Aggregating a Data Set: Rankings to Strings

Diptarka Chakraborty

(National University of Singapore)

Recent Trends in Algorithms 2022

Finding a Median String (Recall)

* Given a set of strings S = {x, x5, ..., x,,, } over alphabet Z, the
objective is to find a string y € X" (not necessarily from S) that
minimizes

0bj(S,y) =) ED(x;,)

XiES

* Let y* be a string that minimizes 0bj (S, y)
* yv" is referred to as median

Questions encountered so far (Recall)

* How to do clustering efficiently? BNiRiaRas R 114

* How to perform approximate trace reconstruction efficiently?

* What is the connection between approximate trace reconstruction
and approximate median?

* How to find an approximate median efficiently?

Rank Aggregation (Recall)

* Given a set of permutations S = {x{, x,, ..., x,,, } over [n], the
objective is to find a permutation y (not necessarily from §) that
minimizes

0bj(S,y) =) ED(x;,)

XiES

Rank Aggregation - What do we know?

“ s

Kendall-tau PTAS ((1 + €)-approximation in NP-hard [Dwork et al. ‘01]
polytime) [Mathieu, Schudy ‘07] (even for 4 inputs)

For 3 inputs, NP-hard or P?

Ulam (2 — €)-approximation in polytime NP-hard?
[C, Das, Krauthgamer ‘21] ara:

For 3 inputs, in P

Ulam Median for three inputs

 Phase 1: Relax the constraint that the solution need not be a
permutation

* Phase 2: Round the relaxed solution into a feasible one

Ulam Median — Phase 1 (Relax)

* The output need not be a permutation (can be an arbitrary string)

* Use dynamic programming for the Edit median, that runs in

0(2™n™) time (recall, now m = 3)

 Actually, find an n-length solution

Exercise 1: Design dynamic
programming for the Edit median

Exercise 2: Modify it so that it
outputs length restricted solution

Ulam Median — Phase 2 (Round)

* Round the relaxed solution to a feasible one (permutation)

e “Cleverly” delete duplicate symbols and insert missing ones

Xy = 1 2 ver wEr war was was Phase 1 Phase 2
X3 = a2 1 1 — DL 2...1... H Permutation

Ulam Median — High-level Argument

* Consider the following two quantities
* OPT, 01 (S): Optimum value attained by a permutation (Our final target)
* OPT,_10,,(S): Optimum value attained by a n-length string (Phase 1 gives)

* Observation: OPT,,_;,,(S) < OPT, g0 (S)

» Suppose ¥ attains OPT,,_;.n(S). NOW, ¥ ——ts 7 [c-approximation

* To show: Obj(S,z) < ¢ - 0bj(S,y)

Ulam Median for three inputs

* We show: 0bj(S,z) < 0bj(S,y) (i.e., c = 1), for output z for three
inputs

* Fix an arbitrary optimal alignment between y and x4, x5, x5

* For each duplicate symbol
* Only keep the occurrence with maximum matches and delete the rest

Idea: Increase the Obj by 1 (for one input), but
decrease by 2 (avoid deletions in two inputs)

Ulam Median for three inputs

* We show: 0bj(S,z) < 0bj(S,y) (i.e., c = 1), for output z for three
inputs

* Fix an arbitrary optimal alignment between y and x4, x5, x5

* For each duplicate symbol
* Only keep the occurrence with maximum matches and delete the rest

* For each missing symbol
* Insert while maintaining the match with at least one input

Idea: Decrease the Obj by 1 (for one matched input),
but increase by 2 (for the rest two inputs)

Ulam Median for three inputs

* We show: 0bj(S,z) < 0bj(S,y) (i.e., c = 1), for output z for three
inputs

* Delete each duplicate: Increase the Obj by 1 (for one input), but
decrease by 2 (avoid deletions in two inputs)

* Insert each missing: Decrease the Obj by 1 (for one matched input),
but increase by 2 (for the rest two inputs)

* No. of duplicate entries = No. of missing (since y has length n)

* Hence, Obj stays the same

Ulam Median for constant inputs

* Can be extended to 0bj(S,z) < EObj(S, y) (i.e.,c = 3/2), for O(1)
inputs [C, Das, Krauthgamer ‘21]

* Similar approach works for the center problem [C, Gajjar, Jha ‘21]

Max. Rank Aggregation / Ulam Center

* Given a set of permutations S = {x{, x,, ..., x,,, } over [n], the
objective is to find a permutation y (not necessarily from §) that
minimizes

Obj(S,y) = maxED(x;,y)
XiES

* The Ulam center problem is NP-hard

Ulam Center for O(1) inputs [C, Gajjar, Jha ‘21]

* Phase 1: Find an n-length center string (need not be a permutation)

* Phase 2: Round the relaxed solution into a feasible one

* Interestingly, Phase 2 is essentially solving the Hamming center with
wildcards

* Theorem: Achieve 3/2-approximation for the Ulam center in
polytime for O (1) inputs (and exact for 3 inputs)

Ulam Median — What about arbitrary inputs?

