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Finding a Median String (Recall)

• Given a set of strings ଵ ଶ ௠ over alphabet , the 
objective is to find a string ∗ (not necessarily from ) that 
minimizes

௜

 

௫೔∈ௌ

• Let ∗ be a string that minimizes 
• ∗ is referred to as median



Questions encountered so far (Recall)

• How to do clustering efficiently?

• How to perform approximate trace reconstruction efficiently?

• What is the connection between approximate trace reconstruction 
and approximate median?

• How to find an approximate median efficiently?

Not in this talk



Rank Aggregation (Recall)

• Given a set of permutations ଵ ଶ ௠ over , the 
objective is to find a permutation (not necessarily from ) that 
minimizes

௜

 

௫೔∈ௌ



Rank Aggregation - What do we know?

Metric Upper Bound Lower Bound

Kendall-tau PTAS ( -approximation in 
polytime) [Mathieu, Schudy ‘07]

NP-hard [Dwork et al. ‘01]
(even for 4 inputs)

Ulam
NP-hard?-approximation in polytime

[C, Das, Krauthgamer ‘21]

For 3 inputs, NP-hard or P?

For 3 inputs, in P



Ulam Median for three inputs

• Phase 1: Relax the constraint that the solution need not be a 
permutation

• Phase 2: Round the relaxed solution into a feasible one



Ulam Median – Phase 1 (Relax)

• The output need not be a permutation (can be an arbitrary string)

• Use dynamic programming for the Edit median, that runs in 
௠ ௠ time (recall, now )

• Actually, find an -length solution

Exercise 1: Design dynamic 
programming for the Edit median

Exercise 2: Modify it so that it 
outputs length restricted solution



Ulam Median – Phase 2 (Round)

• Round the relaxed solution to a feasible one (permutation)

• “Cleverly” delete duplicate symbols and insert missing ones

ଵ

ଶ

ଷ

ସ

Permutation
Phase 1 Phase 2



Ulam Median – High-level Argument

• Consider the following two quantities
• ௥௔௡௞ : Optimum value attained by a permutation (Our final target)
• ௡ି௟௘௡ :  Optimum value attained by a -length string (Phase 1 gives)

• Observation: ௡ି௟௘௡ ௥௔௡௞

• Suppose attains ௡ି௟௘௡ . Now,

• To show: ௡ି௟௘௡ ௥௔௡௞

Phase 2 c-approximation



Ulam Median for three inputs

• We show: (i.e., ), for output for three 
inputs

• Fix an arbitrary optimal alignment between and ଵ ଶ ଷ

• For each duplicate symbol
• Only keep the occurrence with maximum matches and delete the rest

Idea: Increase the Obj by 1 (for one input), but 
decrease by 2 (avoid deletions in two inputs)



Ulam Median for three inputs

• We show: (i.e., ), for output for three 
inputs

• Fix an arbitrary optimal alignment between and ଵ ଶ ଷ

• For each duplicate symbol
• Only keep the occurrence with maximum matches and delete the rest

• For each missing symbol
• Insert while maintaining the match with at least one input

Idea: Decrease the Obj by 1 (for one matched input), 
but increase by 2 (for the rest two inputs)



Ulam Median for three inputs
• We show: (i.e., ), for output for three 

inputs

• Delete each duplicate: Increase the Obj by 1 (for one input), but 
decrease by 2 (avoid deletions in two inputs)

• Insert each missing: Decrease the Obj by 1 (for one matched input), 
but increase by 2 (for the rest two inputs)

• No. of duplicate entries = No. of missing (since has length )

• Hence, stays the same



Ulam Median for constant inputs

• Can be extended to ଷ

ଶ
(i.e., ), for 

inputs [C, Das, Krauthgamer ‘21]

• Similar approach works for the center problem [C, Gajjar, Jha ‘21]



Max. Rank Aggregation / Ulam Center

• Given a set of permutations ଵ ଶ ௠ over , the 
objective is to find a permutation (not necessarily from ) that 
minimizes

୶౟∈ௌ
௜

• The Ulam center problem is NP-hard



Ulam Center for O(1) inputs [C, Gajjar, Jha ‘21]

• Phase 1: Find an -length center string (need not be a permutation)

• Phase 2: Round the relaxed solution into a feasible one
• Interestingly, Phase 2 is essentially solving the Hamming center with 

wildcards

• Theorem: Achieve -approximation for the Ulam center in 
polytime for inputs (and exact for inputs)



Ulam Median – What about arbitrary inputs?

