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Matroid intersection: deterministic parallel search to decision
reduction
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Isolation Lemma

Succinct representation of all MSTs

Succinct representation of all maximum weight perfect
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Maximum weight spanning tree

Kruskal’s Algorithm

Sort the edges in decreasing order of weights.

Keep selecting edges which do not create a cycle (maintain a
forest).
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Job Scheduling

Max Profit Job Scheduling

Unit time jobs with a profit, release time, and deadline.

Find a schedulable set of jobs, maximizing profit.

Job P Q R S T U V

Release 2 2 3 4 2 3 1

Deadline 6 3 5 6 4 5 7

Profit 15 65 45 30 80 70 10
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Job Scheduling

Max Profit Algorithm

Sort the jobs in decreasing order of profit.

Keep selecting jobs while maintaining schedulability.
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Linear Indpendence

Max weight basis

Set of vectors from Rn, each with a weight.

Find a subset of linearly independent vectors with maximum
total weight.

Algorithm

Sort the vectors in decreasing order of weights.

Keep selecting vectors while maintaining linear independence.
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Greedy Algorithms

All three algorithms are the same at a high level.

Correctness is not obvious.

Is there a common reason why greedy works in these three
settings?

Is there something in common between

forests in a graph
schedulable subsets of jobs
linearly independent sets of vectors

Extendibility: if the selected set is not the largest, then it can
be extended.
(without removing any elements)
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Matroids

Definition (Matroid)

E : Ground set

(edge set, set of jobs, set of vectors)

I: family of subsets of E (called independent sets)
(forests, schedulable sets of jobs, linearly independent sets of
vectors)

(E , I) is a matroid if

∅ ∈ I.
I ∈ I =⇒ J ∈ I for all J ⊆ I .
A,B ∈ I with |A| < |B| then
∃a ∈ B \ A such that A + a ∈ I.
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Examples of Matroids

Graphic matroids

E ← edge set, I ← family of all forests.

Transversal matroids

Linear matroids

Partition matroids
E ← set of students in a college,
I ← teams that take

at most 3 students from 4th year,
at most 4 from 3rd year, ...

Gammoids E ← client nodes in a network
I ← sets of clients with vertex-disjoint paths to servers
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Matroid Intersection

Problem

Given two matroids on the same ground set,

Find the largest size (weight) common independent set.

Example I:

Graph with Colored edges
largest forest with ≤ 2 red edges, ≤ 2 blue edges, ≤ 1 green
edges ...
Graphic Matroid ∩ Partition Matroid
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Problem

Given two matroids on the same ground set,

Find the largest size (weight) common independent set.

Example III:

r-Arborescences in a directed graph

r

1

2

3

4

Figure: Graphic Matroid ∩ Partition Matroid

At most 1 incoming edge at each vertex.
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Matroid Intersection

Problem

Given two matroids on the same ground set,

Find the largest size (weight) common independent set.

Examples:

Rainbow spanning tree

Bipartite matching

r-Arborescences in a directed graph

Finding two disjoint spanning trees (Homework)
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Search vs. Decision

Satisfiability

Decision: Given a Boolean formula, is there a satisfying
assignment?

Search: Find a satisfying assignment, if one exists.

Matching

Decision: Is there a perfect matching in a given graph?

Search: Find a perfect matching, if one exists.

Decision is as easy as Search.

Is Search as easy as Decision?
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Search to Decision Reduction

Satisfiability: finding a satisfying assignment for ϕ(x1, x2, . . . , xn)

is ϕ(x1 = true, x2, . . . , xn) Satisfiable?

If yes, set x1 = true and continue.
If no, set x1 = false and continue.

Repeat for each variable one by one to get a satisfying
assignment.

Matching: finding perfect matching in a graph G .

u v

Pick an edge e = (u, v).

Does G − e have a perfect matching ?

If yes, delete e and continue.
If no, include e in the perfect matching
and continue with G − u − v .

Keep repeating to get a perfect matching.
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Search to Decision Reduction

Search can be done using n decision queries.

These decision queries are adaptive.

Is there a parallel search-to-decision reduction?

If we are allowed poly(n) decision queries in parallel
can we do search, say, in O(

√
n) (or O(logc n)) rounds?

[Karp, Upfal, Wigderson 1985] studied this question,
motivated by the parallel complexity status of matching and
matroid intersection.
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Parallel Complexity of Matroid Intersection

[Lovász 1979] gave randomized parallel algorithms for the
Decision version of matching and linear matroid intersection.

Based on determinant computation.

Efficient parallel algorithm (NC): O(logc n) time on poly(n)
parallel processors.

Did not imply any parallel algorithm for Search version.
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Parallel Complexity of Matroid Intersection

[KUW86, MVV87]: efficient parallel randomized reduction
(RNC) from search to weighted-decision.

Weighted-decision: given a graph with edge weights, is there
a matching with weight at least W ?

Implied a randomized parallel algorithm for the search version.

Open questions:

Is there a deterministic parallel (NC) algorithm for any
version?
still open.

