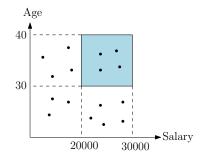
Range searching

Aritra Banik¹

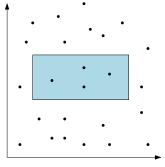
Assistant Professor National Institute of Science Education and Research

¹Slide ideas borrowed from Marc van Kreveld and Subhash Suri

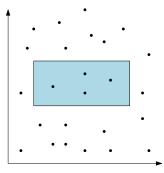


- A range query is a common database operation that retrieves all records where some value is between an upper and lower boundary.
- Range query: Asks for the objects whose coordinates lie in a specified query range (interval)

Range searching

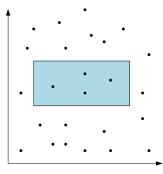


- Range Searching: Process a set of given data points efficiently such that given a range window set of points inside the range can e reported "QUICKLY".
- Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query.
- A (search) data structure has a storage requirement, a query time, and a construction time (and an update time)



• Construction time O(1): query time??

• Objective is sub linear query time.



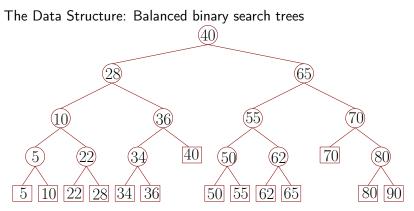
- Construction time O(1): query time??
- Objective is sub linear query time.

1D range query problem

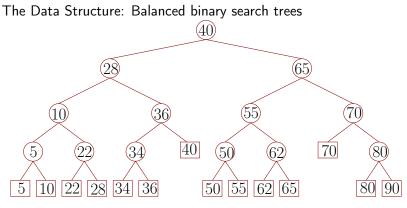
- 1D range query problem: Preprocess a set of *n* points on the real line such that the ones inside a 1D query range (interval) can be reported fast.
- The points $p_1 \dots p_n$ are known beforehand, the query [x, y] arises at run time.
- A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm.

1D range query problem

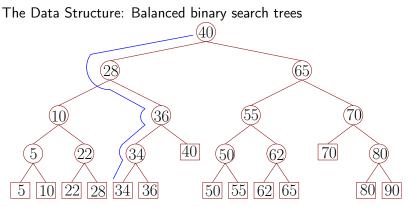
- 1D range query problem: Preprocess a set of *n* points on the real line such that the ones inside a 1D query range (interval) can be reported fast.
- The points $p_1 \dots p_n$ are known beforehand, the query [x, y] arises at run time.
- A solution to a query problem is a data structure description, a query algorithm, and a construction algorithm.



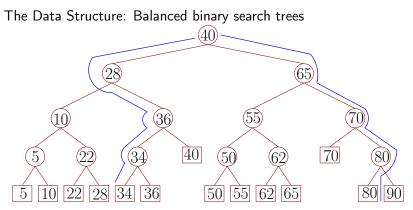
- Query [34, 80]
- Search path for 34.
- Search path for 80.



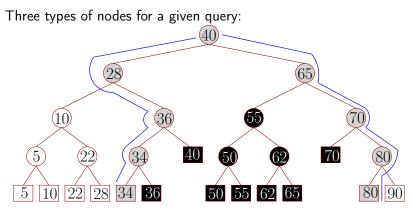
- Query [34, 80]
- Search path for 34.
- Search path for 80.



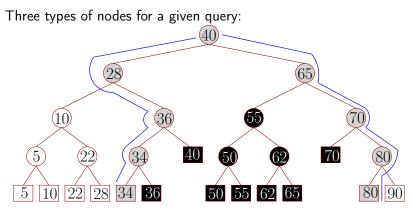
- Query [34, 80]
- Search path for 34.
- Search path for 80.



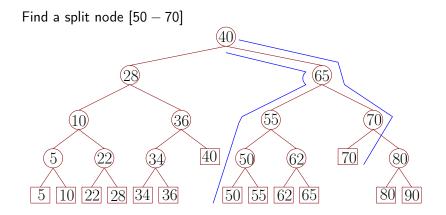
- Query [34, 80]
- Search path for 34.
- Search path for 80.



- White nodes: never visited by the query
- Grey nodes: visited by the query, unclear if they lead to output
- Black nodes: Visited by the query, whole subtree is output



- White nodes: never visited by the query
- Grey nodes: visited by the query, unclear if they lead to output
- Black nodes: Visited by the query, whole subtree is output



Algorithm

Algorithm 1 1DRangeQuery(T, [x : y])

- 1: $v_{split} \leftarrow FindSplitNode(T, x, y)$
- 2: if v_{split} is a leaf then
- Check if the point in v_{split} must be reported. 3:

4: else

- $v \leftarrow lc(v_{split})$ 5:
- 6. while v v is not a leaf do
- if $x \leq value(v)$ then 7:
- ReportSubtree(rc(v)) 8: $v \leftarrow lc(v)$
- 9:

else 10:

