
Barna Saha
University of California San Diego

Joint Work with
Elazar Goldenberg
Tomasz Kociumaka
Robert Krauthgamer
Aviad Rubinstein

Why Sublinear Time?
§ Data is massive

§ Time consuming to access the entire data.
§ Other computational constraints: E.g., space
§ Linear time algorithms are no longer the gold

standard

§ Data is complex
§ Access restriction
§ Policy Constraints, Privacy

§ Only can get a snapshot of data to make
inference!

Only an Approximate View
§ Difficult to get exact answer if

not impossible when full data
is not accessed.

§ Often needs randomization
as well.

§ May need adaptive rounds
§ Query complexity vs Running

Time

Is there
a water
leak?

Sublinear Time Algorithms
§ Property Testing: Does your data belong to a hypothesis class or very

far away from it?
§ E.g., “Given a Graph G on n vertices, decide if G is bipartite, or G

cannot be made bipartite even after removing an arbitrary subset of at
most 𝜖 !

" edges.”
§ Very rich history starting from late nineties

§ Tolerant Testing: Approximate distance of a target function to a
hypothesis class.
§ E.g., “Given a Graph G on n vertices, decide if the number of triangles

in G is at most T or above cT where c is the approximation factor.”
§ Provide trade-offs with approximation factor and query complexity

§ Streaming/Sketching: Handle data streams. Sublinear space often
leads to sublinear time complexity

§ Dynamic Algorithms: Keeps solution updated all the time. Sublinear
update time is a must.

Edit Distance
§ EDIT(X,Y): Minimum number of character insertions,

deletions or substitutions to convert X to Y.

§ Fundamental measure of sequence similarity

§ More versatile than Hamming Distance (only
substitutions

§ Lot of applications: e.g., in Bioinformatics and
Natural Language Processing.

X : a b b a b a b b a a b a b a b a

Y : a b a b a b a a a a a b a b a b

X : a b b a b a b b a a b a b a b a

Y : a b a b a b a a a a a b a b a b

Edit = 4

X : a b b a b a b b a a b a b a b a

Y : a b a b a b a a a a a b a b a b

Hamming Dist = 12

Computing Edit Distance

§ Truly subquadratic complexity will violate the Strong Exponential Time
Hypothesis (SETH)

§ One of the important results in Fine-grained Complexity

§ Long line of work on approximation algorithms
§ Typical holy grail: near-linear time algorithm

1
1

0/1

X0
Y0

Xx

Yy

Sometime the holy grail is not fast
enough!

§ Favorite applications: Bioinformatics
§ But DNA is really long!!

§ Even before starting a detailed comparison, it may be useful to
know if two DNA sequences are roughly similar very fast-
sublinear time.

§ Many pairs of DNA sequences may need to be compared- if we
know pair-wise distance is small, we want to compute it exactly in
sublinear time.

Sublinear Time Edit Distance
Approximation

NO if > k'

Don't
Care > k

& < k'

YES if <=k

Gap Edit
Distance

§ Model:
§ O(1)-time random access to X and Y
§ Monte-Carlo randomization

§ Sublinear time exact algorithm: Impossible
§ Testing X=Y requires Ω 𝑛 time!

Hamming vs Edit: Sublinear Time

§ Hamming Distance
§ Distinguish k vs ck for some constant c

§ Uniform random sample at a rate of Θ(!"# $
%

)

§ Edit Distance
§ Uniform random sampling cannot distinguish 2 edits from n edits

§ Case 1: Many Edits
§ X: a b c d e f g ..
§ Y: h i j k l m o ..
§ EDIT = n

§ Case 2: Few Edits
§ X: a b c d e f g ..
§ Y: h a b c d e f ..
§ EDIT = 2

Gap Edit Distance [2003-2020]

Kociumaka, Saha (FOCS 2020)

Gap Edit Distance: k vs k2

Gap Edit Distance: k vs k2

Gap Edit Distance: k vs k2

Gap Edit Distance: k vs k2

Gap Edit Distance: k vs k2

Gap Edit Distance: k vs k2

KS20

KS20

Gap Edit Distance: k vs k1.5

KS20

KS
20

Gap Edit Distance [2021-2022]

§ Can we remove the polynomial dependency on k?
§ Goldenberg, Kociumaka, Krauthgamer, Saha, FOCS’22

§ k vs kc :$	𝒪(⁄	! $!"#.%)
§ Optimal for nonadaptive algorithms `

§ Can we match the Hamming distance bound of !
	#$

 for k vs kc?
§ Bringmann, Cassis, Fischer, Nakos, STOC’22

§ k vs kc: 	 $	𝒪(⁄	$ %! + n0.8+ k4)
§ Achieves Hamming distance bound for k ≤ n0.1 for k vs k2

§ Can solve subpolynomial gap problem in sublinear regime for sufficiently
small k

Gap Edit Distance: k vs k2

GAP EDIT DISTANCE: K VS K2
IN!	𝑶 𝒏

𝒌
+ 𝒌𝟐 TIME

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Landau & Vishkin 1998

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

May need to look at nk cells in the DP table.

