Parameterized Distributed Algorithms*

R. Krithika

Indian Institute of Technology Palakkad

Recent Trends in Algorithms

National Institute of Science Education and Research

Based on the manuscript titled Parameterized Distributed Algorithms by Ran Ben-Basat, Ken-ichi Kawarabayashi, Gregory Schwartzman [arXiv:1807.04900]

Parameterized Algorithms

- * Multidimensional analysis of the running time
 - Effect of secondary measurements on complexity
 - NP-hard problem: Exponential factor in running time is restricted to a parameter instead of input size

<u>Instance:</u> A graph G on n vertices and integer k <u>Question:</u> Does G have a solution of size k?

<u>Parameter:</u> k

Design f(k) poly(n) algorithm $2^{O(k^2)}$ poly(n) $2^{O(k \log k)}$ poly(n) fixed-parameter tractable (FPT) or parameterized algorithm

Parameterized Algorithms

- * Multidimensional analysis of the running time
 - Effect of secondary measurements on complexity
 - NP-hard problem: Exponential factor in running time is restricted to a parameter instead of input size

Instance: A graph G on n vertices and integer k Question: Does G have a solution of size k?

<u>Parameter:</u> k

Design f(k) poly(n) algorithm $2^{O(k^2)}$ poly(n) $2^{O(k \log k)}$ poly(n) fixed-parameter tractable (FPT) or parameterized algorithm

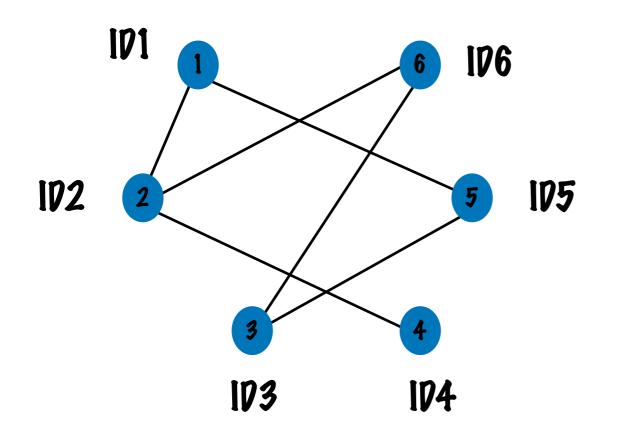
Model of Computation: Single Processor

* A network (graph) of n processors (nodes) perform computation

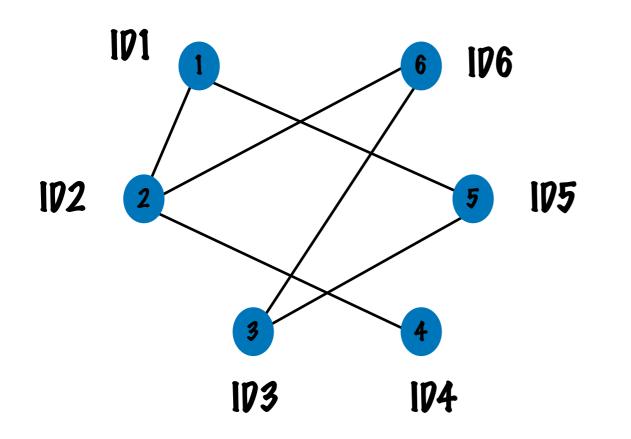
- * A network (graph) of n processors (nodes) perform computation
 - * Each node has an identifier (O(log n) bits) and local information (neighbours)

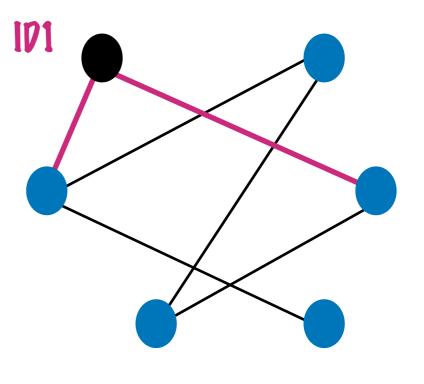
- * A network (graph) of n processors (nodes) perform computation
 - * Each node has an identifier (O(log n) bits) and local information (neighbours)
 - Each node knows about its incident edges and may not know anything about the ids of its neighbours

- * A network (graph) of n processors (nodes) perform computation
 - * Each node has an identifier (O(log n) bits) and local information (neighbours)
 - * Each node knows about its incident edges and may not know anything about the ids of its neighbours



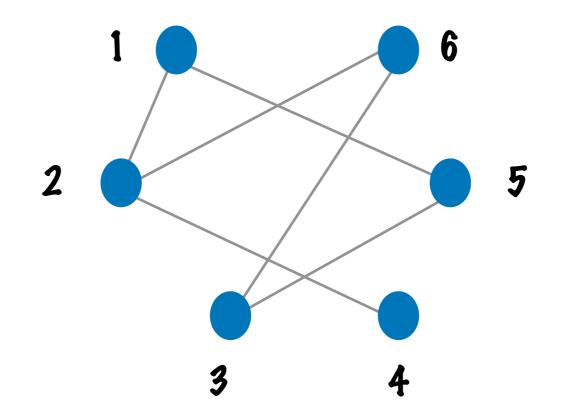
- * A network (graph) of n processors (nodes) perform computation
 - * Each node has an identifier (O(log n) bits) and local information (neighbours)
 - Each node knows about its incident edges and may not know anything about the ids of its neighbours



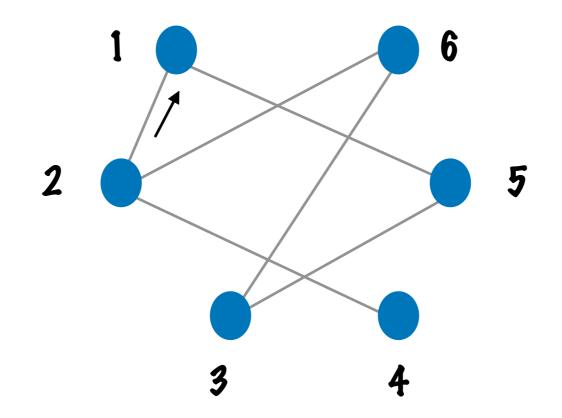


- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds

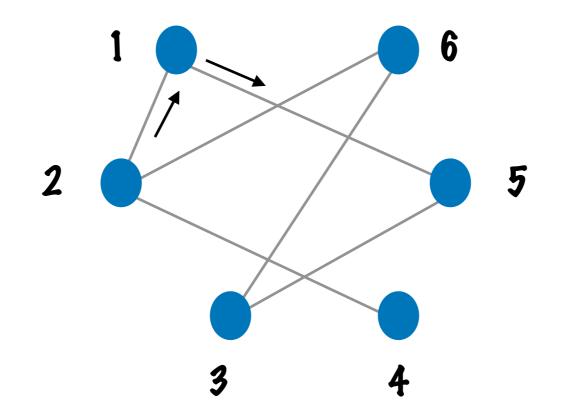
- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds



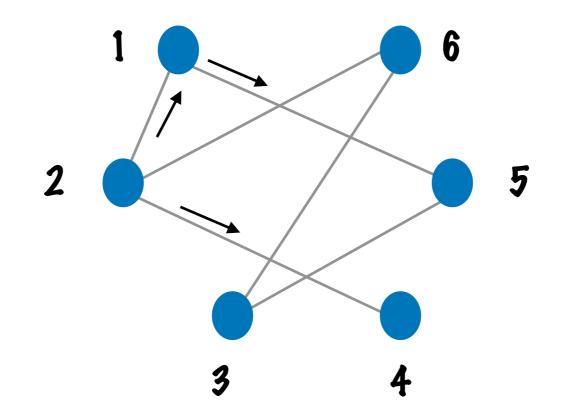
- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds



