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Why Sublinear Time?
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= Data is massive
= Time consuming to access the entire data.
= Other computational constraints: E.g., space
= Linear time algorithms are no longer the gold

standard
ACCESS PN - Data is complex
CONTROL , - Access restriction

= Policy Constraints, Privacy

= Only can get a snhapshot of data to make
inference!




Only an Approximate View

are = Difficult to get exact answer if
not impossible when full data
. Wo IS not accessed.

KL = Often needs randomization
as well.

= May need adaptive rounds

= Query complexity vs Running
Time




Sublinear Time Algorithms

= Property Testing: Does your data belong to a hypothesis class or very
far away from it?

= Very rich history starting from late nineties

= Tolerant Testing: Approximate distance of a target function to a
hypothesis class.

= Provide trade-offs with approximation factor and query complexity

= Streaming/Sketching: Handle data streams. Sublinear space often
leads to sublinear time complexity

= Dynamic Algorithms: Keeps solution updated all the time. Sublinear
update time is a must.




Edit Distance

X:abbababbaabababa

Y:abababaaaaababab EDIT(X,Y): Minimum number of character insertions,
deletions or substitutions to convert X to Y.

Fundamental measure of sequence similarity
X:abbababbaabababa

More versatile than Hamming Distance (only
Y:ab ababaaaaababab substitutions

Edit=4 Lot of applications: e.g., in Bioinformatics and
Natural Language Processing.

X:abbababbaabababa

Y.:abababaaaaababab

Hamming Dist = 12



Computing Edit Distance

Y, |

Exact algorithms
folklore @(n?) time Yy
MP80 O((n/log n)?) time

= Truly subquadratic complexity will violate the Strong Exponential Time
Hypothesis (SETH)

= One of the important results in Fine-grained Complexity

= Long line of work on approximation algorithms
= Typical holy grail: near-linear time algorithm




Sometlme the holy grail is not fast
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= Favorite applications: Bioinformatics
= But DNA is really long!!

= Even before starting a detailed comparison, it may be useful to 4
know if two DNA sequences are roughly similar very fast- >
sublinear time.

= Many pairs of DNA sequences may need to be compared- if we
know pair-wise distance is small, we want to compute it exactly in
sublinear time.
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Sublinear Time Edit Distance
Approximation

= Model:
= O(1)-time random access to X and Y

= Monte-Carlo randomization

= Sublinear time exact algorithm: Impossib
= Testing X=Y requires Q(n) time!

Gap Edit Distance Problem

Given random access to strings X and Y, and
parameters 0 < k < k’ < n, return:

m YES if ED(X, Y) < k,
= NO if ED(X,Y) > K’

Any answer allowed if k < ED(X,Y) < K.



Hamming vs Edit: Sublinear Time

= Hamming Distance

log n)

= Uniform random sample at a rate of O( .

= Edit Distance

= Case 1: Many Edits
= X:abcdef g..
=Y:-hijklmo..
= EDIT =n

= Case 2: Few Edits
= X:abcdefg..
= Y:-habcdef..
- EDIT=2




Gap Edit Distance [2003-2020]

Landau & Viskin (JCSS, 1988): O(n + k?)

m Exact baseline.

Batu, Ergiin, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami (STOC 2003): O (k% + \/F)
m Allows k" = Q(n) only.

Andoni, Onak (STOC 2000): © (Q(J’k—‘;’k)
m Efficient for large k’.

Goldenberg, Krauthgamer, Saha (FOCS 2019): O (Z—’,‘ +k3).

m Efficient for small k.

Kociumaka, Saha (FOCS 2020)
A ( nk 2 k>
O (e + k2 + V7).

m Improved running time for medium k and k.




Gap Edit Distance: k vs k?




Gap Edit Distance: k vs k?
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Gap Edit Distance: k vs k?
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Gap Edit Distance: k vs k'
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Gap Edit Distance [2021-2022]

= Can we remove the polynomial dependency on k?
= Goldenberg, Kociumaka, Krauthgamer, Saha, FOCS’22

= kvs k®: O0(™/c-05 )
= Optimal for nonadaptive algorithms

= Can we match the Hamming distance bound of % for k vs k©?