Sample at a rate of 1/k ~ O(n)

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Goldenberg, Krauthgamer & Saha,
FOCS 2019

Algorithm of Kociumaka & Saha,
FOCS’20

Algorithm of KS’20

Algorithm of KS’20

Algorithm of KS’20

Algorithm of KS’20

a

……

a a

The pattern is periodic.

Instead of checking for each diagonal separately, check for periodicity.

Algorithm of KS’20

a

……

a a

Interestingly, where periodicity breaks, there can be only one possible
diagonal to proceed.

Check only that diagonal by sampling.

Algorithm of KS’20

How Periodicity Helps!
§ Suppose x is periodic with period p: xi=xi+p

§ The possible matching shifts are p-far apart.

§ y is periodic too.

𝑦 =? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

x=001 001 001 001 001 001

How Periodicity Helps!
§ Suppose x is periodic with period p: xi=xi+p

§ The possible matching shifts are p-far apart.

§ y is periodic too.
§ Observation if p=O(1), then there are ~k shifts to verify

𝑦 =? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

x=001 001 001 001 001 001

How Periodicity Helps!
§ If 𝑦 does not match the

period pattern, it affects
the entire set of possible
matching shifts except
possibly for one.

𝑥 = 001001001001001001001

𝑦 = 100100100110100100100

How Periodicity Helps!
§ If 𝑦 does not match the

period pattern, it affects
the entire set of possible
matching shifts except
possibly for one. 𝑥 = 001001001001001001001

𝑦 = 100100100110100100100

How Periodicity Helps!
§ If 𝑦 does not match the

period pattern, it affects
the entire set of possible
matching shifts except
possibly for one. 𝑥 = 001001001001001001001

𝑦 = 100100100110100100100

How Periodicity Helps!
§ If 𝑦 does not match the

period pattern, it affects
the entire set of possible
matching shifts except
possibly for one. 𝑥 = 001001001001001001001

𝑦 = 100100100110100100100

How Periodicity Helps!
§ Key lemma: When there are

multiple possible shifts, we can
emulate the comparisons of xi and
yi+s by checking that x, y are still
periodic with the same pattern:
check xi=xi-p and yi=yi-p

§ Observation: Periodicity can be
checked via uniform sampling

𝑥 = 001001001001001001

𝑦 = 1001001001101001001

Algorithm of KS’20

k vs k’ Gap Edit Distance, KS’20

k vs k’ Gap Edit Distance, KS’20

k vs k’ Gap Edit Distance, KS’20

k vs k’ Gap Edit Distance, KS’20

k vs k’ Gap Edit Distance, KS’20

k vs k’ Gap Edit Distance, KS’20

With some more tricks

Is rough computation good
enough?

§ Favorite applications: Bioinformatics
§ But DNA is really long!!

§ Many pairs of DNA sequences may need to be compared- if we
know pair-wise distance is small, we want to compute it exactly in
sublinear time.

Sublinear Time Edit Distance with
Preprocessing [GRS’20]

§ We have to pay linear time to sequence a DNA
anyway!

Edit Distance with Preprocessing

Preprocessing:
Preprocess each string separately

Query:
Given two strings and preprocess output, compute edit
distance

Alice the Ocelot
Bob the Bobcat

𝐴 → 𝑓(𝐴) 𝐵 → 𝑔(𝐵)

𝐴, 𝑓 𝐴 , 𝐵, 𝑔 𝐵 → 𝐸𝐷(𝐴, 𝐵)

Can Preprocessing Help?

§ NO, in the worst case!
§ Assuming SETH, no subquadratic exact algorithm for edit

distance with polynomial preprocessing time

§ YES, in reality!
§ Preprocessing O(n log n)
§ Query time O(k2): returns exact answer!!

Preprocessing is done using suffix
tree by appending string y to x: x$y

LCE Query: (i,j): find max d
x[i,…,i+d]=y[j,…,j+d]

Query time: O(1)

Algorithm of Landau & Vishkin 1998

Preprocess each string separately using
rolling hash of windows of size 2l for
 l=1,2,…,log n

LCE Query: (i,j): find max d x[i,…,i+d]=y[j,…,j+d]

Query time: O(log n)

Algorithm of Landau & Vishkin 1998

Open Questions & Progress
§ Edit Distance Computation

§ Sublinear Time: Lower bound & better adaptive algorithms [Further progress has happened]
§ Dynamic Algorithm: Improving over trivial bounds

§ E.g., k vs k2 in Θ 𝑘 update time is possible. Can we do better? [See our upcoming paper in FOCS’23]
§ Near-neighbor search
§ Approximation Algorithms: Subquadratic approximation scheme
§ Beyond Worst Case [Further progress has happened for multi strings, see our paper in

APPROX’22]

§ Generalizations & Other Sequence Similarity Measures
§ Longest Increasing Subsequence
§ Longest Common Subsequence
§ Model to Data distance: Language Edit Distance
§ Exploit Lipschitz property

§ Graph Distances
§ Tree Edit Distance

§ Computing over Compressed Data
§ Lossless vs Lossy [See our paper in SODA’22]

