 451 | 451 451 451 451 451 451 41 41 41 41 41 41
212 | 28 | 54 3584 | —6o12 | 480 | —2052 | —2688 | 1728 | —60 | 216 | =108 | 2112 | —1440 | 288
’ 451 | 451 | 451 451 451 451 451 451 41 41 a1 a1 a1 ar
1112.14 =26 | 108 | 1664 6912 =912 3672 0 —6912 —48 =54 702 1632 576 —228
’ 451 | 451 | 451 451 451 451 451 4T 4T ar 7 ar 7
1112.22 —26 | 108 | 1664 6912 —912 3672 0 —6912 —48 684 —36 | —2304 576 264
’ 45T | 45T | 45T 451 451 5 ST T ar 7 7 ar ar
11224 | 28 | 54 | 896 | —1728 | —66 | =108 | —1344 | —864 | —42 | =90 | 306 | 336 | =576 [ =36
’ 451 | 451 | 451 451 1 451 451 451 41 41 41 41 41 41
112,44 | =26 | 108 | 416 | 1728 | —1182| 1728 | 624 | —4320 | —66 | 252 | 288 | =816 | =288 | 96
’ 451 | 451 | 451 451 451 451 451 451 41 41 41 41 41 41
122211 | =26 | 108 | 3328 | 13824 | 8468 | 6264 | —15264 | —10368 | =352 | 708 | 516 | 3584 | 13536 | 660
’ 451 | 451 | 451 451 451 451 451 451 41 41 41 41 41 41
122212 | 28 | 54 | 1792 | —3a56 | 9508 | =756 | —16224 | o |48 | 1956 | 168 | 2800 | 5040 | —420
’ 451 | 451 | 451 451 451 45T 4 4T ar 7 41 7
1222.14 —26 | 108 | 832 3456 —6955 216 7632 —5184 473 1749 57 56 144 357
’ 451 | 451 | 451 451 451 ar 5T 451 T aT ar
—26 | 108 | 832 3456 10634 216 —14016 | —5184 | —634 | —2310 | 426 =750
1222.22| 287 451 | 45T | 451 | ast | ar | —4sr | ast | 4i |41 | A | M2 | 288 |5
122 0a| 28 | 54 | 448 | =864 | =3182| 216 | 6096 | —1296 | 166 | 474 | 6 | —896 | =3384| 156
’ 451 | 451 | 451 451 451 451 451 451 1 41 41 41 41 41
122044 | =26 108 | 208 | 864 | 2381 | 1404 | —2880 | —3888 =151 | =681 | 219 | 1400 | 2520 | =219
’ 451 | 451 | 451 451 451 451 451 451 41 41 41 41 1 41
123301 | 10 | 72 | 2560 [ —18432 | 488 | 6192 —1600 | 6912 | =112 | —480 | 432 | 704 | 3456 | —24
’ 451 | 451 | 451 451 51 451 4 51 41 41 ar ar a1 a1
1233.12 8 | 90 [ 1024 11520 1280 | 5220 256 0 20 312 348 512 1440 24
- 451 | 451 | 45T 451 451 451 5T 451 4T ar ar 7 7 a7
123314 | 10 | 72 | 640 | —a608 | =760 | =1008 | =640 | o | =64 | =66 | 306 | =640 | =1152| 96
o 451 | 451 | 451 451 451 451 451 41 41 41 41 41 41
1233,22 | 10 | 72 | 640 | —4608 | —760 | —1008 | —640 0 —64 | 180 | 60 | =640 [ =1152| 96
’ 451 | 451 | 451 451 451 451 451 41 41 41 41 41 41
—8 90 | 256 2880 —1238 180 128 —4320 =50 330 150 72
1233.24 | 51 | 251 | 351 | st | a5t | a1 | 451 | a5t | A | 4 | A | | O oAt
123344 | 10 | 72 | 160 | —1152 | 1072 | 288 | -d00 | —1728 | =52 | 222 | 90 | 976 | =576 | 126
o 451 | 451 | 451 451 451 451 451 451 41 I 41 1 ar
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Table 5. (Theorem 2.1 (iii))

