Fairness in Matchings

Matchings with Fairness Constraints®

Prajakta Nimbhorkar
Chennai Mathematical Institute
July 27, 2023

Recent Trends in Algorithms, 2023
NISER Bhubaneswar

1Based on joint results with Anand Louis, Meghana Nasre, Atasi Panda, Nada Pulath, Govind
Sankar
1/18

Fairness in Matchings

Problem setup

Input:

m A set of items a1 & ® P1

m A set of platforms

ar

as @ e 2

2/18

Fairness in Matchings

Problem setup

Input:
m A set of items 2 . » P1(2)
m A set of platforms
m Platforms have quotas
ar
as ¢ e 2 (2)

2/18

Fairness in Matchings

Problem setup

Input:
m A set of items a e » P (2)
m A set of platforms
m Platforms have quotas
m Platforms have classes a 1
as 2] (2)

2/18

Fairness in Matchings

Problem setup

Input:
m A set of items a e » P (2)
m A set of platforms
m Platforms have quotas
m Platforms have classes a 1
m Classes have quotas
as 2] (2)

2/18

Fairness in Matchings

Problem setup

Input:

A set of items

A set of platforms
Platforms have quotas
Platforms have classes

Classes have quotas

ai pP1
a2

2
as P2

2/18

Fairness in Matchings

al p1 (2)
Classes are subsets on the
neighborhood.
Classes denote fairness constraints. a2 1
The neighborhood is a trivial class!
as P2 (2)

Goal: Match maximum number of items to platforms‘

3/18

Fairness in Matchings

Why classes?

Some natural constraints that can be modelled:

Selection of committees

m Committee - Needs to have experts from all areas

4/18

Fairness in Matchings

Why classes?

Some natural constraints that can be modelled:

‘ Selection of committees ‘

m Committee - Needs to have experts from all areas

‘ Formation of teams for projects ‘

m Project - wasteful to have many employees with the same skills.

4/18

Fairness in Matchings

A Special Case: Laminar classes Huang (2010); 2-sided pref.

Laminar classification <= any pair of classes has no nontrivial intersection

m Example: Countries , States , Districts , Cities

m Special case: Partition i.e. disjoint classes

5/18

Fairness in Matchings

Reduction to Max-Flow Problem

Maximum matchings under laminar classes

6/18

Fairness in Matchings

Reduction to Max-Flow Problem

Maximum matchings under laminar classes

Maximum flow in a flow network

6/18

Fairness in Matchings

Classification tree - property of laminar classification

a pi(2)

a

a3 P2(2)

az

pi1ai

/
b ©

p1az

pias

p2ai1

/A

2 a2

\@
T ¢

p2a3

7/18

Fairness in Matchings

Feasible matchings to feasible flows

ai
G 1
a pi(2)
a
S
az
as P2(2)
G1
as
G

pi1a1

p2as

H

Add source s and sink t

7/18

Fairness in Matchings

Feasible matchings to feasible flows

ai pi1ai
Cl 1 P1
G1
a pi(2)
@ S t
a P2(2)
G1
G 1 p
as p2as
G H

’ Add (a, pa) edges ‘

7/18

Fairness in Matchings

Feasible matchings to feasible flows

ai p1ai
G 1 P1
G 1
a pi(2)
o S t
as P2(2)
G1
G 1 p
as p2as
G H

Compute a max-flow in H

7/18

Fairness in Matchings

Feasible matchings to feasible flows

ai pi1ay

ai
a

as

as p2as

G H

Maximum matching in G <= Maximum flow in H

7/18

Fairness in Matchings

Hardness for non-laminar classes

Reduction from independent set problem

1
Vertices — items \q

Only one platform

|

[

[E—
m Complete bipartite graph

m Edges — classes with quota 1 o~

8/18

Fairness in Matchings

Hardness continued...

Independent set = Matching respecting class quotas

9/18

Fairness in Matchings

Hardness continued...

‘ Independent set = Matching respecting class quotas‘

’ No n°~!-approximation for any € > 0 unless P=NP [Zuckerman]

9/18

Fairness in Matchings

O(1) classes: 3-approximation [Sankar, Louis, Nasre, N. IJCAI'21]

A = O(1) classes, one platform = Exact algorithm by solving ILP

10/18

Fairness in Matchings

O(1) classes: 3-approximation [Sankar, Louis, Nasre, N. IJCAI'21]

A = O(1) classes, one platform = Exact algorithm by solving ILP ltems have

< 22 types, ILP has one variable x; for each type i € {1,...,2%}

10/18

Fairness in Matchings

O(1) classes: %—approximation [Sankar, Louis, Nasre, N. 1JCAI'21]

A = O(1) classes, one platform = Exact algorithm by solving ILP ltems have

< 22 types, ILP has one variable x; for each type i € {1,...,2%}

ILP:

Maximize

Subject to

>

CeType i
0 S Xi

IN

IN

24
>
i=1

q(C) for each class C

number of Type i items

10/18

Fairness in Matchings

From one platform to multiple platforms

«a-approximation for one platform = ~-approximation for multiple platforms.

