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Why Sublinear Time?
§ Data is massive

§ Time consuming to access the entire data.
§ Other computational constraints: E.g., space
§ Linear time algorithms are no longer the gold 

standard 

§ Data is complex
§ Access restriction 
§ Policy Constraints, Privacy

§ Only can get a snapshot of data to make 
inference!



Only an Approximate View 
§ Difficult to get exact answer if 

not impossible when full data 
is not accessed.

§ Often needs randomization 
as well.

§ May need adaptive rounds
§ Query complexity vs Running 

Time

Is there 
a water 
leak?



Sublinear Time Algorithms
§ Property Testing: Does your data belong to a hypothesis class or very 

far away from it?
§ E.g., “Given a Graph G on n vertices, decide if G is bipartite, or G 

cannot be made bipartite even after removing an arbitrary subset of at 
most 𝜖 !

"  edges.”
§ Very rich history starting from late nineties

§ Tolerant Testing: Approximate distance of a target function to a 
hypothesis class.
§ E.g., “Given a Graph G on n vertices, decide if the number of triangles 

in G is at most T or above cT where c is the approximation factor.”
§ Provide trade-offs with approximation factor and query complexity

§ Streaming/Sketching: Handle data streams. Sublinear space often 
leads to sublinear time complexity

§ Dynamic Algorithms: Keeps solution updated all the time. Sublinear 
update time is a must.



Edit Distance
§ EDIT(X,Y): Minimum number of character insertions, 

deletions or substitutions to convert X to Y.

§ Fundamental measure of sequence similarity

§ More versatile than Hamming Distance (only 
substitutions

§ Lot of applications: e.g., in Bioinformatics and 
Natural Language Processing.

 

X :  a  b  b  a  b  a  b  b  a  a  b  a  b  a  b  a

Y :  a  b  a  b  a  b  a  a  a  a  a  b  a  b  a  b

X :  a  b  b  a  b  a  b  b  a  a  b  a  b  a  b  a

Y :  a  b       a  b  a  b  a  a  a  a  a  b  a  b  a  b

Edit = 4

X :  a  b  b  a  b  a  b  b  a  a  b  a  b  a  b  a

Y :  a  b  a  b  a  b  a  a  a  a  a  b  a  b   a  b

Hamming Dist = 12



Computing Edit Distance

§ Truly subquadratic complexity will violate the Strong Exponential Time 
Hypothesis (SETH)

§ One of the important results in Fine-grained Complexity

§ Long line of work on approximation algorithms
§ Typical holy grail: near-linear time algorithm
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Sometime the holy grail is not fast 
enough!

§ Favorite applications: Bioinformatics
§ But DNA is really long!!

§ Even before starting a detailed comparison, it may be useful to 
know if two DNA sequences are roughly similar very fast- 
sublinear time.

§ Many pairs of DNA sequences may need to be compared- if we 
know pair-wise distance is small, we want to compute it exactly in 
sublinear time.



Sublinear Time Edit Distance 
Approximation

NO if > k'

Don't 
Care  > k 

& < k'

YES if <=k 

Gap Edit 
Distance

§ Model: 
§ O(1)-time random access to X and Y
§ Monte-Carlo randomization

§ Sublinear time exact algorithm: Impossible
§ Testing X=Y requires Ω 𝑛  time!



Hamming vs Edit: Sublinear Time

§ Hamming Distance
§ Distinguish k vs ck for some constant c

§ Uniform random sample at a rate of  Θ(!"# $
%

)

§ Edit Distance
§ Uniform random sampling cannot distinguish 2 edits from n edits

§ Case 1: Many Edits
§ X: a b c d e f  g ..
§ Y: h i  j  k l m o ..
§ EDIT = n

§ Case 2: Few Edits
§ X: a b c d e f g ..
§ Y: h a b c d e f .. 
§ EDIT = 2



Gap Edit Distance [2003-2020]

Kociumaka, Saha (FOCS 2020)
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Gap Edit Distance: k vs k2

KS20

KS20



Gap Edit Distance: k vs k1.5

KS20

KS
20



Gap Edit Distance [2021-2022]

§ Can we remove the polynomial dependency on k?
§ Goldenberg, Kociumaka, Krauthgamer, Saha, FOCS’22

§ k vs kc :$	𝒪( ⁄	! $!"#.% ) 
§ Optimal for nonadaptive algorithms  `

§ Can we match the Hamming distance bound of  !
	#$

 for k vs kc?
§ Bringmann, Cassis, Fischer, Nakos, STOC’22

§ k vs kc: 	 $	𝒪( ⁄	$ %! + n0.8+ k4)
§ Achieves Hamming distance bound for k ≤ n0.1 for k vs k2

§ Can solve subpolynomial gap problem in sublinear regime for sufficiently 
small k



Gap Edit Distance: k vs k2



GAP EDIT DISTANCE: K VS K2 
IN!	𝑶 𝒏

𝒌
+ 𝒌𝟐  TIME
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Algorithm of Goldenberg, Krauthgamer & Saha, 
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Algorithm of Goldenberg, Krauthgamer & Saha, 
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May need to look at nk cells in the DP table.