(ajapazag biby) i | | 13 [y |||y ®w 1% [nol ni | Mo | M3 [ %4 | %s | Ne
1]288| 32 9 84 | 720 336 804
(1113,11) #2335 |3 0)10(0] 0 3| 35 35 % 0 0 0 0
(113,12 | L[ B[] 55| o oo o [ B¢ ~456 0 0
1 72 8 9 186
(1113,14) w| B & |xlofofo]o | 0 0
1113,
113,22 Sl B & Ho]ofofo]3 0 0
1 36 —4 | =9 114
(1113,24) a5l 35| 3% |20 |ofo] o |4 0 0
(1113,44) sl Bl & |Hlo]ofofo |4 0 0
144 | 16 1 =9 | 162 —4704 | =5760
(1223,11) 0 5| 3 0 2 0]0 = |23 73 3
72| =8 | 9 [ 120 4368 | 2784
(1223,12) | 0 ) 33 [ 33 | 0 | 23|00 23|35 3| 3
36 4 1 =9 | 144 —1944 | —1344
(1223,14) 0 3 23 0 2 0]0 = |23 3 3
36 | 4 | 9| 6 —1302 | —1344
(1223,22) [ N S O ) ) I = 1302 | 1
18 =2 1 9 30 504 576
(1223,24) Ol | |0 |03 iy B | B | B
9 | 1 | —9 36 78 312 | =840 | —240
(12344) 10 )53 | 55 [0 |55|0|0| 3|53 |53 |28 | B3 | 3|23 | | B
1 9 | =32 | =3 260 | 352 | =544 | =352
33,11 | &% [S52[F]o|ofo] o |[LR]3Z|SE |52 o | o 0 0
1|48 |16 |3 16| 160 | =40 | 104
(1333,12) 3|3 3|33 0)10(0] 0 23| 23 23 3 0 0 0 0
1333,14) | 3B [F|ofofo|o [R]85 |HK|3L o | o 0 0
1| 24| =8 |=3 2| 16| =16 | =64
(1333,22) 3| 3|3 |3 0)10(0] 0 23 3 3 23 0 0 0 0
(1333.24) |G B A S|ofofo|o B8] % |Ye| o] o 0 0
1|6 |=2|=3 44 | =68 | =22 | =130
(1333,44) w3 |33 0)10(0] 0 » |23 | 27 23 0 0 0 0
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Table 6. (Theorem 2.1 (iv))

