
Range searching

Aritra Banik1

Assistant Professor
National Institute of Science Education and Research

1Slide ideas borrowed from Marc van Kreveld and Subhash Suri
Range searching 1/24



Range query

Salary

Age

20000 30000

30

40

A range query is a common database operation that retrieves
all records where some value is between an upper and lower
boundary.
Range query: Asks for the objects whose coordinates lie in a
specified query range (interval)

Range searching 2/24



Range searching

Range Searching: Process a set of given data points efficiently
such that given a range window set of points inside the range
can e reported "QUICKLY".
Time-Space tradeoff: the more we preprocess and store, the
faster we can solve a query.
A (search) data structure has a storage requirement, a query
time, and a construction time (and an update time)

Range searching 3/24



Range searching

Construction time O(1): query time??
Objective is sub linear query time.

Range searching 4/24



Range searching

Construction time O(1): query time??
Objective is sub linear query time.

Range searching 4/24



1D range query problem

1D range query problem: Preprocess a set of n points on the
real line such that the ones inside a 1D query range (interval)
can be reported fast.
The points p1 . . . pn are known beforehand, the query [x , y ]
arises at run time.
A solution to a query problem is a data structure description, a
query algorithm, and a construction algorithm.

Range searching 5/24



1D range query problem

1D range query problem: Preprocess a set of n points on the
real line such that the ones inside a 1D query range (interval)
can be reported fast.
The points p1 . . . pn are known beforehand, the query [x , y ]
arises at run time.
A solution to a query problem is a data structure description, a
query algorithm, and a construction algorithm.

Range searching 5/24



The Data Structure

The Data Structure: Balanced binary search trees

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Query [34, 80]
Search path for 34.
Search path for 80.

Range searching 6/24



The Data Structure

The Data Structure: Balanced binary search trees

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Query [34, 80]
Search path for 34.
Search path for 80.

Range searching 6/24



The Data Structure

The Data Structure: Balanced binary search trees

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Query [34, 80]
Search path for 34.
Search path for 80.

Range searching 6/24



The Data Structure

The Data Structure: Balanced binary search trees

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Query [34, 80]
Search path for 34.
Search path for 80.

Range searching 6/24



The Data Structure

Three types of nodes for a given query:

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

White nodes: never visited by the query
Grey nodes: visited by the query, unclear if they lead to
output
Black nodes: Visited by the query, whole subtree is output

Range searching 7/24



The Data Structure

Three types of nodes for a given query:

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

White nodes: never visited by the query
Grey nodes: visited by the query, unclear if they lead to
output
Black nodes: Visited by the query, whole subtree is output

Range searching 7/24



The Data Structure

Find a split node [50− 70]

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Range searching 8/24



Algorithm

Algorithm 1 1DRangeQuery(T , [x : y ])
1: vsplit ← FindSplitNode(T , x , y)
2: if vsplit is a leaf then
3: Check if the point in vsplit must be reported.
4: else
5: v ← lc(vsplit)
6: while v v is not a leaf do
7: if x ≤ value(v) then
8: ReportSubtree(rc(v))
9: v ← lc(v)

10: else
11: v ← rc(v)
12: end if
13: end while
14: v ← rc(vsplit)
15: Similarly, follow the path to y
16: end if

Range searching 9/24



Runtime

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

White nodes: never visited by the query; no time spent
Grey nodes: visited by the query, unclear if they lead to
output; time determines dependency on n

Black nodes: visited by the query, whole subtree is output;
time determines dependency on k , the output size

Range searching 10/24



Runtime

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Grey nodes: they occur on only two paths in the tree, and
since the tree is balanced, its depth is O(log n)

Black nodes: Charged on output
The time spent at each node is O(1)⇒ O(log n + k) query time

Range searching 11/24



Storage requirement and preprocessing

A (balanced) binary search tree storing n points uses O(n)
storage
A balanced binary search tree storing n points can be built in
O(n) time after sorting, so in O(n log n) time overall (or by
repeated insertion in O(n log n) time)

Range searching 12/24



A 1-dimensional range tree for range counting queries

A 1-dimensional range tree for range counting queries

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Theorem
A set of n points on the real line can be preprocessed in O(nlogn)
time into a data structure of O(n) size so that any range counting
queries can be answered in O(log n) time

Range searching 13/24



A 1-dimensional range tree for range counting queries

A 1-dimensional range tree for range counting queries

5 10 22 28 34 36

40

50 55 62 65

70

80 90

5 22 34 50 62 80

10 36 55 70

28 65

40

Theorem
A set of n points on the real line can be preprocessed in O(nlogn)
time into a data structure of O(n) size so that any range counting
queries can be answered in O(log n) time