Sample at a rate of 1/k ~ O(n)

Algorithm of Goldenberg, Krauthgamer & Saha, 
FOCS 2019



Algorithm of Goldenberg, Krauthgamer & Saha, 
FOCS 2019



Algorithm of Kociumaka & Saha, 
FOCS’20
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a

……

a a

The pattern is periodic.

Instead of checking for each diagonal separately, check for periodicity.

Algorithm of KS’20



a 

……

a a

Interestingly, where periodicity breaks, there can be only one possible 
diagonal to proceed. 

Check only that diagonal by sampling.

Algorithm of KS’20



How Periodicity Helps!
§ Suppose x is periodic with period p: xi=xi+p

§ The possible matching shifts are p-far apart.

§ y is periodic too.

𝑦 =? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

x=001  001 001  001 001 001



How Periodicity Helps!
§ Suppose x is periodic with period p: xi=xi+p

§ The possible matching shifts are p-far apart.

§ y is periodic too. 
§ Observation if p=O(1), then there are ~k shifts to verify

𝑦 =? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

x=001  001 001  001 001 001



How Periodicity Helps!
§ If 𝑦 does not match the 

period pattern, it affects
the entire set of possible 
matching shifts except 
possibly for one.

𝑥 = 001001001001001001001

𝑦 = 100100100110100100100
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How Periodicity Helps!
§ If 𝑦 does not match the 

period pattern, it affects
the entire set of possible 
matching shifts except 
possibly for one. 𝑥 = 001001001001001001001
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How Periodicity Helps!
§ Key lemma: When there are 

multiple possible shifts, we can 
emulate the comparisons of xi and 
yi+s by checking that x, y are still 
periodic with the same pattern: 
check xi=xi-p and yi=yi-p

§ Observation: Periodicity can be 
checked via uniform sampling

𝑥 = 001001001001001001

𝑦 = 1001001001101001001



Algorithm of KS’20
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k vs k’ Gap Edit Distance, KS’20



k vs k’ Gap Edit Distance, KS’20

With some more tricks



Is rough computation good 
enough?

§ Favorite applications: Bioinformatics
§ But DNA is really long!!

§ Many pairs of DNA sequences may need to be compared- if we 
know pair-wise distance is small, we want to compute it exactly in 
sublinear time.



Sublinear Time Edit Distance with 
Preprocessing [GRS’20]

§ We have to pay linear time to sequence a DNA 
anyway!



Edit Distance with Preprocessing

Preprocessing:
Preprocess each string separately

Query:
Given two strings and preprocess output, compute edit 
distance

Alice the Ocelot
Bob the Bobcat

𝐴 → 𝑓(𝐴) 𝐵 → 𝑔(𝐵)

𝐴, 𝑓 𝐴 , 𝐵, 𝑔 𝐵 → 𝐸𝐷(𝐴, 𝐵)



Can Preprocessing Help?

§ NO, in the worst case!
§ Assuming SETH, no subquadratic exact algorithm for edit 

distance with polynomial preprocessing time

§ YES, in reality!
§ Preprocessing O(n log n) 
§ Query time O(k2): returns exact answer!!



Preprocessing is done using suffix 
tree by appending string y to x: x$y

LCE Query: (i,j): find max d 
x[i,…,i+d]=y[j,…,j+d]

Query time: O(1)

Algorithm of Landau & Vishkin 1998



Preprocess each string separately using 
rolling hash of windows of size 2l for
 l=1,2,…,log n

LCE Query: (i,j): find max d x[i,…,i+d]=y[j,…,j+d]

Query time: O(log n)

Algorithm of Landau & Vishkin 1998



Open Questions & Progress
§ Edit Distance Computation

§ Sublinear Time: Lower bound & better adaptive algorithms [Further progress has happened]
§ Dynamic Algorithm: Improving over trivial bounds 

§ E.g., k vs k2  in Θ 𝑘  update time is possible. Can we do better? [See our upcoming paper in FOCS’23]
§ Near-neighbor search
§ Approximation Algorithms: Subquadratic approximation scheme
§ Beyond Worst Case [Further progress has happened for multi strings, see our paper in 

APPROX’22]

§ Generalizations & Other Sequence Similarity Measures
§ Longest Increasing Subsequence
§ Longest Common Subsequence
§ Model to Data distance: Language Edit Distance
§ Exploit Lipschitz property

§ Graph Distances
§ Tree Edit Distance

§ Computing over Compressed Data
§ Lossless vs Lossy [See our paper in SODA’22]


