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• Approximation algorithms are efficient 
algorithms that find near-optimal solution.
• For a minimization problem, an algorithm 
𝒜 is α-(absolute) approximation (α>1)
if 𝒜 𝐼 ≤ 𝛼 𝑂𝑃𝑇 𝐼 ∀ input instances 𝐼 ∈ ℐ.
• For a maximization problem, an algorithm 
𝒜 is α-(absolute) approximation (α>1)
if OPT 𝐼 ≤ 𝛼 𝒜 𝐼 ∀ input instances 𝐼 ∈ ℐ.
• For a minimization problem, an algorithm 
𝒜 is α-asymptotic approximation (α>1) 
if 𝛼 = lim

!→#
sup { sup

$∈ℐ

𝒜 $
()* $

|𝑂𝑃𝑇 𝐼 = 𝑛} ∀ input instances 𝐼 ∈ ℐ.

°
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• Polynomial Time Approximation Schemes (PTAS):  
If for every 𝜀 > 0, there exists a poly-time (𝑂(𝑛+(-))-time)  
algorithm 𝐴𝜀 such that 𝐴𝜀(𝐼) ≤ (1 + 𝜀) 𝑂𝑃𝑇(𝐼).

• Efficient PTAS (EPTAS): if running time is 𝑂 𝑓 𝜀 . 𝑛𝑐 .
• Fully PTAS (FPTAS): if running time is 𝑂((𝑛/𝜀)𝑐).

• APX-hardness implies no PTAS.
• W[1]-hardness implies no EPTAS.
• Strong NP-hardness implies no FPTAS.
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• Asymptotic PTAS (APTAS): 𝐴𝜀(𝐼) ≤ (1 + 𝜀) 𝑂𝑃𝑇(𝐼) + 𝑂(1).
• QuasiPTAS (QPTAS): (1 + 𝜀)-approximation in 𝑛 /01 ! !"($)-time.
• PseudoPTAS (PPTAS): (1 + 𝜀)-approximation in 𝑛("(2)-time, where 𝑛 is 

the  
number of items and the numeric data is polynomially bounded in 𝑛. 

• QPTAS implies not APX-hard unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (23456(/01 !)).
• So if a problem has QPTAS we expect it to have PTAS.



Approximation Algorithms for Maximum 
Independent Set of Rectangles
• We love rectangle. 



Packing Problems: Placement of objects 
nonoverlappingly under some constraints

“I think packing problems are appealing to mathematicians 
and computer scientists because they seem very simple –
just place these items into the container. Yet they tend to be 
extremely complicated to actually solve.”
-- Erik Demaine (MIT).



Approximation Algorithms for Maximum 
Independent Set of Rectangles

• Independent set is a set of vertices in a graph, s.t.
no two vertices are adjacent.
• MIS: Find the maximum sized independent set.
• Classical NP-hard problem.
• Trivial to get 𝑛-approximation.
• "𝑂( #

$%&! #
)-approximation [Feige’04],.

• NP-hard to get 𝑛'()-approximation, assuming 
𝑁𝑃 ⊈ 𝑍𝑃𝑃. [Hastad’ 99].
• Hardness: Ω( #

*+,($%&
!
"#$ #)

). [Khot-Ponnuswamy’06]



Geometric Intersection Graph

• Nodes correspond to geometric 
objects (e.g. polygons, spheres, …).
• There is an edge (𝑢, 𝑣) if the objects 

corresponding to 𝑢 and 𝑣 overlap.
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MISI (Maximum Independent Set of Intervals)
• Nodes corrs. to intervals.
• There is an edge (𝑢, 𝑣) if the intervals corresponding to 𝑢 and 𝑣 overlap.
• Find the maximum independent set in geometric intersection graph 

(equivalently maximum cardinality nonoverlapping intervals).
• Polynomial time solvable for intersection graph of intervals.



MISI (Maximum Independent Set of Intervals)
• Nodes corrs. to intervals.
• There is an edge (𝑢, 𝑣) if the intervals corresponding to 𝑢 and 𝑣 overlap.
• Find the maximum independent set in geometric intersection graph 

(equivalently maximum cardinality nonoverlapping intervals).
• Polynomial time solvable for intersection graph of intervals.

• Greedy: Earliest Finish Time (unweighted), DP (weighted).



MWISI (Maximum Independent Set of Intervals)

Question: How do you solve Max-Weight indep. set of intervals on a line?
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• Divide and Conquer?
• Can be implemented as a dynamic program
• DP[𝑥2, 𝑥7] contains the optimal solution in the range 
[𝑥2, 𝑥7]
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MWISI (Maximum Independent Set of Intervals)

Question: How do you solve Max-Weight indep. set of intervals on a line?

• Divide and Conquer?
• Can be implemented as a dynamic program
• DP[𝑥2, 𝑥7] contains the optimal solution in the range [𝑥2, 𝑥7]



MISS (Maximum Independent Set of Squares)
• A simple greedy algorithm gives 4-approximation for unweighted case. 
• Can be extended to disks and fat objects.
• PTAS for unit squares 

[Shifted grid: Hochbaum-Maass’85] 
• PTAS for arbitrary squares (even with weights) 

[Shifted Hierarchical Decomposition: Erlebach-Jansen-Siedel’01, 
Quadtrees: Chan’03].
• PTAS for arbitrary squares  [Geometric Separator Theorem: Smith-

Wormald’98, Chan’03].
• PTAS for arbitrary squares  [Local Search: Chan-HarPeled’09].