• Phase 1: Relax the constraint that the solution need not be a 
permutation

• Phase 2: Round the relaxed solution into a feasible one

Takes exponential (in 
the no. of inputs ) 

time



Ulam Median (High Regime)

• Consider the case when (Recall, = no. of inputs, 
= length of input)

• Theorem: Best input achieves -approximation, for some 
(independent of )



Ulam Median (High Regime)

• Assumption: No input is at distance from an 
(unknown) median ∗

• Else, that point achieves -approximation

∗

ଵ
ଶ

ଷ

ସ

ହ

௠1 − 𝜖 𝑂𝑃𝑇/𝑚



Ulam Median (High Regime)

• High Regime: 

• For each point ௜ , there is a set ௜ of edit (or unaligned) symbols, 
where ௜ (for simplicity, ௜ )

∗

ଵ
ଶ

ଷ

ସ

ହ

௠1 − 𝜖 𝑛/5



Ulam Median (High Regime)

• For each point ௜ , ௜

• Claim: There can be at most such sets with
pairwise intersection of size 
(Follows from inclusion-exclusion) ∗

ଵ
ଶ

ଷ

ସ

ହ

௠1 − 𝜖 𝑛/10



Ulam Median (High Regime)

• Observation: For any two ௜ ௝, 
௜ ௝ ௜ ௝ ௜ ௝

• So the points inside the outer ball forms 
clusters (with a buddy point)

• Where the distance of any point from 

its buddy is roughly ଵ

ଷ଴

∗

ଵ
ଶ

ଷ

ସ

ହ

௠

1 + 𝜖 𝑛/10

≤ 𝑚/2 points



Ulam Median (High Regime)

• By averaging, one of the clusters must contributes
mass to the 

• Next, consider the buddy point ( ) of the largest
contributing cluster

• It breaks 2-factor for its own cluster, and 
roughly maintains 2-factor for other points

∗

ଵ
ଶ

ଷ

ସ

ହ

௠

1 + 𝜖 𝑛/10

≤ 𝑚/2 points



Ulam Median (High Regime)

• So attains -approx. for mass,
and roughly -approx. for the rest

• Overall, it attains -approx.

• Theorem: Best input achieves -approx.,
for some (independent of )

∗

ଵ
ଶ

ଷ

ସ

ହ

௠

1 + 𝜖 𝑛/10

≤ 𝑚/2 points



Ulam Median (Small Regime)

• Consider the case when is “small” (and distributed over 
all/many symbols)

• Intuition: Most pairs of symbols maintain their relative 
ordering in “majority” (much more than 50%) of inputs, and thus can 
be retrieved.

• Of course, if we could identify relative ordering of all the pairs, we can 
identify the (unknown) median using topological ordering



Ulam Median (Small Regime)

• Issue: Relative ordering of some pair of symbols could be changed in 
majority of inputs (maybe because of “a few” bad symbols)

• Can be handled by removing (shortest) cycles from the graph with 
edges representing the relative ordering in “majority” inputs

• Another issue: How to merge high and small regime cases?

• Merging only leads us to -approx. algorithm



Open Problems

• Can we get a PTAS for the Ulam median?

• Can we show the Ulam median is NP-hard? (For inputs?)

• Can we extend the result to the Edit median?



Trace Reconstruction (Recall)

• Problem Statement: Reconstructing an unknown string from its noisy 
observable copies (aka. traces)

• There is an unknown string of length 
• We observe a set of “noisy” copies (traces) ଵ ଶ ௠

• The objective is to recover 
1. Use as few samples as possible
2. Minimize the “error”
3. Design an efficient algorithm



Types of Noises (Recall)

• Substitution Channel (Each symbol is flipped with probability )

• Deletion Channel (Each symbol is deleted with probability )

• Insertion-Deletion Channel (While scanning, keeps the next symbol 
as it is w.p. , deletes it w.p. , and inserts a uniformly 
randomly chosen symbol before the next symbol w.p. )

Noise Channel ௜

We consider this one



Two Cases w.r.t. Unknown Strings (Recall)

• Worst-case: Unknown string is arbitrary

• Average-case: Unknown string is a uniformly randomly chosen string



What about Approximation? (Recall)

• Many applications (including DNA storage system) do not need the 
exact reconstruction

• It suffices to recover a string that is “close” to the unknown string 

• Edit distance (ED) is a natural closeness measure

Getting edit distance is 
trivial (any input trace works)Can we do 

better?



Result 1 [C, Das, Krauthgamer ‘21]

Recall, unknown string = of length , and noise parameter = 

Only using three traces, we can recover a string such that

ଶ

in time time (using a deterministic algorithm).

In this talk, we only consider Binary alphabet



Questions encountered so far (Recall)

• How to do clustering efficiently?

• How to perform approximate trace reconstruction efficiently?

• What is the connection between approximate trace reconstruction 
and approximate median?

• How to find an approximate median efficiently?

Not in this talk



Result 2: They are the same (at least in 
average-case) [C, Das, Krauthgamer ‘21]
• Recall, in the average-case the unknown string is chosen uniformly 

at random

• Let be a -approximate median of ଵ ଶ ௠ (generated 
from by the insertion-deletion channel), for ଵ

௣

ଵ

଺

• Then w.h.p. ை௉்

௠



Result 2             (almost) Result 1

• For three traces ଵ ଶ ଷ , 
( ௜ w.h.p., and thus )

• Thus, w.h.p. ଶ ଵ

௣

• Recall, a standard dynamic programming computes an exact median in 
time ଷ for three input strings

• So, we can reconstruct the unknown string approximately in time ଷ

time



Achieving Near-linear Time

Main Idea: 
• Divide the input strings into small blocks, 

• Then compute medians for those blocks independently, and 

• Finally, concatenate those block medians



Achieving Near-linear Time (Intuition)

• Block-wise and are close (by Result 2), and thus as a whole they are 
close too

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

010100011100111001000011110110001111110001

Unknown

ଵ

ଶ

ଷ



Achieving Near-linear Time (Intuition)

• Challenges: Induced partitions on ଵ ଶ ଷ may not be even. How do we 
identify them?