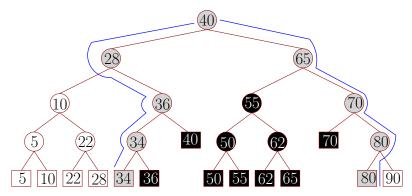
- 11: $v \leftarrow rc(v)$
- end if 12:
- end while 13:

14:
$$v \leftarrow rc(v_{split})$$

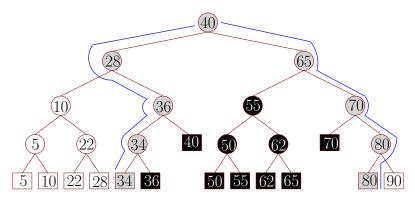
Similarly, follow the path to y15:

16. ond if

Runtime



- White nodes: never visited by the query; no time spent
- Grey nodes: visited by the query, unclear if they lead to output; time determines dependency on *n*
- Black nodes: visited by the query, whole subtree is output; time determines dependency on *k*, the output size

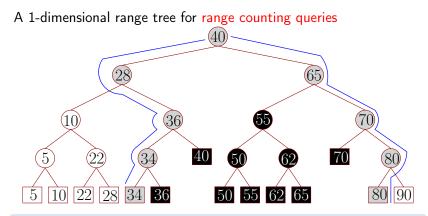


- Grey nodes: they occur on only two paths in the tree, and since the tree is balanced, its depth is $O(\log n)$
- Black nodes: Charged on output

The time spent at each node is $O(1) \Rightarrow O(\log n + k)$ query time

- A (balanced) binary search tree storing n points uses O(n) storage
- A balanced binary search tree storing n points can be built in O(n) time after sorting, so in O(n log n) time overall (or by repeated insertion in O(n log n) time)

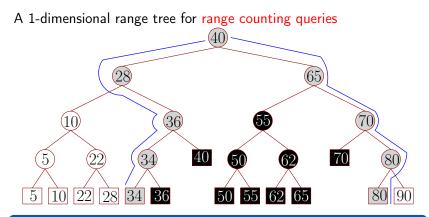
A 1-dimensional range tree for range counting queries



Theorem

A set of n points on the real line can be preprocessed in O(nlogn)time into a data structure of O(n) size so that any range counting queries can be answered in $O(\log n)$ time

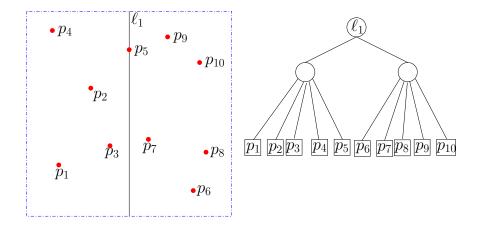
A 1-dimensional range tree for range counting queries

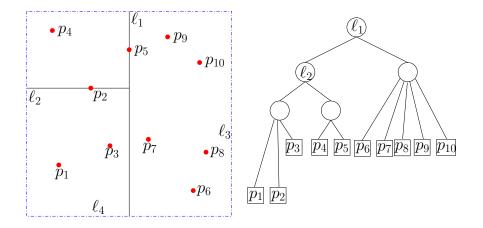


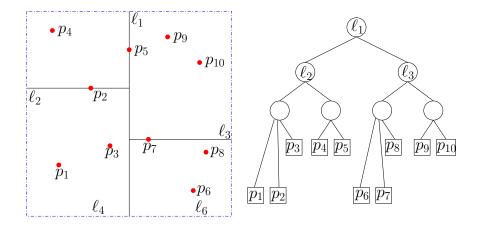
Theorem

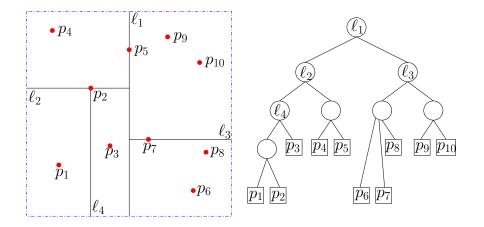
A set of n points on the real line can be preprocessed in O(nlogn)time into a data structure of O(n) size so that any range counting queries can be answered in $O(\log n)$ time Kd-trees, the idea:

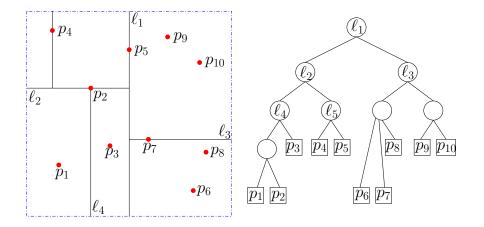
- Split the point set alternatingly by x-coordinate and by y-coordinate
- Split by x-coordinate: split by a vertical line that has half the points left and half right
- Split by y-coordinate: split by a horizontal line that has half the points below and half above

