## Aggregating a Data Set: Rankings to Strings

Diptarka Chakraborty (National University of Singapore)

**Recent Trends in Algorithms 2022** 

#### String Similarity



#### String Similarity



### Applications of Edit Distance

- File synchronization
- NLP (e.g., auto spell-correction)



- Pattern recognition
- Computation biology (DNA matching)
- Database systems
- Many more.....

Observed data A/C A/T T/T T/A A/A G/C A/A G/T A/A A/T A/T A/G A/G A/G C/C

| Inherited from:   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | _ |
|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mother            | A | Т | Т | A | A | С | A | G | A | A | Т | A | A | A | С |
| father            | С | A | Т | т | A | G | A | т | A | т | A | G | G | G | С |
|                   | 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| genetic<br>marker |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

#### Computing Edit Distance

- For two strings basic Dynamic Programming solves in Quadratic time
- Many results on approximating the edit distance

#### Clustering



Question 1: Can we partition them efficiently so that "similar" strings are in the same partition?

#### One Application: DNA-Storage System



# One Application: DNA-Storage System What we get What we need



#### DNA-Storage: Step 1 - Clustering



#### DNA-Storage: Step 1 - Clustering



#### Clustering



Question 1: Can we partition them efficiently so that "similar" strings are in the same partition?

#### Clustering – What is known?

- Nothing much non-trivial is known, except
- One attack on clustering for noisy data [Rashtchian et al.'17]
- **Objective:** For DNA-storage application we need algorithm much faster than  $O(n^2)$  time, where n is the data size

#### DNA-Storage: Step 2 – How?



#### Trace Reconstruction

- Problem Statement: Reconstructing an unknown string from its noisy observable copies (aka. *traces*)
- There is an unknown string x of length n
- We observe a set of "noisy" copies (traces)  $x_1, x_2, ..., x_m$
- The objective is to recover  $\boldsymbol{x}$

1. Use as few samples as possible

- 2. Minimize the "error"
- 3. Design an efficient algorithm

#### Types of Noises



- Substitution Channel (Each symbol is flipped with probability p)
- **Deletion Channel** (Each symbol is deleted with probability *p*)
- Insertion-Deletion Channel (While scanning, keeps the next symbol as it is w.p. 1 p, deletes it w.p. p/2, and inserts a uniformly randomly chosen symbol before the next symbol w.p. p/2)

We consider this one

#### Two Cases w.r.t. Unknown Strings

- Worst-case: Unknown string is arbitrary
- Average-case: Unknown string is an uniformly randomly chosen string

Roughly suffices for DNA storage application

### What is Known (for exact reconstruction)?

- <u>Worst-case</u>
  - Upper Bound:  $2^{O(n^{1/5})}$  traces suffices [Chase '21]
  - Lower Bound:  $\widetilde{\Omega}(n^{3/2})$  traces necessary [Chase '21]

#### • Average-case

- Upper Bound: exp(O(log<sup>1/3</sup> n)) traces suffices (n<sup>1+o(1)</sup> running time) [Holden, Pemantle, Peres, Zhai '20]
- Lower Bound:  $\widetilde{\Omega}(\log^{5/2} n)$  traces necessary [Chase '21]

#### What about Approximation?

- Many applications (including DNA storage system) do not need the exact reconstruction
- It suffices to recover a string z that is "close" to the unknown string x
- Edit distance (ED) is a natural closeness measure



Getting ~*pn* edit distance is trivial (any input trace works)

#### DNA-Storage: Step 2 – Trace Reconstruction



#### DNA-Storage: Step 2 – Finding Median



#### Minimizing the sum of distances

#### Finding a Median String

• Given a set of strings  $S = \{x_1, x_2, ..., x_m\}$  over alphabet  $\Sigma$ , the objective is to find a string  $y \in \Sigma^*$  (not necessarily from S) that <u>minimizes</u>

$$Obj(S, y) = \sum_{x_i \in S} ED(x_i, y)$$

- Let  $y^*$  be a string that minimizes Obj(S, y)
- y<sup>\*</sup> is referred to as *median*

#### Finding a Median String

• The problem is NP-hard

Can we do better with approximation?

- A standard dynamic programming finds a median in time  $O(2^m n^m)$ , where each of m input strings is of length at most n [Sankoff '75]
- No  $O(n^{m-\epsilon})$  time algorithm assuming Strong Exponential Time Hypothesis (SETH) [Hoppenworth, Bentley, Gibney, Thankachan '20]

#### Approximate Median

• Let  $OPT(S) = Obj(S, y^*)$ , where  $y^*$  is a median string

• A string  $\overline{y}$  is a c-approximate median iff  $Obj(S, \overline{y}) \leq c \cdot OPT(S)$ 

#### What is the connection?

- Is there any connection between the approximate trace reconstruction and the approximate median problem?
- A common heuristic for trace reconstruction (in practice) is to find a median (or multi-sequence alignment)
- To think: Is there any definite connection between these two problems?



#### Questions encountered so far

• How to do clustering efficiently? Not in this talk

• How to perform approximate trace reconstruction efficiently?

- What is the connection between approximate trace reconstruction and approximate median?
- How to find an approximate median efficiently?

#### Approximate Median

- Can we get a constant factor approximation in polytime?
- 2-approximation is easy (Why?)
  - Output the best input (i.e.,  $z \in S$  with the minimum Obj(S, z))
  - Use triangle inequality (holds for any metric)

#### Approximate Median

- Can we get a constant factor approximation in polytime?
- 2-approximation is easy (Why?)
  - Output the best input (i.e.,  $z \in S$  with the minimum Obj(S, z))
  - Use triangle inequality (holds for any metric)
- Question: What about PTAS? (Or even breaking below 2?)

#### What about Hamming?

• Easy (Why?)



 $y^* = 101000100001000000$ 

**Output coordinate-wise majority** (break ties arbitrarily)

#### Permutations – a special case?

- Suppose input strings are permutations over [n] (instead of arbitrary n-length strings)
- Consider the edit distance between two permutations (as the min. number of insertions, deletions)
   e.g.
- Known as **Ulam metric**

e.g.  $x_1 = 785693214$   $x_2 = 275693814$  $ED(x_1, x_2) = 4$ 

#### Permutations – a special case? Not Really

• Given a set of permutations  $S = \{x_1, x_2, ..., x_m\}$  over [n], the objective is to find a **permutation** y (not necessarily from S) that minimizes

$$Obj(S, y) = \sum_{x_i \in S} ED(x_i, y)$$

#### Why to study Ulam Median?

• First, it captures some of the inherent difficulties of the Edit metric

• Second, permutations can be viewed as rankings, and the Ulam distance is an interesting dissimilarity measure

6 positions











### Applications

- Social choice theory
- Sports
- Databases
- Statistics
- Internet
- Many more...

#### Rank Aggregation

• Ulam distance is one of the dissimilarity measures among rankings/permutations

Other popular measures include Kendall-tau / Kemeny, Spearman footrule,...

Counts the number of inversions

#### What do we know?

| Metric      | Upper Bound                                                                                    | Lower Bound                                                                      |
|-------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Kendall-tau | PTAS ( $(1 + \epsilon)$ -approximation in polytime) [Mathieu, Schudy '07]                      | NP-hard [Dwork et al. '01]<br>(even for 4 inputs)<br>For 3 inputs, NP-hard or P? |
| Ulam        | $(2 - \epsilon)$ -approximation in polytime<br>[C, Das, Krauthgamer '21]<br>For 3 inputs, in P | NP-hard?                                                                         |

## **Thank You!**