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2-dimensional Range Searching
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1-dimensional Range Tree

A 1-dimensional range query with [34, 80]

5 10 22 28 34 36

40
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80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

White nodes: never visited by the query
Grey nodes: visited by the query, unclear if they lead to
output
Black nodes: Visited by the query, whole subtree is output
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2-dimensional Range Searching
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2-dimensional Range Searching
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Storage of 2D range trees

By level: On each level, any point is stored exactly once. So
all associated trees on one level together have O(n) size
By point: For any point, it is stored in the associated
structures of its search path. So it is stored in O(log n) of
them
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Construction algorithm

Algorithm 1 Build2DRangeTree(P)
1: Construct the associated structure: Build a binary search tree

Ty with the y-coordinates in P
2: if P contains only one point then
3: Create a leaf v storing this point, and make T assoc the as-

sociated structure of v .
4: else
5: Split P into Pleft and Pright , WRT the median x-coordinate,

xmid

6: vleft=Build2DRangeTree(Pleft)
7: vright=Build2DRangeTree(Pright)
8: Create a node v storing xmid , make vleft the left child of v ,

make vright the right child of v , and make Ty the associated
structure of v

9: return v
10: end if
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Efficiency of construction

T (n) = 2 · T (n/2) + O(n log n)

The construction algorithm takes O(n log2 n) time
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Query algorithm

Query [4 : 19]× [y1 : y2]
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Query algorithm

Algorithm 2 2DRangeQuery(T , [x1 : x2]× [y1 : y2])

1: vsplit ← FindSplitNode(T , x1, x2)
2: if vsplit is a leaf then
3: Check if the point in vsplit must be reported.
4: else
5: v ← lc(vsplit)
6: while v is not a leaf do
7: if x1 ≤ value(v) then
8: 1DRangeQuery(Ty (rc(v)), [y1 : y2])
9: v ← lc(v)

10: else
11: v ← rc(v)
12: end if
13: end whileCheck if the point in v must be reported.
14: Similarly, follow the path from rc(vsplit) to x2
15: end if

Range Trees 12/19



2D range query efficiency

We search in O(log n) associated structures to perform a 1D
range query; at most two per level of the main tree
The query time is O(log2 n + k), where k is the size of the
output

Theorem

A set of n points in the plane can be preprocessed in O(n log2 n)
time into a data structure of O(n log n) size so that any 2D range
query can be answered in O(log2 n + k) time, where k is the
number of answers reported.

Recall that a kd-tree has O(n) size and answers queries in
O(
√
n + k) time
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Higher dimensional range trees

Theorem
A set of n points in in d-dimensional space can be preprocessed in
O(n logd n) time into a data structure of O(n logd n) size so that
any 2D range query can be answered in O(logd n + k) time, where
k is the number of answers reported.

Recall that a kd-tree has O(n) size and answers queries in
O(n1−1/d + k) time

Range Trees 14/19



Range searching

Can we do better?
We can improve the query time of a 2D range tree from
O(log2 n) to O(log n) by a technique called fractional
cascading.
The idea illustrated best by a different query problem:
Suppose that we have a collection of sets S1 . . . Sm , where
|S1| = n and where Si+1 ⊂ Si

We want a data structure that can report for a query number
x , the smallest value greater than equals to x in all sets
S1, ...,Sm
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Fractional Cascading

The idea illustrated best by a different query problem:
Suppose that we have a collection of sets S1 . . . Sm , where
|S1| = n and where Si+1 ⊂ Si

We want a data structure that can report for a query number
x , the smallest value greater than equals to x in all sets
S1, ...,Sm.
Say x = 5
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Fractional Cascading

Now we do "the same" on the associated structures of a
2-dimensional range tree
Note that in every associated structure, we search with the
same values y1 and y2.
Replace all associated structures (y trees) with sorted lists
For every list element (and leaf of the associated structure of
the root), store two pointers to the appropriate list elements in
the lists of the left child and of the right child
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Fractional Cascading

Query (4, 8)− (19, 30)
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Fractional Cascading

Query (4, 8)− (19, 30)
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Higher dimensional range trees

Theorem
A set of n points in in d-dimensional space can be preprocessed in
O(n logd n) time into a data structure of O(n logd n) size so that
any 2D range query can be answered in O(logd−1 n + k) time,
where k is the number of answers reported.
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