ajagaz| & | & | 8 |8 | b5 3 5 5% ) 10 i 52 813 | dia
aybiby
231 | L | 256 | =256 | =1 | 1808 | 656 | —2056 | 3808 | —4144 | 736 472 | —41984 | =1096 | —968
27|39 [ 261 |20 | 87 % 87 29 29 3 3 5 87 87
loaia | L[ 128 | 128 | 1| 208 | 32 | —284 | 368 | 1048 | —6224 | —7100 | 21248 8 500
%T| 29|21 |29 87 | ™ | 37 | ® | ™ | 87 | T8 87 3 37
losial| L 64| =64 | =1 | =84 | =114 | 450 1800 | —324 | —4200 | —2814 | —3072 | 318 | 414
3141361 | 29 | Zo1 o |™ | ™| ™ | ™™ | | ™ | ™ |®|>D
s | 1| 64 | =64 | 1| 264 60 | —420 | —1680 | —1368 | 2064 1884 | —3072 | —204 | 108
- 261 | 29 | 261 |29 29 29 29 29 29 29 29 29 29 29
lomal| L | 32| 32 | 1| 860 | 218 | —970 | —2206 | —628 | 1976 778 | 4288 | —622 | —10
27|29 | 26T | 29| 87 29 29 29 87 87 87 87 3
s | L | 16 | =16 |=1| 16 | z176 | 244 592 | 152 | —6992 | —3d04 | —1024 | 292 | 620
%T| 2 |21 || 87 29 87 29 29 87 87 87 87 87
2ooann | L[ 128 | =128 | =1 | 5480 | 1472 | 15016 | —2992 | —23584 | 79664 | 102248 | —194048 | —116 | 3704
26T |29 | 261 | 29| 261 87 201 87 87 261 261 261 9 261
amiz| L |64 | 64 | 1| 160 | —640 | 7172 | —3656 | 12320 | —50824 | —47284 | 96640 | 1076 | 964
312 561 | 29 | 26T |29 | 261 | 87 | 260 | 87 | ¥ | ~261 | 261 261 | 261 | 261
oo3ia| L | 32| =32 [=i| 824 | —d66 | 4970 | —1888 | —628 | —24496 | —10030 | 44672 | 494 | 394
261 | 29 | 261 |29 261 87 261 87 87 261 T 261 261
2032 | L 32| =32 | 1| 824 1100 | =9124 | 2288 | —10024 | 50672 32252 | —44672 | —1072 [ —1172
27|29 | 261 | 29| 261 87 261 87 87 261 261 261 261 | 261
omma| L | 16| 16 | 1| =748 | 518 | —2470 | 2936 | —i156 | 11192 | —8830 | 21088 | 578 | s62
26T | 29 | 26T | 29 | 261 87 6 87 87 261 261 261 261 | 261
20344 | L | 8 | =8 |=1| =340 224 =604 1520 | =1936 5840 —6388 | —7328 284 244
2T | 29 | 261 | 29| 261 87 201 87 87 261 1 201 21 | 261
33311 | L | 256 | 256 | L | =13360 | =3520 | 20816 | 12608 | 20960 | —219712 | ~113968 | 133120 | 15464 | 16384
33| 567 | 7 | 261 | 87 | 26T | 8T | 261 | 29 7 261 201 261 261 | 26!
233312 | L[ 128 =128 [ 1| 11168 | 2312 | —14212 | —27920 [ —14968 | 129296 | 45212 64256 | —9856 | —8948
33312 561 | 87 | 261 | BT | 261 | BT |21 | T®7T 61 261 | T261 | 261 | 261
233314 | L | 64| 64 | L[ 3836 338 | —4126 | —=2968 | —2092 | 21368 | —10174 | 32512 | —2530 | —1514
333141 561 | 87 | 26T | 87 | 261 87 261 29 87 261 261 261 261 | 261
233322 | L | 64 | 64 | 1| =s560 | —1228 | 6836 | 4688 | 7304 | —72592 | —24268 | 32512 | 5300 | 6316
26T | 87 | 26T |87 | 7261 87 261 29 87 261 261 261 261 | 261
23334 | L | 32| =32 | 1| =940 | —274 | 842 | 2584 | 76 | —12808 | 2666 | —14528 | 878 | 1882
3 27| 87 | 261 |87 | 261 87 201 37 87 261 261 261 261 61
23334 | L | 16| 16 | 1| 1088 | 128 | 2140 | —1120 | 808 | 1l168 | 5204 7360 | —1156 | -4
33441 567 | 87 | 201 21 | ¥ | 2ot | T2 | 8T | 26! P3| 261 %1 | O
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Table 7. (Theorem 2.2)

(Lepoeprea)| vy | Vo | vs [ Vg Vs [ Vel Vs [VelVolvio| Vi [ Vio | Vi3 [Via[VIs[Vie
) [ [ o 2 |ofofololof oo o lofolfo
) 3o |0 | 2o | 25 [ Tak ] o[ 38 o342 o [ o] o ]ofo]o
s |3 |t | T80 | so | oo |5t 2 oo o [ZF] 2 |o]s|8
122 [ &5 [ Z | &G |o | ]oflofo|38ofo o] o]ofo]o
2 g s lsg |3 @lol2folo]ofo]o o |9o]ofo
(1,149 | 5l 235 | 206 | &2 | 2m | 0| 2B o3[ o |0 o lofofo
Qs |l | o |5 | 06 |58 2o o [ o |3 |2|8]n|%
1222 [ & |3 |a o3 |oflofolojofo|of o]ofo]o
0229 [ o |05 | 0o | 25 |78l o3 [o| 8|2 oo o lojofo
1249 [ |3 ||| » wlojofo]l ool o [3]ofo
1288 | gl | 7k | a0 [0 | o8 || o || 0] 0| o [ F| ¥ |F|2|F
1449 [ gdo | | oo | S|k o | E|o|Z|%] o o] o]ofo]o
0449 | 5 | e |0 | w0 | o | 5|50 | 3|0 0] 0|5 |F]|8]|0|F
1:488) | 1500 | 1e00 | 7o00 | 20 |Te00 | 35 | a0 | B[ E| R R | F o]0
(18:8.8) | 5 | 2500 | 7500 | 320 | 2360 | 20 | 330 | 30| 0| 0 | 0 | B ||| 0| %