= Bringmann, Cassis, Fischer, Nakos, STOC’22
“ kvs k% O(™/,c + n08+ k#)
= Achieves Hamming distance bound for k < n%1 for k vs k2

= Can solve subpolynomial gap problem in sublinear regime for sufficiently
small k




Gap Edit Distance: k vs k?
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GAP EDIT DISTANCE: K VS K2
INO (2 + kz) TIME




Algorithm of Landau & Vishkin 1998

Test ED(X,Y) < k in O(n + k?) time.




Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n+ k?) time.

DP table:
D[x]ly] = ED(X[0..x),Y][0..y)).
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time.

DP table:
D[x]ly] = ED(X[0..x),Y][0..y)).

Observation:
D[x + 1][y + 1] € {D[x]ly], D[x][y] + 1}.

Algorithm: For i = 0...., k, compute the
furthest i-valued cell on each diagonal.
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0
DP table: 1
Dix]ly] = ED(X[0..x), Y[0..y)). o

Observation:
D[x + 1][y + 1] € {D[x]ly], D[x][y] + 1}.

Algorithm: For i = 0...., k, compute the
furthest i-valued cell on each diagonal.
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x]ly] = ED(X[0..x),Y][0..y)). 1
Observation:

D[x + 1][y + 1] € {D[x]ly], D[x][y] + 1}.
Algorithm: For i = 0...., k, compute the
furthest i-valued cell on each diagonal.

El ldentify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.

opMpp o o opppPpo poO o




Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x]ly] = ED(X[0..x),Y[0..y)). 1[4
Observation:

D[x + 1]y + 1] € {D[x][y], D[x][y] + 1}. 5
Algorithm: For i = 0,..., k, compute the 5 g 2

furthest i-valued cell on each diagonal.

Identify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x]ly] = ED(X[0..x),Y][0..y)). 1[4
Observation:

Dix +1]ly + 1] € {D[x][y], Dix]ly] + 1}.
Algorithm: For i = 0,..., k, compute the
furthest i-valued cell on each diagonal.

Identify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.

opp o ocopppPpoOo oo




Algorithm of Landau & Vishkin 1998

abbababbaabbbaab

Test ED(X,Y) < k in O(n+ k?) time. 0

DP table:

D[x][ly] = ED(X[0..x),Y[0..y)). 11
Observation:

Dix +1]ly + 1] € {D[x]ly], Dx]ly] +1}.
Algorithm: For i =0, ..., k, compute the
furthest i-valued cell on each diagonal.

Identify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x]ly] = ED(X[0..x),Y][0..y)). 1S
Observation:

Dix +1]ly + 1] € {D[x][y], Dix]ly] + 1}.
Algorithm: For i = 0,..., k, compute the
furthest i-valued cell on each diagonal.

Identify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x]ly] = ED(X[0..x),Y][0..y)). 1L
Observation:

Dix +1]ly + 1] € {D[x][y], Dix]ly] + 1}.
Algorithm: For i = 0,..., k, compute the
furthest i-valued cell on each diagonal.

El ldentify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.

Longest Common Extension queries:
O(1) time after O(n)-time preprocessing.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaab

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaab

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Algorithm of Goldenberg,
FOCS 2019

Main idea:
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Krauthgamer & Saha,
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.

Guarantees:
ED(X,Y) < k= YES
YES = ED(X,Y) = O(kz)
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.

Guarantees:
ED(X.,Y) < k= YES
YES = ED(X,Y) = O(kz)

Naive implementation: (5(n + k?) time.
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Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.

Guarantees:
ED(X.,Y) < k= YES
YES = ED(X,Y) = O(kz)

Naive implementation: (5(n + k?) time.

May need to look at nk cells in the DP table.

opMpp o o opppPpo poO o

Sample at a rate of 1/k ~ O(n)




Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

abbababbaabbbaahb

Main idea: 0
Use the Landau—Vishkin algorithm, allow
< k missed mismatches per LCE query.