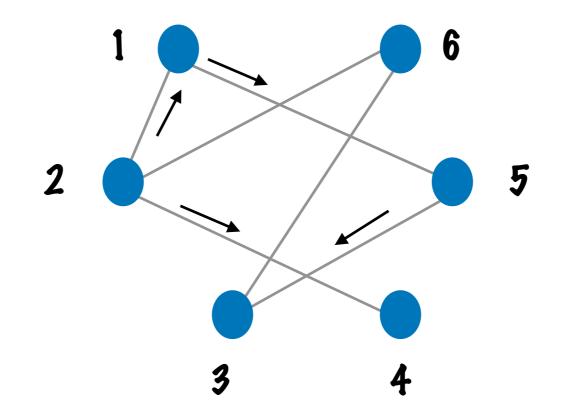
- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds



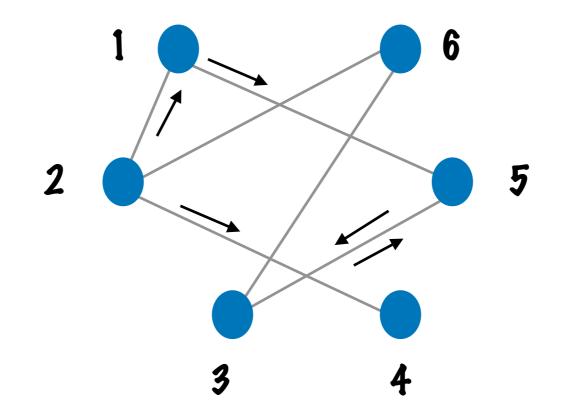
- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds

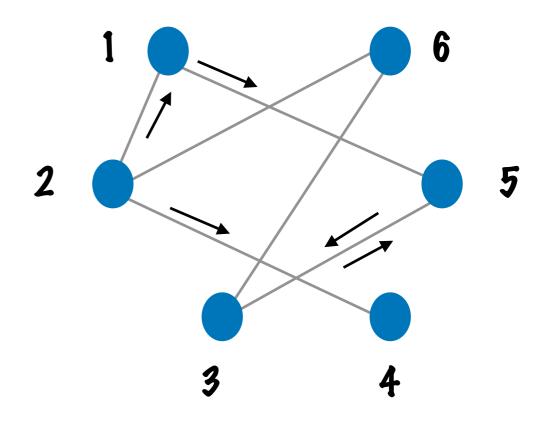


- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds

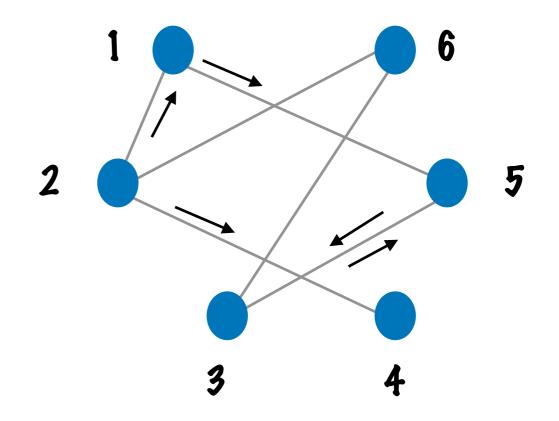


- Nodes communicate by exchanging messages
- Computation proceeds in synchronous rounds time steps partitioned into discrete rounds
- * Running time: no. of communication rounds

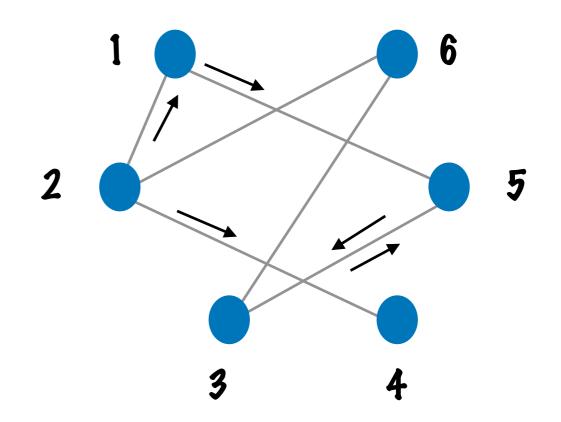




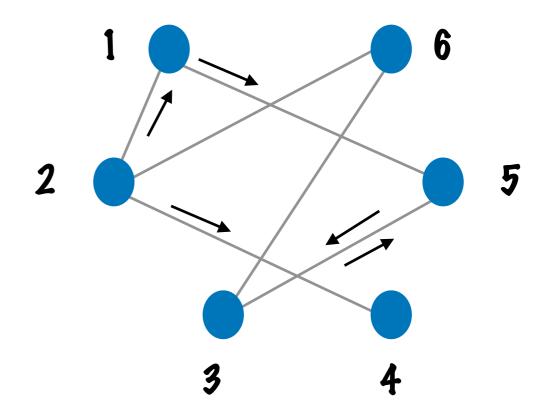
In one round, each vertex



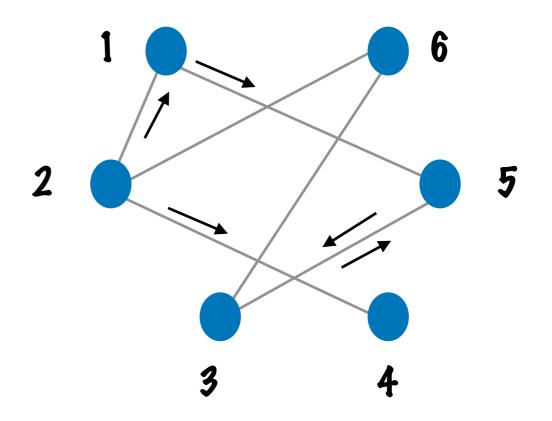
- * In one round, each vertex
 - * Computes



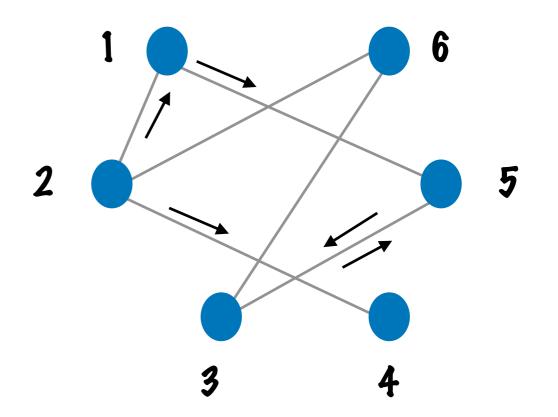
- * In one round, each vertex
 - * Computes
 - * Local computation is unlimited



- In one round, each vertex
 - * Computes
 - * Local computation is unlimited
 - * Sends/receives messages

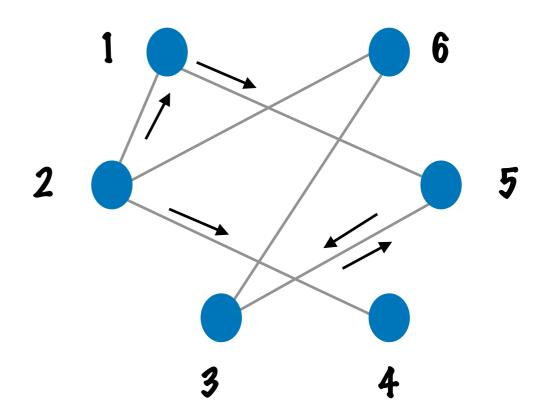


- In one round, each vertex
 - * Computes
 - * Local computation is unlimited
 - * Sends/receives messages



