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Classified Matchings under one sided preferences
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Classified Matchings under one sided preferences

Why classifications?

Some natural constraints that can be modelled:

Allotting courses to students

Course - may not want many students from the same Dept.

Allotting tasks to employees

Task - wasteful to have many employees with the same skills.
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Classified Matchings under one sided preferences

Laminar classification Huang (2010); 2-sided pref.

Laminar classification ⇐⇒ any pair of classes is non-intersecting

OR

Example: Countries , States , Districts , Cities

Special case: Partition
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Classified Matchings under one sided preferences

Problem setup

Input:

A set of applicants A

A set of posts P
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Goal: Compute a maximum cardinality matching.
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Classified Matchings under one sided preferences

Maximum matchings under laminar classifications

⇓

Maximum flow in a flow network
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Classified Matchings under one sided preferences

Classification tree - property of laminar classification
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Classified Matchings under one sided preferences

Feasible matchings to feasible flows
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Classified Matchings under one sided preferences

Feasible matchings to feasible flows
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Classified Matchings under one sided preferences

Back to our problem

Input:
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Goal: Match applicants to posts optimally.
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Popularity: majority does not want to deviate.
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Goal: Match applicants to posts optimally.

Rank-maximality: max. number to rank-1, subject to this max. number to
rank-2, ...
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Classified Matchings under one sided preferences

Popularity in the one-to-one setting
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Classified Matchings under one sided preferences

Popularity: definition Gärdenfors (1975), Abraham et al.(2005)

Compare matchings M and M ′ using applicant votes.
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Classified Matchings under one sided preferences

Popular matchings: characterization Abraham et al. (2005)

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

M is a maximum matching on the rank-1 edges.

Every a ∈ A is matched to either its f (a) or s(a)

f (a) - set of all rank-1 posts of a.
s(a) - next most preferred posts of a.

If such a matching does not exist, no popular matching exists.
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Classified Matchings under one sided preferences

Computing popular matchings Abraham et al. (2005); Manlove and Sng (2006)

Overall idea: Reduction to two maximum matching computations.

1 Construct G1: every a adds (a, f (a)) edges.
G1 is graph on rank-1 edges.

2 Compute a maximum matching M1 in G1.

3 Delete “unnecessary” rank-1 edges.

4 Some applicants add (a, s(a)) edges.

5 Augment M1 to compute a maximum matching M.

6 If M matches all applicants, declare popular,
else no popular matching.

Steps 3 & 4: Dulmage Mendelsohn Decomposition
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Classified Matchings under one sided preferences

Dulmage Mendelsohn decomposition DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.

a1

a2

a3

a4

p1

p2

p3

p4

M is a maximum matching

E : reachable from unmatched vertex via even length alt. path.

O : reachable from unmatched vertex via odd length alt. path.
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Classified Matchings under one sided preferences

Dulmage Mendelsohn decomposition DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.

(E)a1

(O)a2

(E)a3

(U)a4

p1(O)

p2(E)

p3(E)

p4(U)

E , O and U invariant of M

For any maximum matching:

Every O and U vertex is matched.

No OO,OU edges are matched.
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Classified Matchings under one sided preferences

Computing popular matchings Abraham et al. (2005); Manlove and Sng (2006)

Overall idea: Reduction to two maximum matching computations.

1 Construct G1: every a adds (a, f (a)) edges.
G1 is graph on rank-1 edges.

2 Compute a maximum matching M1 in G1.

3 Delete “unnecessary” rank-1 edges.

4 Even applicants add (a, s(a)) edges.

5 Augment M1 to compute a maximum matching M.

6 If M matches all applicants, declare popular,
else no popular matching.
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Classified Matchings under one sided preferences

Is deletion necessary?
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Classified Matchings under one sided preferences
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Classified Matchings under one sided preferences

Back to our problem

Input:

A set of applicants A.

A set of posts P.

Applicants have preferences over a
subset in P.

Posts have quotas.

Posts have laminar classes.
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Goal: Compute a popular matching of applicants to posts (if one exists).
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Classified Matchings under one sided preferences

Laminar classified popular matchings
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Classified Matchings under one sided preferences

Classified matchings: challenges

a1

a3

a2

p1 (2)

p2(2)

1

1

M

Deal with capacitated matchings.

Manlove and Sng use cloning.
Paluch defined good paths.

Both techniques do not work for
classifications.

Maximum matching M not
feasible.

Use max-flow and min-cut properties!
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Classified Matchings under one sided preferences

Properties of max-flow

Let H be any flow network and f be a max-flow in H.

S = {v | is reachable from s in Hf }
T = {v | v can reach t in Hf }
U = {v | v /∈ T ∪ S}

(S ,T ∪ U) is a min-s-t-cut in H

Known Facts:

Forward edges (S ,T ∪ U) : saturated in every max-flow.

Reverse edges (T ∪ U, S) : zero flow in every max-flow.
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Classified Matchings under one sided preferences

Properties of max-flow

s c d e t
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T = {v | v can reach t in Hf }
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Classified Matchings under one sided preferences

Properties of max-flow

The sets S , T and U are invariant of the max-flow f .

(i) x ∈ Sf ⇐⇒ x ∈ Sf ′

Proof: x ∈ Sf and x ∈ Tf ′ ∪ Uf ′

x be the nearest such node from s in Hf .

s y x

Sf Tf ∪ Uf

Hf

s y x

Sf ′ Tf ′ ∪ Uf ′

Hf ′
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Classified Matchings under one sided preferences

Properties of max-flow

The sets S , T and U are invariant of the max-flow f .
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Classified Matchings under one sided preferences

Classified popular matchings: characterization

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

M is a maximum feasible matching on the rank-1 edges.

Every a ∈ A is matched to either its f (a) or s(a).

f (a) - set of all rank-1 posts of a.
s(a) - defined using flow network on rank-1 edges.

If such a matching does not exist, no popular matching exists.
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Classified Matchings under one sided preferences

Computing classified popular matchings

Overall idea: Reduction to two maximum flow computations.

1 Construct H1: every a adds (a, f (a)) edges.

2 Compute a maximum flow f1 in H1.

3 Delete (T ∪ U,S) edges in H1(f1).
Ensures that augmentation preserves max. card. on rank-1.

4 For every a ∈ S , add (a, s(a)) edge.
s(a) is the most preferred post p ∈ T in H1(f1).

5 Augment f1 to obtain f2. Let M be matching corr. to f2.

6 If M matches all applicants, declare popular,
else no popular matching.

An O(|A| · |E |) time algorithm.
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Classified Matchings under one sided preferences

Classified popular matchings – correctness

A matching M is popular if and only if:

M is a maximum feasible matching on the rank-1 edges.

Every a ∈ A is matched to either its f (a) or s(a).

If such a matching does not exist, no popular matching exists.

Proof technique:

1 Two promotions at the cost of one demotion.

2 Cut edges were deleted =⇒ augmentation preserves rank-1 edges.
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Classified Matchings under one sided preferences

To summarize ..

A flow based framework for popular matchings with classifications.

Same framework applies for rank-maximal matchings.
Classifications are allowed on both sides.

Key step: Use max-flow, min-cut properties to identify “unnecessary”
edges.

Laminarity is needed, else problem is NP-Hard.

Extensions:

Popular matchings in the many to many settings.

Lower quotas for classes.

Thank you!
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