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

010100011100111001000011110110001111110001

Unknown

ଵ

ଶ

ଷ



Achieving Near-linear Time

• Take anchors of size ଶ in ଵ

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor AnchorBufferBuffer Buffer Buffer



Achieving Near-linear Time

• Find the “best match” of the anchors in ଶ ଷ

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

010100011100111001000011110110001111110001

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor



Achieving Near-linear Time

• Find an exact median of “best match” blocks of ଵ ଶ ଷ, and concatenate 
them to form a string 

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

100011100000011101111110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor



Achieving Near-linear Time (Correctness)

• For each anchor, look into its corresponding block in 
• Consider their “true matches” in ଶ ଷ

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor

100011100000011101111110

BufferBuffer Buffer Buffer



Achieving Near-linear Time (Correctness)

• Claim: For each anchor, true matches are close to the best matches
(It is crucial that was chosen uniformly at random)

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor

100011100000011101111110

BufferBuffer Buffer Buffer



Achieving Near-linear Time (Correctness)

• So, finding median of the best match blocks is “almost same” as the 
finding median of the true match blocks

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor

100011100000011101111110

BufferBuffer Buffer Buffer



Achieving Near-linear Time (Correctness)

• Buffer (of size ) helps to keep the best/true matched blocks 
well-separated

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor

100011100000011101111110

BufferBuffer Buffer Buffer



Achieving Near-linear Time (Correctness)

• Now, apply Result 2 block-wise
• Keep the buffer size much smaller compared to the anchors

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor

100011100000011101111110

BufferBuffer Buffer Buffer



Achieving Near-linear Time (Running time)

• There are ௡

୮୭୪୷ ୪୭୥ ௡
anchors, and for each block-median computation 

takes time.

010100001101111001000001110110001111111001

010100010110110110100011110110100111110001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

100011100000011101111110

Unknown

ଵ

ଶ

ଷ

Anchor Anchor Anchor



Our Result 1 (Recall)

Recall, unknown string = of length , and noise parameter = 

Only using three traces, we can recover a string such that

ଶ

in time time (using a deterministic algorithm).



Our Result 2 (Recall)

• Recall, in the average-case the unknown string is chosen uniformly 
at random

• Let be an -approximate median of ଵ ଶ ௠ (generated 
from by the insertion-deletion channel), for ଵ

௣

ଵ

଺

• Then w.h.p. ை௉்

௠



Uniqueness of Alignment

• Claim: A near-optimal alignment (optimal set of edit operations) 
between and any ௜ is “almost” the same as that induced by the 
insertion-deletion noise channel

• Corollary: A near-optimal alignment between ௜ and ௝ is also 
“almost” the same as that induced by the insertion-deletion noise 
channel

-approximate

Can view as ௝ generating from ௜ with 
a higher noise rate ( ଶ )



Robustness of Approximate Median

• Let be a -approximate median

• Consider the set of edit operations that transforms ௜ ௝

• We can prove that the cost of the above alignment (i.e., the number 
of edit operations) is near-optimal ( -approximation)

• Thus, this alignment is almost the same as that induced by the noise 
channel



High-level Idea (Informally)

• So, their intersections (i.e., 
edits for ଵ and ଵ ) 
are also almost the same

• Hence, and are very similar 
(close in edit distance)

ଵ

ଶ ଷ

Set of edits that 
transform 𝑥ଵ to 𝑥ଶ

via 𝑥

Set of edits that 
transform 𝑥ଵ to 𝑥ଷ

via 𝑥

ଵ

ଶ ଷ

Set of edits that 
transform 𝑥ଵ to 𝑥ଶ

via 𝑦ത

Set of edits that 
transform 𝑥ଵ to 𝑥ଷ

via 𝑦ത

Almost same

Almost same



Concurrent Works

• For deletion channel (with noise rate ):
• Upper bound: Given any traces, we can reconstruct up to edit 

distance ஐ(ெ) in polynomial time

• Information-theoretic lower bound: Given any traces, it is not 
possible to reconstruct up to edit distance better than ୓(ெ)

irrespective of the running time
[Chen, De, Lee, Servedio, Sinha ’21]

• Upper Bound: ௣
ଵ

ఢ

భ

య traces suffices to reconstruct up to edit 
distance [Chase, Peres ’21]



Open Problems

• Can we reduce the error by using more samples?
• Conjecture: could be reduced to , for arbitrary small 

, using traces.

• Can we get a similar result for the worst-case trace reconstruction 
(i.e., when the unknown string is arbitrary)?



Thank You!