Range searching 13/24



2D Range queries

Kd-trees, the idea:
Split the point set alternatingly by x-coordinate and by
y-coordinate
Split by x-coordinate: split by a vertical line that has half the
points left and half right
Split by y-coordinate: split by a horizontal line that has half
the points below and half above

Range searching 14/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

`1 `1

Range searching 15/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2

p3 p4 p5 p6 p7 p8 p9 p10

`1 `1

`2

`2

`3

`4

Range searching 15/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`1 `1

`2

`2

`3

`3

`4 `6

Range searching 15/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`1 `1

`2

`2

`3

`3

`4

`4

Range searching 15/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`1 `1

`2

`2

`3

`3

`4

`4 `5

Range searching 15/24



Kd-tree Construction

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10

`1 `1

`2

`2

`3

`3

`4

`4

`5

`5

`6

`6 `7

`7

`8

`8 `9

`9

Range searching 15/24



Algorithm

Algorithm 2 BuildKdTree(P, depth)
1: if P contains only one point then
2: return a leaf storing this point
3: else if depth is even then
4: Split P with a vertical line ` through the median x-coordinate

into P1 (left of `) and P2 (right of `)
5: else
6: Split P with a horizontal line ` through the median x-

coordinate into P1 (below `) and P2 (above `)
7: end if
8: left ← BuildKdTree(P1, depth + 1)
9: right ← BuildKdTree(P2, depth + 1)

10: Create a node v storing `, make left left the left child of v , and
make right right the right child of v .

11: return(v)

Range searching 16/24



Complexity

The median of a set of n values can be computed in O(n) time
Let T (n) be the time needed to build a kd-tree on n points

T (1) = O(1)
T (n) = 2T (n/2) + O(n)
A kd-tree can be built in O(n log n) time

Range searching 17/24



Kd-tree querying

p1 p2 p7

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

p3 p4 p5

p6

p8

p9 p10

`1 `1

`2

`2

`3

`3

`4

`4

`5

`5

`6

`6 `7

`7

`8

`8 `9

`9

p11
p12

`8 `9

`8
`9

p11 p12

Range searching 18/24



Complexity Analysis

White, grey, and black nodes with respect to region(v):
White node v : R does not intersect region(v)
Grey node v : R intersects region(v), but region(v) 6⊆ R

Black node v : region(v)⊆ R

Range searching 19/24



Complexity Analysis

White node v : R does not intersect region(v) Not visiting
Grey node v : R intersects region(v), but region(v) 6⊆ R

Black node v : region(v)⊆ R Charged on the output size

Range searching 20/24



Complexity Analysis

White node v : R does not intersect region(v) Not visiting
Grey node v : R intersects region(v), but region(v) 6⊆ R

Black node v : region(v)⊆ R Charged on the output size

Range searching 20/24



Complexity Analysis

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

`1

`2

`3

`4

`5

`6

`7

`8 `9

p11
p12

`8
`9

How many grey nodes can be there among the leaf nodes.
How many regions can be intersected by a axis parallel straight
line.

Range searching 21/24



Complexity Analysis

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

`1

`2

`3

`4

`5

`6

`7

`8 `9

p11
p12

`8
`9

At max O(
√
(n))

In the previous level O(
√
(n/2))

Range searching 22/24



Complexity Analysis

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

`1

`2

`3

`4

`5

`6

`7

`8 `9

p11
p12

`8
`9

At max O(
√
(n))

In the previous level O(
√
(n/2))

Range searching 22/24



Complexity Analysis

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

`1

`2

`3

`4

`5

`6

`7

`8 `9

p11
p12

`8
`9

Total no of Gray cells are
√
n(1+ 1√

2
+ 1√

4
+ 1√

8
. . .)

O(
√
(n))

Range searching 23/24



Complexity Analysis

p1

p2

p3

p4
p5

p6

p7 p8

p9

p10

`1

`2

`3

`4

`5

`6

`7

`8 `9

p11
p12

`8
`9

Total no of Gray cells are
√
n(1+ 1√

2
+ 1√

4
+ 1√

8
. . .)

O(
√
(n))

Range searching 23/24



Higher dimensions

A 3-dimensional kd-tree alternates splits on x, y, and z
coordinate
A 3D range query is performed with a box

Theorem
A set of n points in d-space can be preprocessed in O(n log n) time
into a data structure of O(n) size so that any d-dimensional range
query can be answered in O(n1−1/d + k) time, where k is the
number of answers reported.

Range searching 24/24



Higher dimensions

A 3-dimensional kd-tree alternates splits on x, y, and z
coordinate
A 3D range query is performed with a box

Theorem
A set of n points in d-space can be preprocessed in O(n log n) time
into a data structure of O(n) size so that any d-dimensional range
query can be answered in O(n1−1/d + k) time, where k is the
number of answers reported.

Range searching 24/24