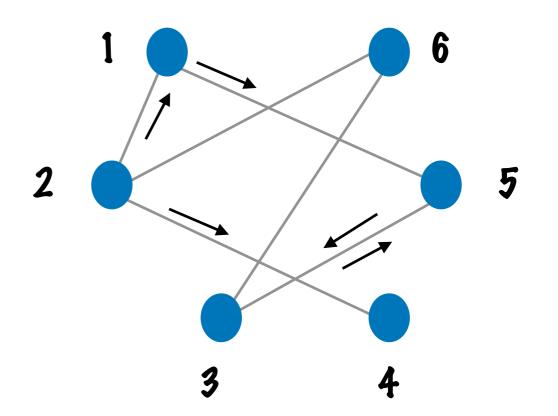
Msg sent to a nbr is assumed to be at the beginning of the round and is received by the nbr at the end of the same round with no delay

- In one round, each vertex
 - * Computes
 - * Local computation is unlimited
 - * Sends/receives messages



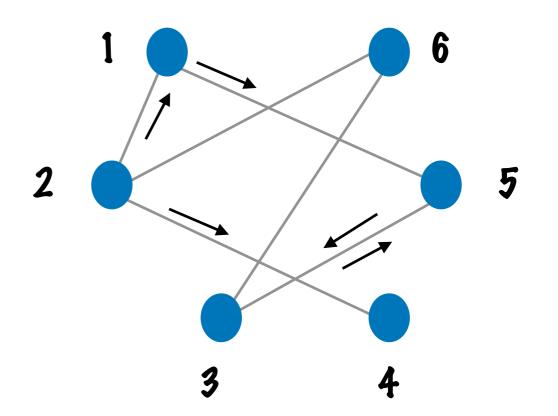
- Msg sent to a nbr is assumed to be at the beginning of the round and is received by the nbr at the end of the same round with no delay
- LOCAL no bound on msg size

- In one round, each vertex
 - * Computes
 - * Local computation is unlimited
 - * Sends/receives messages



- Msg sent to a nbr is assumed to be at the beginning of the round and is received by the nbr at the end of the same round with no delay
- LOCAL no bound on msg size
- CONGEST each msg is O(log n) bits

- In one round, each vertex
 - * Computes
 - * Local computation is unlimited
 - * Sends/receives messages



- Msg sent to a nbr is assumed to be at the beginning of the round and is received by the nbr at the end of the same round with no delay
- LOCAL no bound on msg size
- CONGEST each msg is O(log n) bits
 - Only O(log n) sized message can be sent per edge per time step

BFS Tree

Leader Election

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree

Leader Election

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree Construct a BFS tree of G rooted at a particular vertex s

Leader Election

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree Construct a BFS tree of G rooted at a particular vertex s

Leader Election

Elect an unique leader of the entire network

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree

Construct a BFS tree of G rooted at a particular vertex s

Leader Election

Elect an unique leader of the entire network

Learning the Network

Have all nodes learn the entire graph

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree Construct a BFS tree of G rooted at a particular vertex s

Leader Election

Elect an unique leader of the entire network

Learning the Network

Have all nodes learn the entire graph

CONGEST: O(dia) rounds

CONGEST: O(dia) rounds

CONGEST: O(dia) rounds

Given a network G and a vertex v, send a message from v to all nodes

BFS Tree Construct a BFS tree of G rooted at a particular vertex s

Leader Election

Elect an unique leader of the entire network

Learning the Network

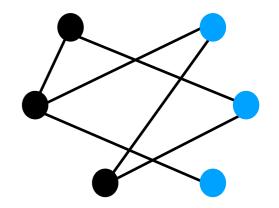
Have all nodes learn the entire graph

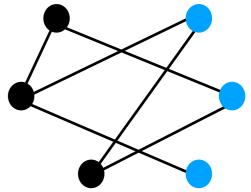
CONGEST: O(m) rounds LOCAL: O(dia) rounds

CONGEST: O(dia) rounds

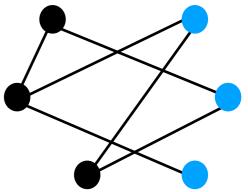
CONGEST: O(dia) rounds

CONGEST: O(dia) rounds



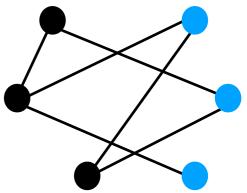


Input: Graph G on n vertices m edges Question: Find a minimum sized set S of vertices such that for each edge (u,v), either u is in S or v is in S



Input: Graph G on n vertices m edges Question: Find a minimum sized set S of vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- * At the end of the computation each vertex knows if it is in the solution or not

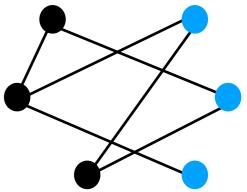


Input: Graph G on n vertices m edges Question: Find a minimum sized set S of vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- * At the end of the computation each vertex knows if it is in the solution or not

An easy algorithm: have the leader learn the entire graph

Distributed Vertex Cover



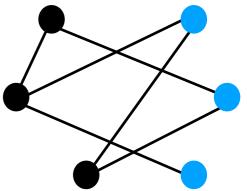
Input: Graph G on n vertices m edges Question: Find a minimum sized set S of vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- * At the end of the computation each vertex knows if it is in the solution or not

An easy algorithm: have the leader learn the entire graph

LOCAL: O(diam) rounds CONGEST: O(m) rounds

Distributed Vertex Cover



Input: Graph G on n vertices m edges Question: Find a minimum sized set S of vertices such that for each edge (u,v), either u is in S or v is in S

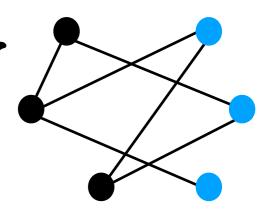
- * Communication graph is same as the graph on which the vertex cover is required
- * At the end of the computation each vertex knows if it is in the solution or not

An easy algorithm: have the leader learn the entire graph

LOCAL: O(diam) rounds CONGEST: O(m) rounds

Lower Bounds

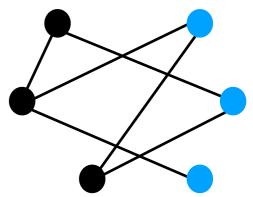
- * $\Omega(n^2/\log^2 n)$ rounds to compute min vertex cover in CONGEST [Censor-Hille] et al. 17]
- * $\Omega(\min \{(\log n / \log \log n)^{1/2}, \log \Delta / \log \log \Delta\})$ to compute constant factor approx. to min vertex cover in LOCAL [Kuhn et al. 16]



Input: Graph G and positive integer k

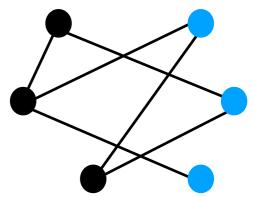
Question: Poes G have a set S of at most k vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- At the end of the computation
 - * NO instance: Each vertex knows that no k-solution exists
 - * YES instance: Each vertex knows if it is in the k-solution or not
 - # flag(v) = 1 if v is in the solution
 - # flag(v) = 0 if v is not in the solution



Input: Graph G and positive integer k Parameter: k Question: Poes G have a set S of at most k vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- At the end of the computation
 - * NO instance: Each vertex knows that no k-solution exists
 - * YES instance: Each vertex knows if it is in the k-solution or not
 - # flag(v) = 1 if v is in the solution
 - # flag(v) = 0 if v is not in the solution



Input: Graph G and positive integer k Parameter: k Question: Poes G have a set S of at most k vertices such that for each edge (u,v), either u is in S or v is in S