5.2 Sample formulas
In this section we shall give explicit formulas for a few cases from Tables 1 and 2.

First two formulas of Theorem 2.1(i):

112 84 432 448
324 1728 72 288
—&-?03(}1/6) + ?63(1’1/12) - ?a476(n) — ?a476(n/2) + 12614’12(71),

52 78 108 416

162 864 48 96
—TG3(I1/6> + TG3<H/12) + ?94,6(’1) + ?a476(n/2) — 6614’12(1’1).
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First two formulas of Theorem 2.1(ii):

26 108 6656
NLL12,1,80) = = 03 (1) + 27 O3 (1/3) + 5 O 1 ()
27648 168 11448 2496
g5y Ot (n/3) + ey das g () + = 0487181("/3) 251 “sa2(n)
17280 24 936 144
T ———a4 g y2(n/3)+ 41a424;¢81( n)+ 5 —— a4 04 352 (n) + a1 ——a4 24,553 (n)
384 4032 48

— a1 @)+ aana s (n) = a0 g6 (n),

28 54 3584
N(171’172a1’2;n) = 457163;1,13( ) 451631768(”/3) 451 63;){8,1(”)
6912 480 2052 2688
~ 51 O3t (1/3) + geg s (1) = Jr s (1/3) = e aas g2 (n)
1728 60 216 108
sy Gsa2(n/3) =y aaa g (n) + S aana o (n) = J - aand g (n)
2112 1440 288

704,24,;58;4 (”) - 704,24,13;5 (n) + Ha4724,xg;6(n)'

First two formulas of Theorem 2.1(iii):

1 288 32

N(]a 1,1,3, 17];”) = 563;17)6127( ) 23 52 93:x10,1 ( )+ 27363;7(74«173 (”)
84 720

+§03;x73«x74( n)+ 23“4 12,1251 (1) + 304712,95.2;2(")
336 864

53 442,03 () + a2, 04 (),

1 144 16
EG&LML( n)+ 23 O3:x12.1 1(n) — 50-3;76—47%—3 (n)

9 156 48
_gG&X%JC% (n)+ §a47]2,11221 (n) — Ea‘hll%lzﬂ(n)

168 456
- §a4712,}(12;3 (n) - §a4,12,)(12;4 (n) .

N(17171’37 1’2;”1) =



Quadratic forms in eight variables 21

First two formulas of Theorem 2.1(iv):

N(1,1,2,3,1,1;n) = %63;177624('1)‘1'%9663;)(24,1( ) — ;Z? O3y g2 z( )
503 14 1) s 24 (1) + o 24 (1) — s 2413(n)
7Q O3X-3:2-8 37 4,24, 10431 29 4,24, 10432 37 4,24, %0433
3808 4144 736 472
—Wa4‘,z4,x24;4(n) - W@,M,m;s(n) + 7614,24,124;6(11) + a4 (n)
41984 1096 968
~ g7 W2 () — —em a0 (1) — oo da2a a0 (),
N(] ,1,2,3, 172;”) = 227163:17)624 (”) + %0-3:)(2471 (”) + %63§X—8JC—3 (n)
5051 11 1)+ o a2 (1) — S 242 (1) — 04203 ()
29 U3X-3:2-8 87 4,24, 4511 29 4,24,x24;2\10 87 4,24,x4;3\1
a6 1048 o 7100
29 424 x4 () + 20 42410435 (n) T 4,24, 24:6(1) g7 424 7(n)
21248 8 500

— 424 xp,8(n) +

37 504,24,;524;9(”) + Ea4,24,124;10(n)-

First two formulas of Theorem 2.2:

M(1,1,1,2;n) = 1803(n) —4803(n/2) — 16203(n/3) +43203(n/6),

<1,1,1,4n>:§cs W) = a0y (n/2) + 5 0y (nf3) + o0 (n/4) — 2 0(n/6)
0s(n/12) + % as n) + 3 2as (/).
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