Is there a deterministic parallel (NC) reduction from search to
decision (or weighted-decision)?
Some exciting progress recently.
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Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

[FGT16, GG17] Bipartite Matching

[AV20] General Matching

This work Matroid Intersection



Greedy Algorithms Matroids Search vs. Decision Isolation Algorithm Questions Bibliography

Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

[FGT16, GG17] Bipartite Matching

[AV20] General Matching

This work Matroid Intersection



Greedy Algorithms Matroids Search vs. Decision Isolation Algorithm Questions Bibliography

Search to weighted-decision

Search to weighted-decision deterministic parallel reduction

[FGT16, GG17] Bipartite Matching

[AV20] General Matching

This work Matroid Intersection



Greedy Algorithms Matroids Search vs. Decision Isolation Algorithm Questions Bibliography

Search to decision: unique solution

Suppose a Boolean formula ϕ has exactly one satisfying
assignment.

Can we find it using non-adaptive decision queries?

Finding unique assignment

For each variable xi , in parallel:
is ϕ(. . . , xi = true, . . . ) satisfiable?

If yes, set xi = true.

If no, set xi = false.
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Search to decision: unique solution

If a graph has a only one perfect matching, then can find it
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Search to weighted-decision: Randomized Reduction

[MVV87] Isolating weight assignment: a weight assignment on
the edges such that there is only one maximum weight perfect
matching.

Can we find unique max weight PM using non-adaptive
weighted-decision queries?

Finding unique max weight perfect matching

Find w∗ using weighted-decision queries.

For each edge e, in parallel:
does G − e have a perfect matching with weight ≥ w∗?

If no, select e.
If yes, discard e.
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Search to weighted-decision: Randomized Reduction

But how do we guarantee unique max weight perfect
matching?

weights are poly bounded, but number of PMs is exponential.

Isolation Lemma [MVV87]

Assign each edge a random weight independently from
{0, 1, 2 . . . , 2m}. Then,

Pr{there is only one max weight PM} ≥ 1/2.

Works for an arbitrary family of sets.

Derandomizing Isolation Lemma remains an open question.
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Search to weighted-decision: Deterministic Reduction

Main technical result

Given two matroids,

construct a weight assignment such that there is only one max
weight common base (rainbow spanning tree)

using O(log2 n) rounds of weighted-decision queries.

Algorithm at a high level

S ← set of all common bases
while (|S | > 1)

Update w to enforce some tie breaks in S .
S ← set of max weight common bases.

In O(log n) rounds, unique max weight common base.

Crucially use a succinct representation of the set of max
weight common bases.
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Succinct representation of all MSTs

First question: How do we succinctly represent all maximum
weight bases of a Matroid?

How do we succinctly represent all maximum weight spanning
trees in a graph?
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Succinct representation of all MSTs
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Succinct representation of all MSTs

Observation: Every MST takes

1 edge from G40

3 edges from G30

and 1 edge from G20.
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Succinct representation of all max weight common bases

Weight splitting theorem

Given two matroids M1 and M2 with a weight assignment w ,

there exists a weight splitting w = w1 + w2 such that

set of max weight common bases =
{max weight bases in M1 w.r.t. w1 }

∩
{max weight bases in M2 w.r.t. w2 }
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Weight-splitting for Bipartite Perfect Matching
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Figure: Weight-splitting

Three perfect matchings

10+12+20=42

10+20+30=60

30+10+20=60

Obs: A perfect matching max-
imizes w1 and w2 =⇒ it max-
imizes w1 + w2.

Thm: All maximum weight
perfect matchings can be ob-
tained this way.
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perfect matchings can be ob-
tained this way.
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Ideas

Algorithm at a high level

S ← set of all common bases
while (|S | > 1)

Update w to enforce some tie breaks in S .
S ← set of max weight common bases.

How do we update w to break ties?

Consider two max weight common bases and their symmetric
difference.
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Figure: A cycle in two common bases

Consider two max
weight common bases.

Obs. Alternating
sum of the cycle

w(e1)+w(e3)−w(e2)−w(e4)

= 20 + 50 + (15 + 25)
−(20 + 25)− (15 + 50)
= 0.
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Recall: each max
weight base has the
same number of ele-
ments from any weight
class.

Obs. Al-
ternating sum of the
cycle
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Algorithm

Observation

Weight splitting defines a bipartite graph on the elements.

Each cycle in this graph has zero alternating sum.

Algorithm

For i = 1 to log n:

Update w to give nonzero alternating weight to all cycles of
length ≤ 2i (need Hashing techinques).

Recompute weight-splitting and the bipartite graph
(need weighted-decision query) [Har07].

Termination:

After i-th iteration, the bipartite graph will not have any cycle
of length ≤ 2i .
After log n iteration, no cycles remain, and hence unique max
weight common base.

Efficiency:

When there are no cycles of length ≤ 2i , the number of cycles
of length ≤ 2i+1 is polynomial.
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Questions

Derandomize the Isolation Lemma even for Bipartite
Matching.

Search to decision reduction (in parallel) for bipartite
matching.

Search to weighted-decision: for what all optimization
problems?
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