- * Communication graph is same as the graph on which the vertex cover is required
- At the end of the computation
 - * NO instance: Each vertex knows that no k-solution exists
 - * YES instance: Each vertex knows if it is in the k-solution or not
 - # flag(v) = 1 if v is in the solution
 - # flag(v) = 0 if v is not in the solution

Goal: O(f(k)) rounds

CONGEST

* O(k) rounds algorithm that terminates with all vertices declaring

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k
 - * LARGE if diameter > 2k

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k
 - * LARGE if diameter > 2k
 - SMALL or LARGE unanimously if diameter is between k+1 and 2k

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k
 - * LARGE if diameter > 2k
 - SMALL or LARGE unanimously if diameter is between k+1 and 2k

- Vertices report LARGE
 - * dia ≥ k+1

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k
 - * LARGE if diameter > 2k
 - * SMALL or LARGE unanimously if diameter is between k+1 and 2k

- Vertices report LARGE
 - * dia ≥ k+1

★ Vertices report SMALL
 ★ dia ≤ 2k

LOCAL

* Check if diameter is bounded by 2k in O(k) rounds

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1

- * Check if diameter is bounded by 2k in O(k) rounds
 - * Vertices report LARGE: dia $\geq 2k+1$
 - No k-vertex cover exists

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,

- * Check if diameter is bounded by 2k in O(k) rounds
 - * Vertices report LARGE: dia $\geq 2k+1$
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

LOCAL

Or informs each vertex that no k-solution exists

- * Check if diameter is bounded by 2k in O(k) rounds
 - * Vertices report LARGE: dia $\geq 2k+1$
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

LOCAL

Or informs each vertex that no k-solution exists

O(k) rounds

- * Check if diameter is bounded by 2k in O(k) rounds
 - * Vertices report LARGE: dia $\geq 2k+1$
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - * Learn the entire graph in O(k) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

LOCAL

Or informs each vertex that no k-solution exists

O(k) rounds

Matching, Pominating Set, Edge Pominating Set, Feedback Vertex Set, Feedback Edge Set

* Check if diameter is bounded by 2k in O(k) rounds

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- ★ Vertices report SMALL: dia ≤ 4k
 - * Learn the entire graph in O(m) rounds
 - * Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

CONGEST

Or informs each vertex that no k-solution exists

- * Check if diameter is bounded by 2k in O(k) rounds
 - ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
 - Vertices report SMALL: dia < 4k
 - * Learn the entire graph in O(m) rounds
 - * Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not

CONGEST

Or informs each vertex that no k-solution exists

* Check if diameter is bounded by 2k in O(k) rounds

- ★ Vertices report LARGE: dia ≥ 2k+1
 - * No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - * Learn the entire graph in O(m) rounds
 - Elect a leader in O(k) rounds
 - * Leader computes min VC and in O(k) rounds,
 - * Either notifies each vertex if it is in the k-solution or not
 - Or informs each vertex that no k-solution exists

How to improve this step?

CONGEST

Guarantee Version

CONGEST

Guarantee Version

Suppose k-vertex cover exists

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

CONGEST

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

CONGEST

Algorithm k-VC Guarantee

Find a leader vertex v in O(k) rounds

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

CONGEST

- Find a leader vertex v in O(k) rounds
- If a vertex is of degree > k
 - * Sets its flag to 1 and terminates after informing its neighbours (1 round)

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

CONGEST

- Find a leader vertex v in O(k) rounds
- If a vertex is of degree > k
 - * Sets its flag to 1 and terminates after informing its neighbours (1 round)
- If a vertex is of degree 0
 - * Sets its flag to 0 and terminates after informing its neighbours (1 round)

Guarantee Version

Suppose k-vertex cover exists

Diameter ≤ 2k

CONGEST

- Find a leader vertex v in O(k) rounds
- If a vertex is of degree > k
 - * Sets its flag to 1 and terminates after informing its neighbours (1 round)
- If a vertex is of degree 0
 - * Sets its flag to 0 and terminates after informing its neighbours (1 round)
- * Any vertex that has not yet terminated has degree at most k

CONGEST

Guarantee Version

CONGEST

Guarantee Version

CONGEST

Guarantee Version

Algorithm k-VC Guarantee (contd.)

* Any vertex that has not yet terminated has degree at most k

CONGEST

Guarantee Version

- * Any vertex that has not yet terminated has degree at most k
- & Graph has O(k²) (active) edges

CONGEST

Guarantee Version

- * Any vertex that has not yet terminated has degree at most k
- Graph has O(k²) (active) edges
- * Learn the entire graph in $O(k^2)$ rounds

CONGEST

Guarantee Version

- * Any vertex that has not yet terminated has degree at most k
- Graph has O(k²) (active) edges
- * Learn the entire graph in $O(k^2)$ rounds
- Leader computes min VC and in O(k) rounds

CONGEST

Guarantee Version

- * Any vertex that has not yet terminated has degree at most k
- Graph has O(k²) (active) edges
- * Learn the entire graph in $O(k^2)$ rounds
- * Leader computes min VC and in O(k) rounds
 - * Either notifies each vertex if it is in the k-solution or not

CONGEST

Guarantee Version

- * Any vertex that has not yet terminated has degree at most k
- Graph has O(k²) (active) edges
- * Learn the entire graph in $O(k^2)$ rounds
- * Leader computes min VC and in O(k) rounds
 - * Either notifies each vertex if it is in the k-solution or not
 - Or informs each vertex that no k-solution exists

CONGEST

Guarantee Version

Algorithm k-VC Guarantee (contd.)

- * Any vertex that has not yet terminated has degree at most k
- Graph has O(k²) (active) edges
- * Learn the entire graph in $O(k^2)$ rounds
- Leader computes min VC and in O(k) rounds
 - * Either notifies each vertex if it is in the k-solution or not
 - Or informs each vertex that no k-solution exists

Complexity: ck² rounds where c is a constant

CONGEST

CONGEST

Check if diameter is bounded by 2k in O(k) rounds

* Vertices report LARGE: dia $\geq 2k+1$

CONGEST

- ★ Vertices report LARGE: dia ≥ 2k+1
 - * No k-vertex cover exists

CONGEST

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k

CONGEST

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - * Compute a leader and a BFS tree rooted at it in O(k) rounds

CONGEST

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - Compute a leader and a BFS tree rooted at it in O(k) rounds
 - Run Algorithm k-VC Guarantee for ck² rounds

CONGEST

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - Compute a leader and a BFS tree rooted at it in O(k) rounds
 - Run Algorithm k-VC Guarantee for ck² rounds
 - Not yet terminated: no k-vertex cover exists

Check if diameter is bounded by 2k in O(k) rounds

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - Compute a leader and a BFS tree rooted at it in O(k) rounds
 - Run Algorithm k-VC Guarantee for ck² rounds
 - Not yet terminated: no k-vertex cover exists
 - Terminated: determine if the size of the vertex cover computed is indeed at most k in O(k) rounds

Check if diameter is bounded by 2k in O(k) rounds

- ★ Vertices report LARGE: dia ≥ 2k+1
 - No k-vertex cover exists
- Vertices report SMALL: dia < 4k
 - Compute a leader and a BFS tree rooted at it in O(k) rounds
 - Run Algorithm k-VC Guarantee for ck² rounds
 - Not yet terminated: no k-vertex cover exists
 - Terminated: determine if the size of the vertex cover computed is indeed at most k in O(k) rounds

- * O(k) rounds algorithm that terminates with all vertices declaring
 - ★ SMALL if diameter ≤ k
 - * LARGE if diameter > 2k
 - * SMALL or LARGE unanimously if diameter is between k+1 and 2k

