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Definition
A graph that can be represented as the intersection graph of a set
of circles of same radius is called the unit disk graph(UDG). That
is, it is a graph with one vertex for each disk in the family, and with
an edge between two vertices whenever the corresponding vertices
lie within a unit distance of each other.
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Cliques

Definition
A clique is a subset of vertices of an undirected graph such that
every two distinct vertices in the clique are adjacent; that is, its
induced subgraph is complete.
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Cliques in Unit Disk Graph(UDG)

Geometric Clique: If a set of disks has a nonempty intersection
then they form a geometric clique.

Geometric Clique Graphical Clique

Question1: Given a UDG find a find the maximum Graphical
Clique
Question2: Given a UDG find a find the maximum Geometric
Clique
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Maximum Graphical Clique

Let A = D1,D2 . . .Dn be any set of unit disks with centers
c1 . . . cn

Let B = D1, . . .Dk forms the maximum clique
D1,D2 be the farthest distant pair of disks in A.
Let X and Y be the disk centered at c1 and passing through
c2 and Y be the disk centered at c2 and passing through c1,
Consider the region X ∩ Y
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Maximum Graphical Clique

X YD1 c1 D2c2

Does c1, c2 . . . ck belongs to X ∩ Y ?

Does all the disks whose center is inside X ∩Y forms a clique?
May not be ...
Our new objective is to find maximum clique among the disks
in X ∩ Y
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Maximum Graphical Clique

c1 c2

All the disks above [c1, c2] forms a clique.
All the disks below [c1, c2] forms a clique.
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Maximum Graphical Clique

We have a graph which can be partitioned into two sets V1
and V2 where V1 forms a clique and V2 forms a clique. There
are edges going from V1 to V2

Does this graph looks familiar?
Its complement is a bipartite graph.
In this graph we want to find the maximum clique.
In its complement we are looking for the maximum
independent set.
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Maximum Graphical Clique

How to find a maximum independent set in a Bipartite graph.
The complement of a maximum independent set is a minimum
vertex cover.

Theorem
Kőnig’s theorem: In any bipartite graph, the number of edges in a
maximum matching equals the number of vertices in a minimum
vertex cover.
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Maximum Geometric Clique

Homework: How to find maximum geometric clique in a UDG?
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Maximum Independent Set for UDG

Given a set of unit disks A a subset of disks B ⊆ A are
independent none of the disks in B intersects with each other.
What about maximum independent set in UDG?
NP Hard!!!!
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Maximum Independent Set for UDG

An approximate algorithm does not guarantee the best
solution. The goal of an approximate algorithm is to come as
close as possible to the optimum value in a reasonable amount
of time which is at most polynomial time.
Let OPT be any optimal solution for the problem at hand, and
ALG to denote the (worst case) quality produced by the
approximation algorithm under consideration. We would like to
guarantee OPT (I ) ≥ ALG (I ) ≥ 1

αOPT (I ) on any instance I
for maximization problems, where α is known as the
approximation factor.
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Maximum Independent Set for UDG

A 2- factor approximate algorithm for MIS for UDG will
produce a set of independent disks of cardinality at least half
of the size of the optimal solution.
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A restricted problem

Consider a set of unit disks centered at a horizontal strip of
height 1.
Find a MIS
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More Restriction

Consider a set of unit disks centered inside a unit box.
Find a MIS
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More Restriction

d

What about finding an MIS is strip of length d where d is
constant?
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Back to the restricted problem

Consider the lines I = {x = i : i ∈ Z}
Divide the lines into three sets

red: {x = i : i%3 = 0}
blue: {x = i : i%3 = 1}
green: {x = i : i%3 = 2}

Geometric Approximation Algorithms 17/23



Back to the restricted problem

Consider the lines I = {x = i : i ∈ Z}
Divide the lines into three sets

red: {x = i : i%3 = 0}
blue: {x = i : i%3 = 1}
green: {x = i : i%3 = 2}

Geometric Approximation Algorithms 17/23



Back to the restricted problem

Let D0 be the set of disks that intersects red lines.
Let D1 be the set of disks that intersects blue lines.
Let D2 be the set of disks that intersects green lines.
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Back to the restricted problem

What is the maximum independent set for the disks in D\ D0?
We can find the MIS for D\ D0 in polynomial time, let’s
denote it by MIS0

Define MIS1 and MIS2 similarly
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Back to the restricted problem

Consider any optimal solution opt.
Set of disks in opt that intersects the red line be opt0

opt0=opt∩ D0

opt1=opt∩ D1

opt2=opt∩ D3
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Back to the restricted problem

opt\opt0 is a independent set for D\ D0.
MIS0 is a MIS for D\ D0.
| MIS0 | ≥ | opt\opt0 |
| MIS1 | ≥ | opt\opt1 |
| MIS2 | ≥ | opt\opt2 |
One of opt0, opt1, or opt2 is at most opt/3
Say opt0≤ opt/3
| MIS0 | ≥ | opt\opt0 | ≥ |opt| − 1/3opt≥ 2/3opt
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Back to the restricted problem

Roughly in O(n3) time we can find out a independent set of
size at lease opt/3.
For any value 0 < ε < 1, I will divide the strip into 1/ε colors
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Polynomial-time approximation scheme

Theorem

In time O(n1/ε) time we can find an independent set of size at
lease (1− ε)opt.

This kind of algorithms are called Polynomial-time
approximation scheme(PTAS)
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