 Phase 1: Relax the constraint that the solution need not be a
permutation

Takes exponential (in
the no. of inputs m)
time

 Phase 2: Round the relaxed solution into a feasible one

Ulam Median (High Regime)

* Consider the case when OPT(S) = mn/5 (Recall, m = no. of inputs, n
= length of input)

* Theorem: Best input achieves (2 — €)-approximation, for some € > 0
(independent of n, m)

Ulam Median (High Regime)

* Assumption: No input x € S is at distance < (1 — €)OPT /m from an
(unknown) median y*

* Else, that point achieves (2 — €)-approximation

Ulam Median (High Regime)

* High Regime: OPT = mn/5

* For each point x; € §, there is a set I; of edit (or unaligned) symbols,
where |I;| = (1 — €)n/10 (for simplicity, |I;| = n/15)

Ulam Median (High Regime)
* For each point x; € S, |I;| = n/15

* Claim: There can be at most 30 such sets with
pairwise intersection of size < /450
(Follows from inclusion-exclusion)

Ulam Median (High Regime)

* Observation: For any two x;, x;,
ED(x;,x;) < || + || — |I; n 1)

< m/2 points

* So the points inside the outer ball forms X
1
< 30 clusters (with a buddy point) ;
m
03 A
: : y
* Where the distance of any point from G0 X4

its buddy is roughly < (2 — 3—10) n/15

Ulam Median (High Regime)

* By averaging, one of the clusters must contributes
OPT /70 mass to the OPT

< m/2 points

* Next, consider the buddy point () of the largest ; X5
contributing cluster "
M

* It breaks 2-factor for its own cluster, and 0
roughly maintains 2-factor for other points &

Ulam Median (High Regime)

* So y attains (2 — 1/30)-approx. for OPT /70 mass,
and roughly 2-approx. for the rest

< m/2 points

X2
X1
* Overall, it attains (2 — €)-approx. .
*m
X3 A
5
* Theorem: Best input achieves (2 — €)-approx., o X4

— —_—

for some € > 0 (independent of n, m)

Ulam Median (Small Regime)

* Consider the case when OPT(S) is “small” (and distributed over
all/many symbols)

* Intuition: Most pairs of symbols (a, b) maintain their relative
ordering in “majority” (much more than 50%) of inputs, and thus can

be retrieved.

* Of course, if we could identify relative ordering of all the pairs, we can
identify the (unknown) median using topological ordering

Ulam Median (Small Regime)

* |[ssue: Relative ordering of some pair of symbols could be changed in
majority of inputs (maybe because of “a few” bad symbols)

* Can be handled by removing (shortest) cycles from the graph with
edges representing the relative ordering in “majority” inputs

* Another issue: How to merge high and small regime cases?

* Merging only leads us to (2 — €)-approx. algorithm

Open Problems

e Can we get a PTAS for the Ulam median?
* Can we show the Ulam median is NP-hard? (For O(1) inputs?)

e Can we extend the result to the Edit median?

Trace Reconstruction (Recall)

* Problem Statement: Reconstructing an unknown string from its noisy

observable copies (aka. traces)

* There is an unknown string x of length n

* We observe a set of “noisy” copies (traces) x4, Xo, ..., X,

* The objective is to recover x

/
1. Use as few samples as possible

2. Minimize the “error”

8. Design an efficient algorithm

~

/

Types of Noises (Recall)

x =011000101 Noise Channel — x; = 0100110101

* Substitution Channel (Each symbol is flipped with probability p)
* Deletion Channel (Each symbol is deleted with probability p)

* Insertion-Deletion Channel (While scanning, keeps the next symbol
asitisw.p. 1 —p, deletes it w.p. p/2, and inserts a uniformly

randomly chosen symbol before the next symbol w.p. p/2)
| We considerthi%

Two Cases w.r.t. Unknown Strings (Recall)

* Worst-case: Unknown string is arbitrary

* Average-case: Unknown string is a uniformly randomly chosen string

What about Approximation? (Recall)

* Many applications (including DNA storage system) do not need the
exact reconstruction

* |t suffices to recover a string z that is “close” to the unknown string x

 Edit distance (ED) is a natural closeness measure

°° L Getting ~pn edit distance is J

trivial (any input trace works)

Can we do

better?