- Vertices report LARGE
 - * dia ≥ k+1

★ Vertices report SMALL
 ★ dia ≤ 2k

CONGEST

Phase 1: k rounds

CONGEST

Phase 1: k rounds

In each round,

Phase 1: k rounds

- In each round,
 - Every vertex sends the min ID that it has seen so far to its neighbours

Phase 1: k rounds

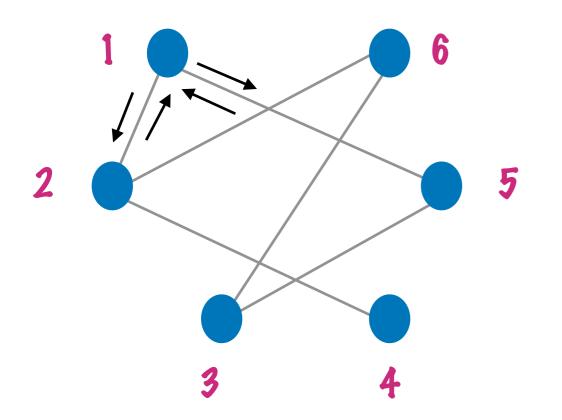
In each round,

* Every vertex sends the min ID that it has seen so far to its neighbours At the end of Phase 1, each vertex v has the min ID x(v) in its k-hop neighbourhood

Phase 1: k rounds

In each round,

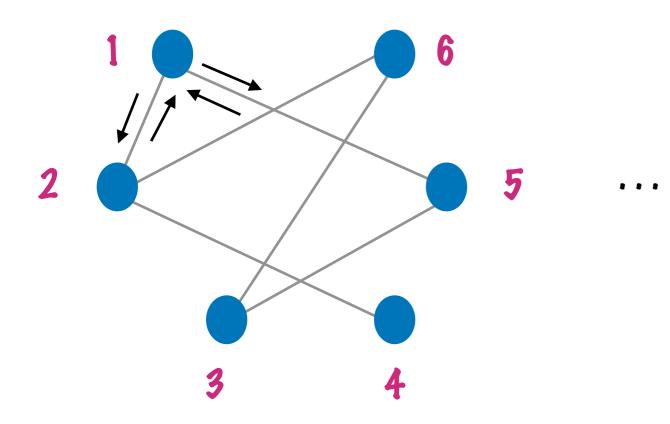
* Every vertex sends the min ID that it has seen so far to its neighbours At the end of Phase 1, each vertex v has the min ID x(v) in its k-hop neighbourhood



Phase 1: k rounds

In each round,

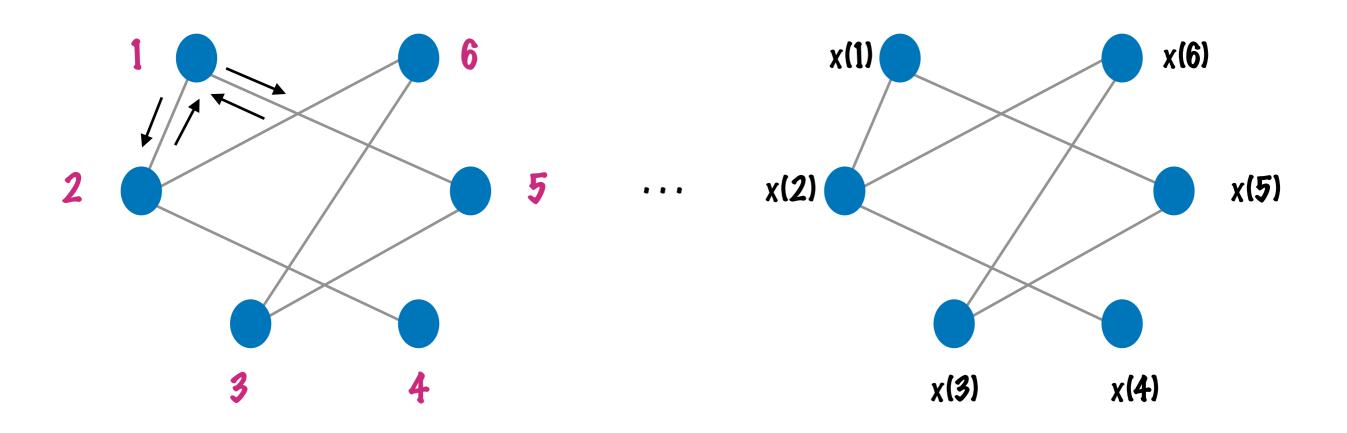
* Every vertex sends the min ID that it has seen so far to its neighbours At the end of Phase 1, each vertex v has the min ID x(v) in its k-hop neighbourhood



Phase 1: k rounds

In each round,

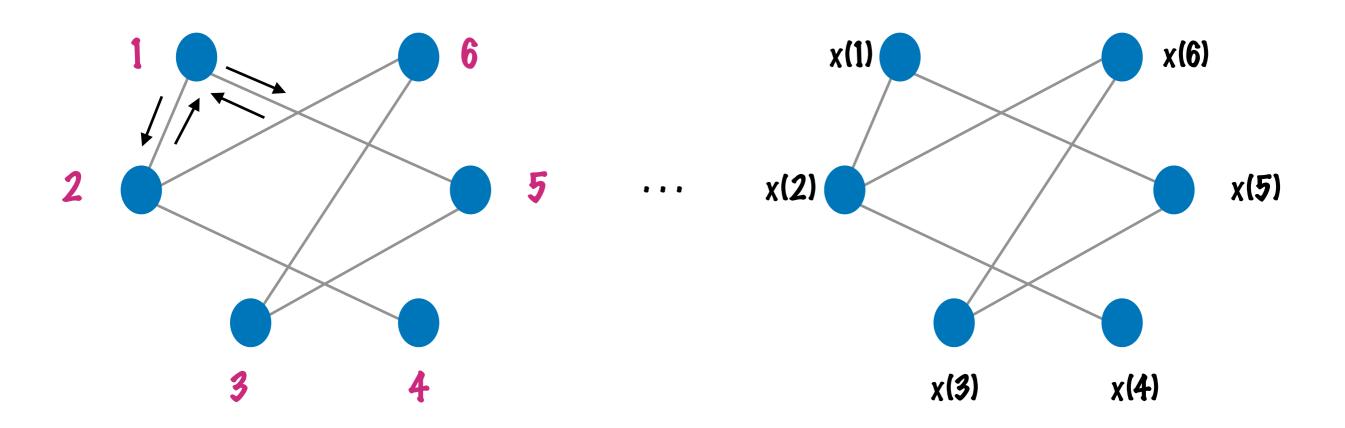
* Every vertex sends the min ID that it has seen so far to its neighbours At the end of Phase 1, each vertex v has the min ID x(v) in its k-hop neighbourhood



Phase 1: k rounds

In each round,

* Every vertex sends the min ID that it has seen so far to its neighbours At the end of Phase 1, each vertex v has the min ID x(v) in its k-hop neighbourhood



If dia \leq k, then x(v)s are identical

CONGEST

Phase 2: 2k+1 rounds

CONGEST

Phase 2: 2k+1 rounds

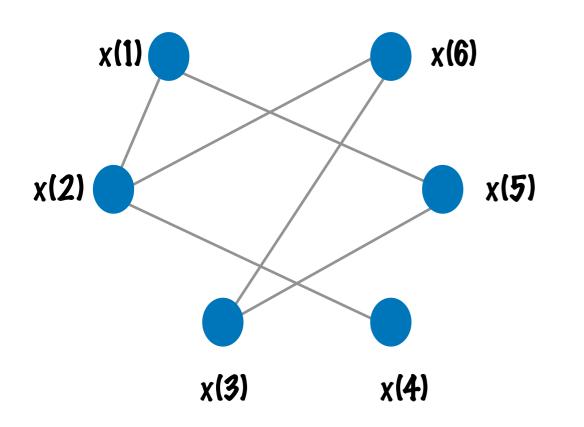
In each round,

Phase 2: 2k+1 rounds

- In each round,
 - Every vertex v sends y(v) (the min x(u)) and z(v) (the max x(u)) that it has seen so far to its neighbours