11/18

Fairness in Matchings

From one platform to multiple platforms

«a-approximation for one platform = ~-approximation for multiple platforms.

I

%-approximation for multiple platforms, O(1) classes

11/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

12/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

- -
OPT(P,) < © o o >
' “\\101_ o e __3_ D
s O —
[ole] Q
OPT(P,) <§’o 3 o oo BE Y
°- ° - oo -
s
—T 00 [} I
o 00 o o o >
o o
——0o 0o = —
OPT(P,) oo o g o °%

12/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

A(P,) AP,) .. A(P) Unmatched in A

n

OPT(P,)

OPT(P,)

12/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

APy AP,) R A(P,) Unmatched in A
OPT(P,)

OPT(P,)

OPT(P,)

12/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

AP, AP,) R A(P) Unmatched in A

OPT(P,)

<

OPT(P,) >
| 1 |
ey I 1 Ne] 1] PO
VARVARVARRY
|OPT| = |Red| + |Green| |A| > «Green| |A| > |Red|

12/18

Fairness in Matchings

Proof of the theorem

Algorithm: Find a-approximation for each platform, from remaining items.

AP,) Unmatched in A

OPT(P,)

OPT(P,)

oPT(P,)

|OPT| = |Red| + |Green| |A| > «Green| |A| > |Red|
(1+ a)|A| > a|OPT|

12/18

Fairness in Matchings

Another simple case

_1

When each item is in < A classes: ywn}

approximation

13/18

Fairness in Matchings

Another simple case

When each item is in < A classes: ﬁ‘

Simple maximal matching like argument.

approximation

13/18

Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = A

‘ How to define independent set for hypergraphs? ‘

14/18

Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = A

‘ How to define independent set for hypergraphs? ‘

m Strong independent set: Pick < 1 vertex from each hyperedge
%-approximation known [Halldorsson, Losievskaja 2009]
m Weak independent set: Pick < all but one vertices from each hyperedge

%-appmximation known [Agnarsson et al. 2013]

14/18

Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = A

‘ How to define independent set for hypergraphs? ‘

m Strong independent set: Pick < 1 vertex from each hyperedge
%-approximation known [Halldorsson, Losievskaja 2009]
m Weak independent set: Pick < all but one vertices from each hyperedge

%-appmximation known [Agnarsson et al. 2013]

Our result (one platform) = Generalized independent set

14/18

Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = A

‘ How to define independent set for hypergraphs? ‘

m Strong independent set: Pick < 1 vertex from each hyperedge
%-approximation known [Halldorsson, Losievskaja 2009]
m Weak independent set: Pick < all but one vertices from each hyperedge

%-appmximation known [Agnarsson et al. 2013]

Our result (one platform) = Generalized independent set

Pick at most g(e) vertices from hyperedge e

14/18

Fairness in Matchings

Connection with hypergraph independent sets

Hypergraph: (Hyper)edges are sets of k vertices (k = 2 for graphs)
Max-degree = A

‘ How to define independent set for hypergraphs? ‘

m Strong independent set: Pick < 1 vertex from each hyperedge
%-approximation known [Halldorsson, Losievskaja 2009]
m Weak independent set: Pick < all but one vertices from each hyperedge

%-appmximation known [Agnarsson et al. 2013]

Our result (one platform) = Generalized independent set ‘

Pick at most g(e) vertices from hyperedge e
Class C = hyperedge e, quota of C = g(e)

14/18

Fairness in Matchings

What next?

Lower quotas
Laminar classes = reduction to flows with lower bounds

15/18

Fairness in Matchings

What next?

Lower quotas

Laminar classes = reduction to flows with lower bounds

Non-laminar classes: maximal matching is O(¢)-approximation, {=max of all
lower bounds

15/18

Fairness in Matchings

What next?

Lower quotas

Laminar classes = reduction to flows with lower bounds

Non-laminar classes: maximal matching is O(¢)-approximation, {=max of all
lower bounds

Q(¢/log £) hardness of approximation

15/18

Fairness in Matchings

Proportional fairness

| alM(p)| < [M(C)| < BIM(p)]

M(p): Items matched to platform p
M(C): Items matched to p from class C
0<a<p<l1

16/18

Fairness in Matchings

Proportional fairness

| alM(p)| < [M(C)| < BIM(p)]

M(p): Items matched to platform p

M(C): Items matched to p from class C

0<a<p<l1

O(¢)-approximation only for disjoint classes with slight violation of constraints

16/18

Fairness in Matchings

Fairness to individuals

When items have preferences, every matching is unfair to some items.

17/18

Fairness in Matchings

Fairness to individuals

When items have preferences, every matching is unfair to some items.
Idea: Output a distribution on matchings
Uniform sampling from the distribution is fair to all items.

17/18

Fairness in Matchings

Thank you!!?

2Thanks to Meghana and Nada for slides upto laminar part
18/18