Result 1 [C, Das, Krauthgamer ‘21]

Recall, unknown string = x of length n, and noise parameter =p

Only using three traces, we can recover a string z such that

>1——
n

1
Pr [ED(x, z) <0 (pz logE) n

in time O (n) time (using a deterministic algorithm).

In this talk, we only consider Binary alphabet

Questions encountered so far (Recall)

* How to do clustering efficiently? BNiRiaRas R 114

* How to perform approximate trace reconstruction efficiently?

* What is the connection between approximate trace reconstruction
and approximate median?

* How to find an approximate median efficiently?

Result 2: They are the same (at least in
average-case) [C, Das, Krauthgamer ‘21]

* Recall, in the average-case the unknown string x is chosen uniformly
at random

* Let y be a (1 + €)-approximate median of x{, x,, -+, x,,, (generated
from x by the insertion-deletion channel), for € € [110 D log%, %]

* Then w.h.p. ED(x,y) < 0(6)%

Result 2 s (almost) Result 1

* For three traces S = {x4,x,,x3}, OPT <3pn
(ED(x,x;) < pnw.h.p., and thus Obj(S,x) < 3 p n)

* Thus, w.h.p. ED(x,y) < 0 (pz log%) n

* Recall, a standard dynamic programming computes an exact median in
time O(n?) for three input strings

* So, we can reconstruct the unknown string x approximately in time O (n?)
time

Achieving Near-linear Time

Main Ildea:
* Divide the input strings into small blocks,

* Then compute medians for those blocks independently, and

* Finally, concatenate those block medians

Achieving Near-linear Time (Intuition)
Unknown X 010100001101111001000001110110001111111001

X1 01010001011011011010001111017]10100111110001

X2 1011001001011100100011011101/00011011110101

X3 0101010001110311100100100111011001111100110

4 0101000111001110010000111107]10001111110001

* Block-wise x and z are close (by Result 2), and thus as a whole they are
close too

Achieving Near-linear Time (Intuition)

Unknown X

* Challenges: Induced partitions on x4, x5, x3 may not be even. How do we

01010000110111

10010000011101

10001111111001

01010001011011

01101000111101

10100111110001

10110010010111

00100011011101/00011011110101

01010100011101

11001001001110

11001111100110

01010001110011

10010000111101

10001111110001

identify them?

Achieving Near-linear Time

Unknown X

010100001101111001000001110110001111111001

Buffer Anchor

Buffer

Anchor

Buffer

Anchor

Buffer

01010001011

011011

01000111

1101101

00111110

001

101100100101110010001101110100011011110101

010101000111011100100100111011001111100110

* Take anchors of size log? n in x4

Achieving Near-linear Time

Unknown X

010100001101111001000001110110001111111001

Anchor

Anchor

Anchor

01010001011

0110110

1000111101101

00111110

001

10110010010

11100100011011101000

110111710101

01010100011

1011100

100100117101100111110

0110

010100011100111001000011110110001111110001

* Find the “best match” of the anchors in x;, x;3

Achieving Near-linear Time
Unknown X 010100001101111001000001110110001111111001

Anchor Anchor Anchor

X1 010100010110110110100011110110100111110001

X2 10110010010111001000110111010001101117]10101

X3 010101000111011100100100171011001111100110

Z 100011100000011101111110

* Find an exact median of “best match” blocks of x4, x,, x5, and concatenate
them to form a string z

Achieving Near-linear Time (Correctness)

Unknown X

010100001101111001

00000111

0110001111111001

Buffer Anchor Buffer

Anchor

Buffer

Anchor Buffer

01010001011011011

01000111

1101101

00111110001

1011001001011100100011

01110100011011110101

0101010001110111001

010011

|

011001111100110

10001110

00000111

01111110

* For each anchor, look into its corresponding block in x

* Consider their “true matches” in x,, x5

Achieving Near-linear Time (Correctness)

Unknown X 010100001101111001000001110110b01111111001
Buffer Anchor Buffer Anchor Buffer Anchor Buffer
X1 OlOﬂOOOlOllOl10110100011110110100111110001