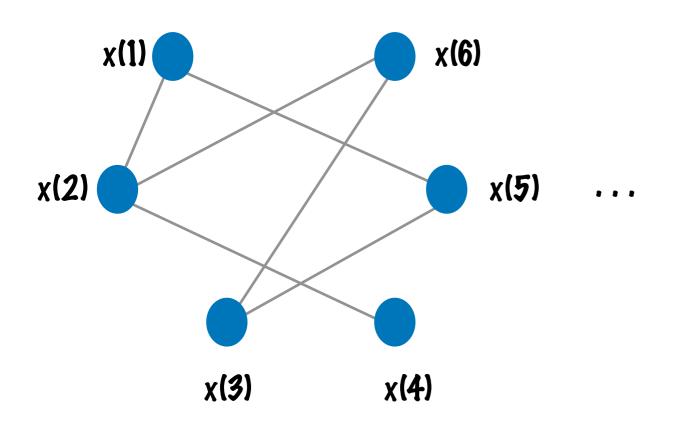
Phase 2: 2k+1 rounds

- * In each round,
 - Every vertex v sends y(v) (the min x(u)) and z(v) (the max x(u)) that it has seen so far to its neighbours



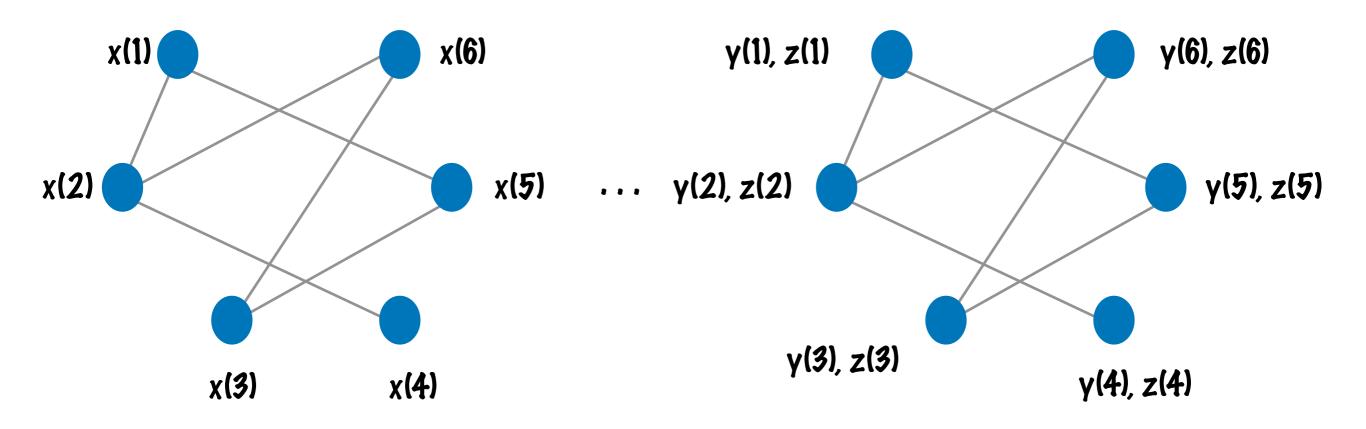
Phase 2: 2k+1 rounds

- * In each round,
 - Every vertex v sends y(v) (the min x(u)) and z(v) (the max x(u)) that it has seen so far to its neighbours



Phase 2: 2k+1 rounds

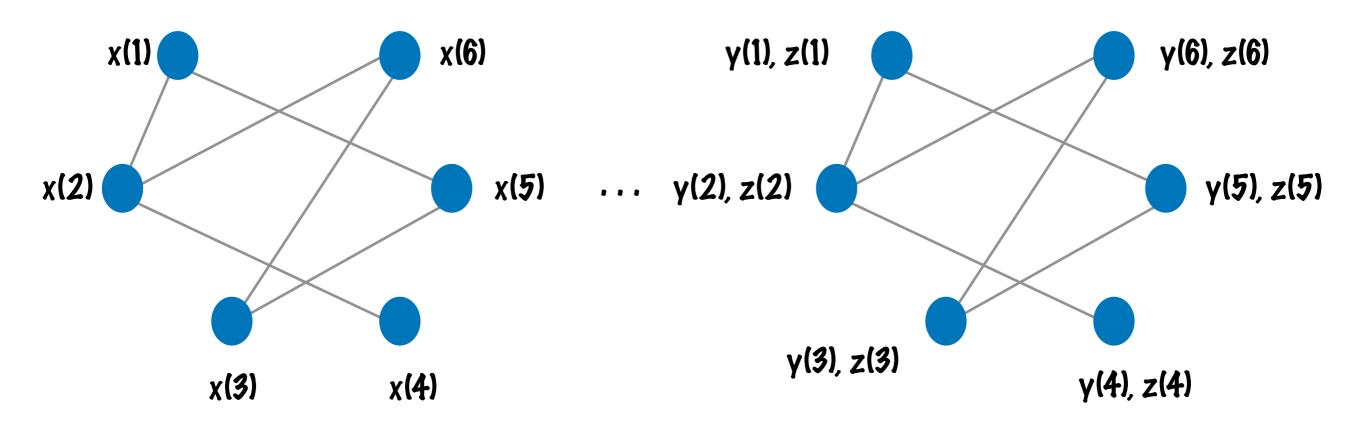
- * In each round,
 - Every vertex v sends y(v) (the min x(u)) and z(v) (the max x(u)) that it has seen so far to its neighbours



Phase 2: 2k+1 rounds

- * In each round,
 - Every vertex v sends y(v) (the min x(u)) and z(v) (the max x(u)) that it has seen so far to its neighbours

CONGEST



After the end of Phase 2, each vertex v returns

* SMALL if y(v) = z(v) and LARGE if $y(v) \neq z(v)$

```
Phase 1: k rounds

* In each round, every v sends min ID

At end of Phase 1, each v has min ID x(v) in its k-hop neighbourhood

Phase 2: 2k+1 rounds

* In each round, every v sends y(v) (min x(u)) and z(v) (max x(u))

After the end of Phase 2, each v returns SMALL if y(v) = z(v) & LARGE if y(v) \neq z(v)
```

Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min IP $x(v)$ in its k-hop neighbourhood	0(k) rounds
Phase 2: 2k+1 rounds	UKI rounas
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min IP x(v) in its k-hop neighbourhood	
Phase 2: 2k+1 rounds	0(k) rounds
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

CONGEST

* If dia $\leq k$, then x(v)s are identical

Phase 1: k rounds	
 In each round, every v sends min ID 	
At end of Phase 1, each v has min $IP x(v)$ in its k-hop neighbourhood	
Phase 2: 2k+1 rounds	0(k) rounds
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

- * If dia $\leq k$, then x(v)s are identical
 - * All vertices report SMALL

Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min IP $x(v)$ in its k-hop neighbourhood	0(k) rounds
Phase 2: 2k+1 rounds	UTKI TUUMUS
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

- * If dia $\leq k$, then x(v)s are identical
 - * All vertices report SMALL
- * If $k+1 \leq dia \leq 2k$, then y(v)s are identical, z(v)s are identical

Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min $IP x(v)$ in its k-hop neighbourhood	0/1.)
Phase 2: 2k+1 rounds	0(k)
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

- * If dia $\leq k$, then x(v)s are identical
 - * All vertices report SMALL
- * If $k+1 \leq dia \leq 2k$, then y(v)s are identical, z(v)s are identical
 - * All vertices report SMALL or all vertices report LARGE

CONGEST

rounds

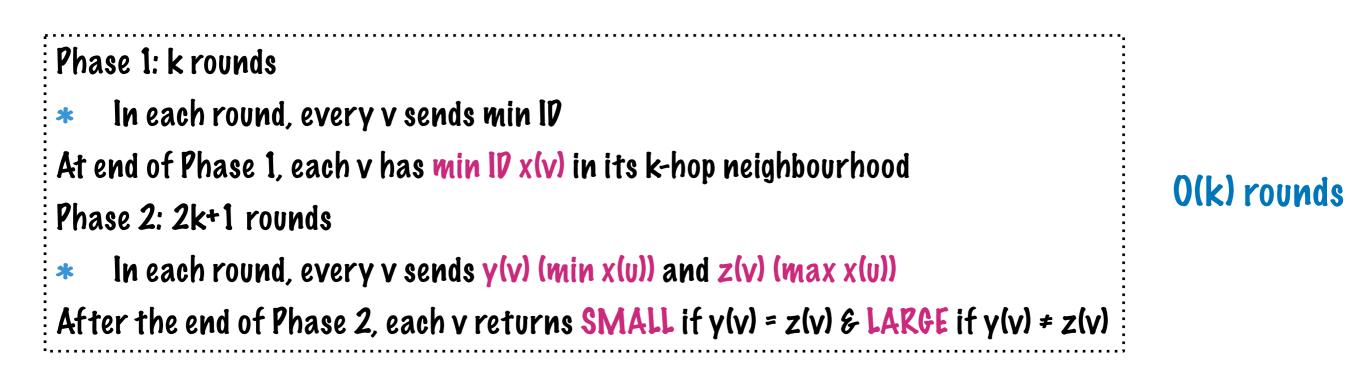
Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min IP $x(v)$ in its k-hop neighbourhood	0(
Phase 2: 2k+1 rounds	U
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

CONGEST

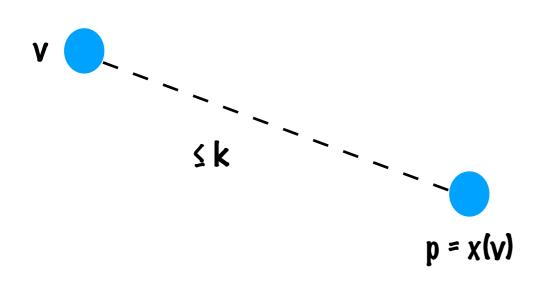
rounds

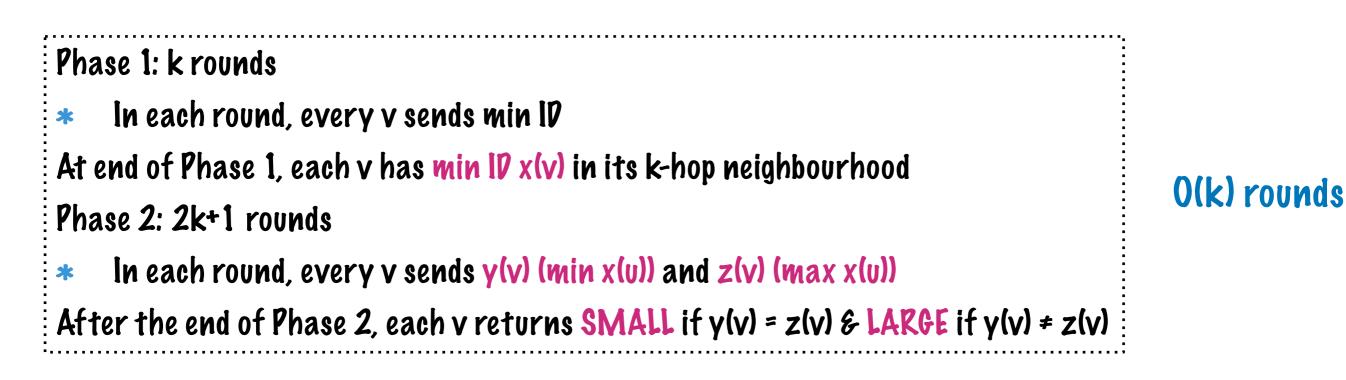
Phase 1: k rounds	
In each round, every v sends min ID	
At end of Phase 1, each v has min $IP x(v)$ in its k-hop neighbourhood	
Phase 2: 2k+1 rounds	0(k) rounds
* In each round, every v sends $y(v)$ (min $x(u)$) and $z(v)$ (max $x(u)$)	
After the end of Phase 2, each v returns SMALL if $y(v) = z(v) & LARGE$ if $y(v) \neq z(v)$	