Guarantees:
ED(X,Y) < k= YES
YES = ED(X,Y) = O(kz)

Naive implementation: 5(n + k?) time.

GKS19: O(f + k*) time.
= 5(;) global sampling cost.

o 5(k) extra time for each position x
with an LCE_,(x,y) query asked.
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Algorithm of Kociumaka & Saha,
FOCS’20

Main idea: abbababbaabbbaahb

m Reduce the number of positions x
with LCE 4 (x,y) queries asked.

m For each value i, align all LCE-
queries with the furthest one.

m Cost: O(k) edits per query.

o [ ot
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Algorithm of KS’20

Main idea: abbababbaabbbaahb

m Reduce the number of positions x
with LCE_ 4 (x,y) queries asked.

m For each value i, align all LCE«
queries with the furthest one.

m Cost: O(k) edits per query.
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Algorithm of KS’20

abbababbaabbbaahb

Main idea:

m Reduce the number of positions x
with LCE_ 4 (x,y) queries asked.

m For each value i/, align all LCE
queries with the furthest one.

m Cost: O(k) edits per query.

= [
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Algorithm of KS’20

Main idea: abbababbaabbbaahb

m Reduce the number of positions x
with LCE_ 4 (x, y) queries asked.

m For each value i/, align all LCE«
queries with the furthest one.

m Cost: O(k) edits per query.
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Algorithm of KS’20

Main idea: abbababbaabbbaahb

m Reduce the number of positions x
with LCE_(x,y) queries asked.

m For each value i, align all LCE
queries with the furthest one.

m Cost: O(k) edits per query.

e
/

Guarantees:
ED(X,Y) < k= YES
YES = ED(X,Y) = O(k?)
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Algorithm of KS’20

abbababbaabbbaahb

0
a
?H b
a
b
a A
...... b
a
_ a
a
a a a
b
b N
b
a
a
b

The pattern is periodic.

Instead of checking for each diagonal separately, check for periodicity.




Algorithm of KS’20

abbababbaabbbaahb
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Interestingly, where periodicity breaks, there can be only one possible
diagonal to proceed.

Check only that diagonal by sampling.




How Periodicity Helps!
= Suppose X is periodic with period p: Xi=Xi:p

= The possible matching shifts are p-far apart.

x=001 001 001 001 001 001

|

Yy =2727270070097727222707°7°77°

= y is periodic too.




How Periodicity Helps!

= Suppose x is periodic with period p: X=X,

= The possible matching shifts are p-far apart.

x=001 001 001 001 001 001

|

y = 22772777072 7?777°7

= y is periodic too.

= Observation if p=0(1), then there are ~k shifts to verify




How Periodicity Helps!

= |f y does not match the
period pattern, it affects
the entire set of possible
matching shifts except

possibly for one.
x =001001001001001001001

y =100100100110100100100
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= |f y does not match the
period pattern, it affects
the entire set of possible

matching shifts except
possibly for one. x =001001001001001001001
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How Periodicity Helps!

= |f y does not match the
period pattern, it affects
the entire set of possible
matching shifts except
possibly for one. x =001001001001001001001

y =100100100110100100100




How Periodicity Helps!

= Key lemma

multiple possible shifts, we can
emulate the comparisons of x; and
Yis+s DY checking that x, y are still
periodic with the same pattern:
check x=x;, and y;=y;,,

x = 061001001001001001

- Observation Periodicity can be y = 1601001601101001001

checked via uniform sampling

()



Algorithm of KS’20

Main idea: abbababbaabbbaahb

m Reduce the number of positions x
with LCE_ 4 (x, y) queries asked.

m For each value i, align all LCE
queries with the furthest one.

m Cost: O(k) edits per query.

Guarantees:
ED(X,Y) < k = YES
YES = ED(X,Y) = O(k?)