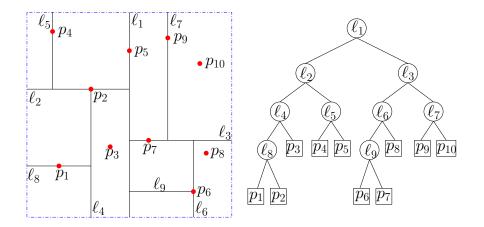










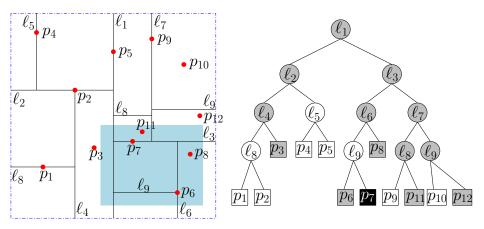


Algorithm

Algorithm 2 BuildKdTree(P, depth)

- 1: if P contains only one point then
- 2: return a leaf storing this point
- 3: else if depth is even then
- Split P with a vertical line ℓ through the median x-coordinate into P₁ (left of ℓ) and P₂ (right of ℓ)
- 5: else
- 6: Split P with a horizontal line ℓ through the median x-coordinate into P_1 (below ℓ) and P_2 (above ℓ)
- 7: end if
- 8: left \leftarrow BuildKdTree(P_1 , depth + 1)
- 9: right \leftarrow BuildKdTree(P₂, depth + 1)
- 10: Create a node v storing ℓ , make *left* left the left child of v, and make *right* right the right child of v.
- 11: return(v)

- The median of a set of n values can be computed in O(n) time
- Let T(n) be the time needed to build a kd-tree on n points T(1) = O(1) T(n) = 2T(n/2) + O(n)A kd-tree can be built in $O(n \log n)$ time

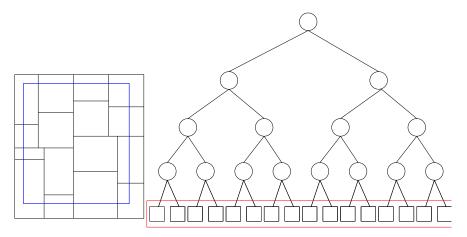


White, grey, and black nodes with respect to region(v):

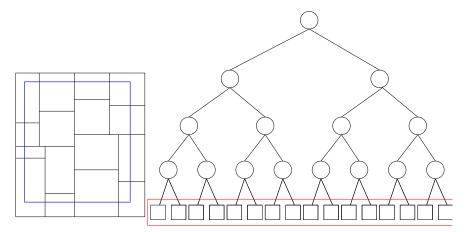
- White node v: R does not intersect region(v)
- Grey node v: R intersects region(v), but region(v) $\subseteq R$
- Black node v: region $(v) \subseteq R$

- White node v: R does not intersect region(v) Not visiting
- Grey node v: R intersects region(v), but region(v) $\not\subseteq R$
- Black node v: region(v) $\subseteq R$ Charged on the output size

- White node v: R does not intersect region(v) Not visiting
- Grey node v: R intersects region(v), but region(v) $\not\subseteq R$
- Black node v: region(v) $\subseteq R$ Charged on the output size

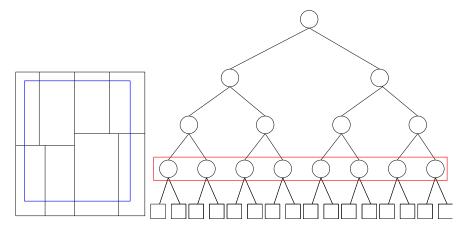


- How many grey nodes can be there among the leaf nodes.
- How many regions can be intersected by a axis parallel straight line.



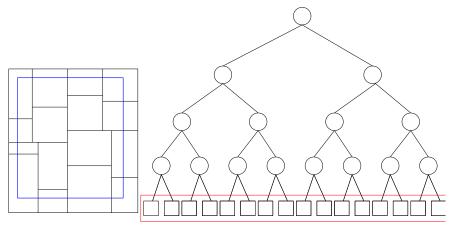
• At max $O(\sqrt{n})$

• In the previous level $O(\sqrt{(n/2)})$

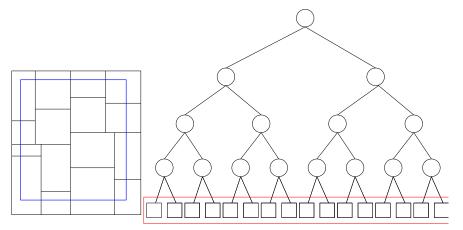


• At max $O(\sqrt{n})$

• In the previous level $O(\sqrt{(n/2)})$



Total no of Gray cells are √n(1 + 1/√2 + 1/√4 + 1/√8 ...)
O(√(n))



- Total no of Gray cells are $\sqrt{n}(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{8}}...)$
- $O(\sqrt{n})$

- A 3-dimensional kd-tree alternates splits on x, y, and z coordinate
- A 3D range query is performed with a box

Theorem

A set of n points in d-space can be preprocessed in $O(n \log n)$ time into a data structure of O(n) size so that any d-dimensional range query can be answered in $O(n^{1-1/d} + k)$ time, where k is the number of answers reported.

- A 3-dimensional kd-tree alternates splits on x, y, and z coordinate
- A 3D range query is performed with a box

Theorem

A set of n points in d-space can be preprocessed in $O(n \log n)$ time into a data structure of O(n) size so that any d-dimensional range query can be answered in $O(n^{1-1/d} + k)$ time, where k is the number of answers reported.