CONGEST

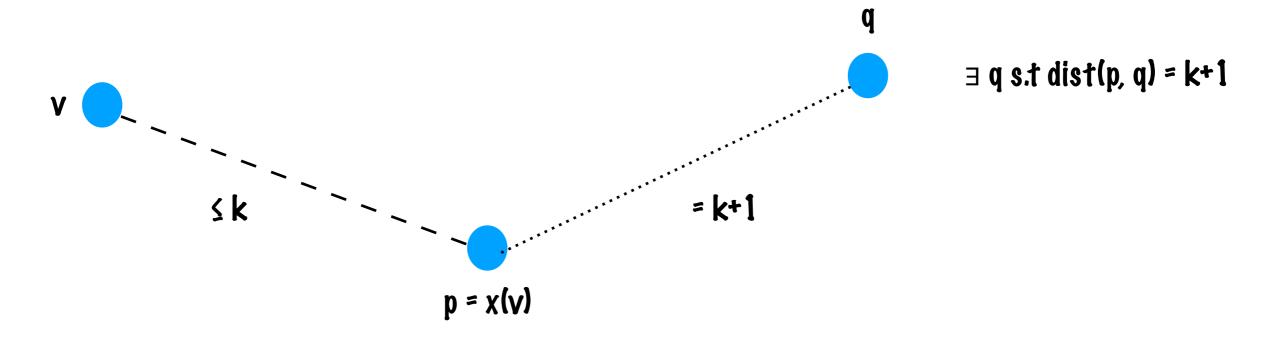


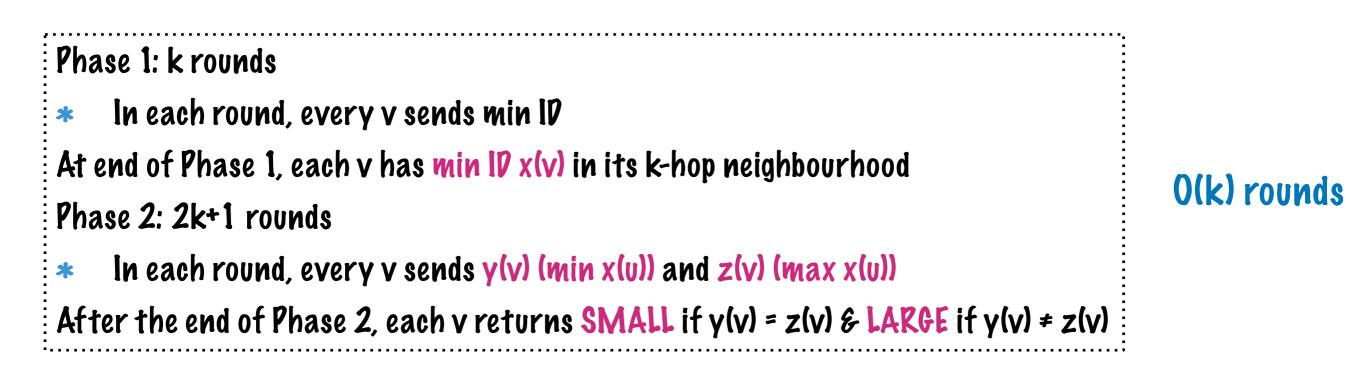
CONGEST



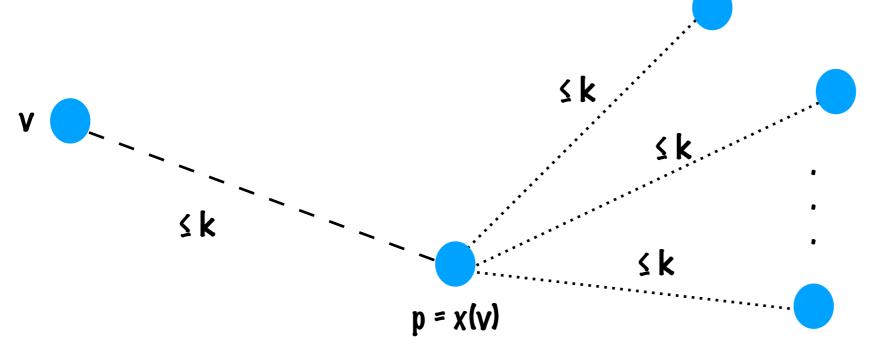


CONGEST

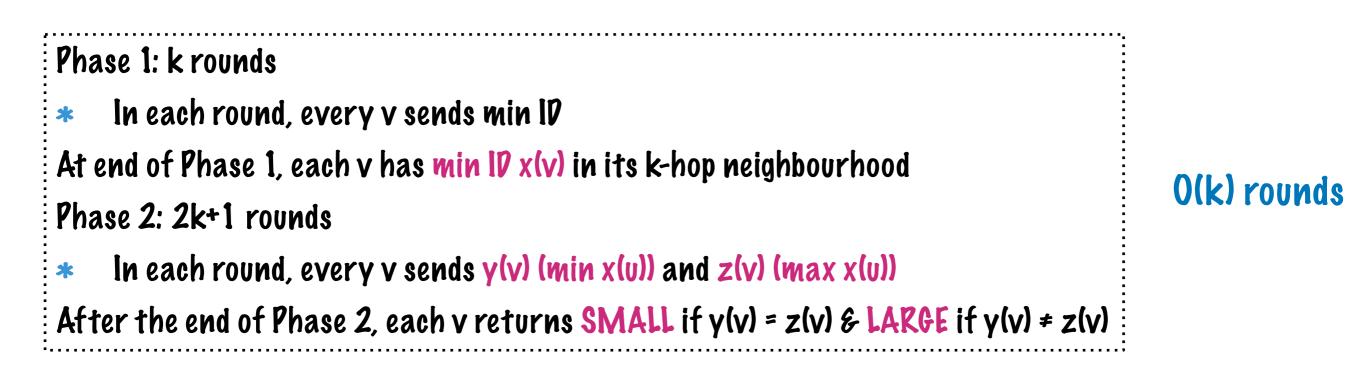




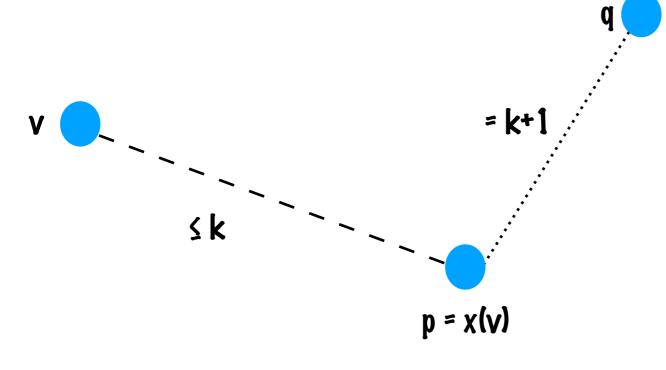
* If dia $\geq 2k+1$, consider a vertex v

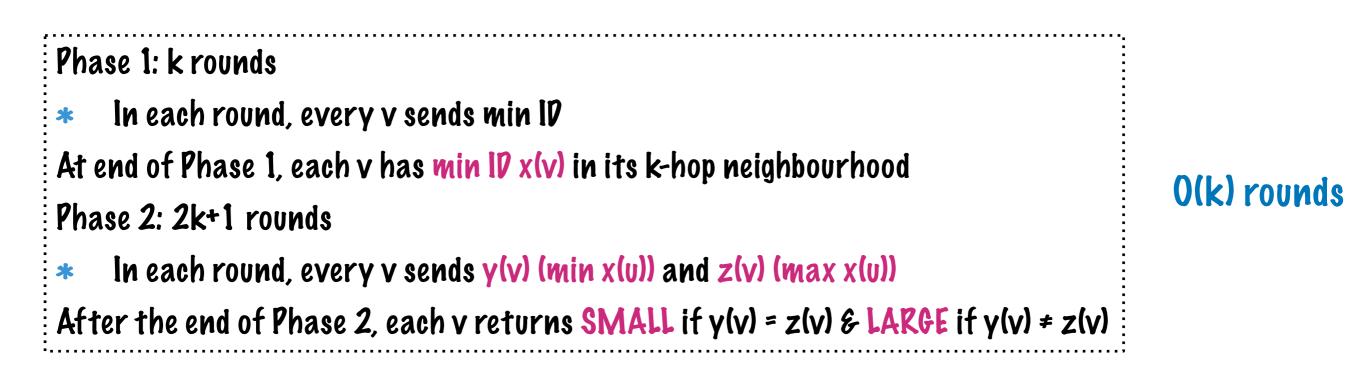


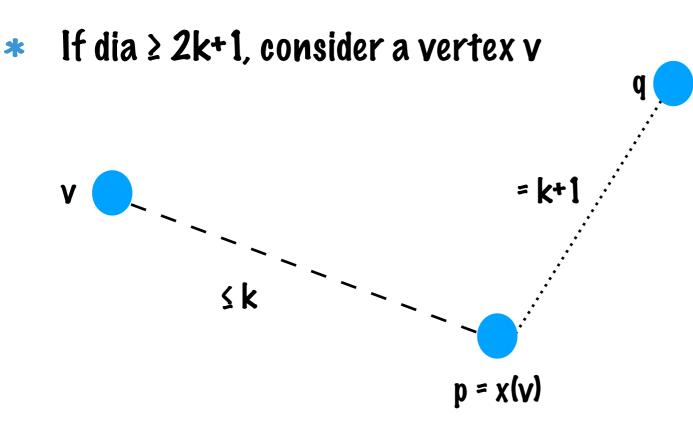
dia $\leq 2k+1$



CONGEST







After k rounds of Phase 1, x(q) ≠ p

- After k+1 rounds of Phase 2,
 - * y(p) ≠ z(p)
- After next k rounds of Phase 2,
 - ***** γ(v) ≠ z(v)
 - v outputs LARGE

Concluding Remarks

Problem	Model	Upper Bound	Lower Bound
Varkay Cover	CONGEST	0(k²)	$\Omega(k^2/\log k \log n)$
Vertex Cover	LOCAL	0(k)	Ω(k)
Independent Set -	CONGEST	0(n²)	$\Omega(n^2/\log^2 n)$
	LOCAL	0(k)	Ω(k)

Note: Lower bounds hold even when n is arbitrarily larger than k

Thank you! Questions?