Running time: @(f + k2).
Adjust the ideas from GKS19 to process a
length-L block in O(£+k) time.
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k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = 9(%)
m Use LCE_, queries.

m Align within groups of a diagonals.

oppoocoppppo popop




k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = O(X).
m Use LCE_, queries.

m Align within groups of a diagonals.
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k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = 9(%)
m Use LCE_, queries.

m Align within groups of « diagonals.
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k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = 9(%)
m Use LCE_, queries.

m Align within groups of a diagonals.
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k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = O(X).
m Use LCE_, queries.

—

m Align within groups of a diagonals.
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k vs k’ Gap Edit Distance, KS’20

Main idea: abbababbaabbbaab
m Set o = 6(%)
m Use LCE_, queries.

m Align within groups of a diagonals.

ot ot | =t

Guarantees:
ED(X,Y) < k= YES
YES = ED(X,Y) = O(ka)

Simple implementation: (5(%"3) time.

With some more tricks © (g + k2 + @)

«
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Is rough computation good
enough?

= Favorite applications: Bioinformatics
= But DNAis really long!!

= Many pairs of DNA sequences may need to be compared- if we
know pair-wise distance is small, we want to compute it exactly in
sublinear time.




Sublinear Time Edit Distance with
Preprocessing [GRS’20]

- We have to pay linear time to sequence a DNA

N I
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Edit Distance with Preprocessing

Preprocessing:
Preprocess each string separately

i, N
Alice the Ocelot

Bob the Bobcat

Query:
Given two strings and preprocess output, compute edit

distance
A, f(A),B,g(B) » ED(A,B)




Can Preprocessing Help?

= NO, in the worst case!

= Assuming SETH, no subquadratic exact algorithm for edit
distance with polynomial preprocessing time

= YES, in reality!
= Preprocessing O(n log n)
= Query time O(k?): returns exact answer!!




Algorithm of Landau & Vishkin 1998

Test ED(X,Y) < k in O(n + k?) time.
DP table:
D[x]ly] = ED(X[0..x),Y][0..y)).

Observation:

D[x +1]ly + 1] € {D[x][y], D[x][y] +1}.
Algorithm: For i = 0...., k, compute the
furthest i-valued cell on each diagonal.

El ldentify the furthest cell with
an (i — 1)-valued neighbor.

Proceed forward using an LCE query.

Preprocessing is done using suffix
tree by appending string y to x: x$y

LCE Query: (i,j): find max d
X[i,...,i+d]=y[j,...,j+d]

Query time: O(1)

opMpp o o opppPpo poO o
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Algorithm of Landau & Vishkin 1998

abbababbaabbbaahb

Test ED(X,Y) < k in O(n + k?) time. 0

DP table:

D[x][y] = ED(X[0..x), Y[0..y)).

Observation:

D[x +1][y + 1] € {D|x][y], D[x][y] + 1}.

Algorithm: For i = 0...., k, compute the

furthest i-valued cell on each diagonal.

El ldentify the furthest cell with

an (i — 1)-valued neighbor.

Proceed forward using an LCE query.

Preprocess each string separately using

opMpp o o opppPpo poO o

rolling hash of windows of size 2! for

1=1,2,...,log n
LCE Query: (i,j): find max d x][i,...,i+d]=y[j,...,j+d]

Query time: O(log n)




Open Questions & Progress

= Edit Distance Computation
= Sublinear Time: Lower bound & better adaptive algorithms [Further progress has happened]

= Dynamic Algorithm: Improving over trivial bounds

= E.g., kvs kZ in ©(k) update time is possible. Can we do better? [See our upcoming paper in FOCS’23]
= Near-neighbor search
. Approximation Algorithms: Subquadratic approximation scheme

. )é)ol_\r)]g%Véjzrst Case [Further progress has happened for multi strings, see our paper in

= Generalizations & Other Sequence Similarity Measures
= Longest Increasing Subsequence

= Longest Common Subsequence
= Model to Data distance: Language Edit Distance
= Exploit Lipschitz property

= Graph Distances
= Tree Edit Distance

= Computing over Compressed Data
= Lossless vs Lossy [See our paper in SODA22]