X2 101/100100101110010004101110100011011110101

X3 010101000111011100100100111011001111100110

Z 100011100000011101111110

* Claim: For each anchor, true matches are close to the best matches
(It is crucial that x was chosen uniformly at random)

Achieving Near-linear Time (Correctness)

Unknown X 010100001101111001000001110110b01111111001
Buffer Anchor Buffer Anchor Buffer Anchor Buffer
X1 OlOﬂOOOlOllOl10110100011110110100111110001

X2 101/100100101110010004101110100011011110101

X3 010101000111011100100100111011001111100110

Z 100011100000011101111110

* So, finding median of the best match blocks is “almost same” as the
finding median of the true match blocks

Achieving Near-linear Time (Correctness)

Unknown X 010100001101111001000001110110b01111111001
Buffer Anchor Buffer Anchor Buffer Anchor Buffer
X1 OlOﬂOOOlOllOl10110100011110110100111110001

X2 101/100100101110010004101110100011011110101

X3 010101000111011100100100111011001111100110

Z 100011100000011101111110

* Buffer (of size w(logn)) helps to keep the best/true matched blocks
well-separated

Achieving Near-linear Time (Correctness)

Unknown X

* Now, apply Result 2 block-wise

010100001101111001

00000111

0110001111111001

Buffer Anchor Buffer

Anchor

Buffer

Anchor Buffer

01010001011011011

01000111

1101101

00111110001

1011001001011100100011

01110100011011110101

0101010001110111001

010011

|

011001111100110

10001110

00000111

01111110

* Keep the buffer size much smaller compared to the anchors

Achieving Near-linear Time (Running time)
Unknown X 010100001101111001000001110110001111111001

Anchor Anchor Anchor

X1 010100010110110110100011110110100111110001

X2 10110010010111001000110111010001101117]10101

X3 010101000111011100100100171011001111100110

Z 100011100000011101111110

n

poly logn
takes poly logn time.

* There are anchors, and for each block-median computation

Our Result 1 (Recall)

Recall, unknown string = x of length n, and noise parameter =p

Only using three traces, we can recover a string z such that

>1—=
n

1
Pr [ED(x, z) <0 (pz logg) n

in time O (n) time (using a deterministic algorithm).

Our Result 2 (Recall)

* Recall, in the average-case the unknown string x is chosen uniformly
at random

* Let y be an (1 + €)-approximate median of x4, x,, -**, X,,, (generated
from x by the insertion-deletion channel), for € € [110 D log%,ﬂ

* Then w.h.p. ED(x,y) < O(€) %

(1+ 6)-appr@

 Claim: A near-optimal alignment (optimal set of edit operations)
between x and any x; is “almost” the same as that induced by the
insertion-deletion noise channel

Uniqueness of Alignment

Can view as x; generating from x; with
a higher noise rate (~2p — 0(p?))

* Corollary: A near-optimal alignment between x; and x; is also
“almost” the same as that induced by the insertion-deletion noise
channel

Robustness of Approximate Median
* Let y be a (1 + €)-approximate median

* Consider the set of edit operations that transforms x; — y — x;

* We can prove that the cost of the above alignment (i.e., the number
of edit operations) is near-optimal ((1 + O(¢))-approximation)

* Thus, this alignment is almost the same as that induced by the noise
channel

High-level Idea (Informally)

Set of edits that
transform x; to x,
via x

Almost same

N

X2

Set of edits that
transform x; to x5
via x

X3

* So, their intersections (i.e.,
edits for x; = x and x; — V)
are also almost the same

* Hence, x and y are very similar
(close in edit distance)

Set of edits that
transform x; to x,
viay

Almost same

Set of edits that
transform x; to x5
via y

Concurrent Works

* For deletion channel (with noise rate p):

* Upper bound: Given any M < ©(1/p) traces, we can reconstruct up to edit
distance n - (p M)*™) in polynomial time

* Information-theoretic lower bound: Given any M < O(1/p) traces, it is not
possible to reconstruct up to edit distance better thann - (p M)OM)
irrespective of the running time

[Chen, De, Lee, Servedio, Sinha '21]

1
* Upper Bound: exp | 0, (log §)3>> traces suffices to reconstruct up to edit
distance en [Chase, Peres '21]

Open Problems

* Can we reduce the error by using more samples?

* Conjecture: ED(x,) could be reduced to O(en), for arbitrary small
e > 0, using poly(1/€) traces.

* Can we get a similar result for the worst-case trace reconstruction
(i.e., when the unknown string is arbitrary)?

Thank You!