Maximum Independent Set of Rectangles (MISR)

• Given: A set of n axis-parallel input rectangles.
• Goal: Find a set of non-overlapping rectangles of maximum cardinality.



Maximum Independent Set of Rectangles (MISR)

• Given: A set of n axis-parallel input rectangles.
• Goal: Find a set of non-overlapping rectangles of maximum cardinality.



Maximum Independent Set of Rectangles (MISR)

• Given: A set of n axis-parallel input rectangles.
• Goal: Find a set of non-overlapping rectangles of maximum cardinality.

• Application: Map labelling, data mining, resource allocation. 



MISR: Theoretical Importance

(Packing = axis-aligned 
nonoverlapping 
placement)

Bin-Packing Type Knapsack Type

Rectangles movement Pack all rectangles into minimum 
number of unit square bins

Pack maximum profit subset of 
rectangles into a unit square knapsack.

Vertically and 
Horizontally

2-D Bin Packing 
[1.405 BK’14] [No APTAS]

2- Knapsack
[1.89 GGHKW’17][PTAS expected]

Vertically (uniform) round-SAP/round-UFP
[2 + 𝜖 KKW’22] [No APTAS]
(general) round-SAP/round-UFP
[O(log log n) KKW’22] [No APTAS]

(uniform) SAP
[1.969, MW’19] [PTAS expected]
(general) 2 + 𝜖, MW’15]
UFP: PTAS [GMW’22]

Not allowed Rectangle Coloring
[O(log 𝜔) CW’21]

MWISR
[O(log log n), CW’21] ][PTAS expected]



MISR: Theoretical Importance

• Technique developed for MISR had found usage in many other 
intersecting packing/covering problems in approximation algorithms, 
combinatorial optimization, and computational geometry such as: 2D 
bin packing, 2D knapsack, strip packing, unsplittable flow on a path 
(UFP), storage allocation problem (SAP), round-UFP, round-SAP, 
rectangle coloring, geometric set cover, ...
• Deep connections with structural graph theory (chromatic number 

and clique number of 𝜒-bounded graphs) and discrete/combinatorial 
geometry (Pach-Tardos Conjecture). 



MISR: Tale of Approximability

• O(log 𝑛) [Khanna et al, SODA’98, Nielson TCS’00, K.,Reddy APPROX’20…]
• ⌈log8𝑛⌉ [Berman et al., SODA’01]
• 4q (q is the max clique size) [LNO, APPROX’02]
• W[1]-hard [Marx, ESA’05] even for squares. 
• O(log log 𝑛) [Chalermsook-Chuzhoy, SODA’09]
• QPTAS: 1 + 𝜖 -approx. in 𝑛3456( /01 !/:) time [Adamaszek-Wiese, 

FOCS’13]
• 1 + 𝜖 -approx. in 𝑛;0/<(/01 /01 = /:) time [Chuzhoy-Ene FOCS’16]  
• PTAS is expected but even O(1)-approximation was not known.



MISR: Tale of Approximability
• Mitchell [FOCS’21]: 10-approximation.
• Analysis is based on exhaustive case analysis, with sixty cases in total!
• Can we improved approximation algorithms, better runtime,  and 

simpler analysis? 



MISR: Our result

A polynomial time (2 + 𝜖)-approximation.
[3-approx. in SODA’22]

• Step 1. Show existence of a “good” structured solution:
- Set of candidate solutions: 𝐶. -- size can be exponential.
- Set of structured solution: 𝑆.  -- need to make the size to be polynomial.
- 𝑆 is a good approximation of 𝐶: For any candidate solution 𝐼 ∈ 𝐶 there is a 
structured solution 𝐼/ ⊆ 𝐼 and  𝐼/ ∈ 𝑆 such that 𝛼|𝐼′| ≥ 𝐼 .
• Step 2. DP-based algorithm that finds the best structured solution.

• Note: 2-approx. is best known even for 
axis-parallel line segments.



What is a structured solution?



Guillotine Cuts



• Guillotine cuts: An end-to-end cut along 
a straight line to divide a (rectangular) 
piece into two smaller pieces.

• Practically very relevant. 
• Cutting stock: Cut out some required 

geometric objects under some 
constraints, from a large source 
material such as glass, rubber, metal, 
wood or cloth. 

• lower cost (minimal operation by 
machines) and simple usability (simple 
to program using column generation).

Guillotine Cuts
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• Guillotine Cutting Sequence:
• A series of guillotine cuts , each 

cut separating a sub-piece into 
two new sub-pieces.
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Guillotine Cuts

• Guillotine Cutting Sequence:
• A series of guillotine cuts , each 

cut separating a sub-piece into 
two new sub-pieces.

• Guillotine cuts has connections with 
other packing problem
such as bin packing [BLS FOCS’05], 2D 
Knapsack [KMSW SoCG’21], 2D Strip 
Packing [KLMS’22]… 



• A cutting sequence can be naturally 
imagined as a binary tree: 

• Each node corresponds to a 
rectangular region.

• Each nonleaf node (corrs. to region 𝑃) 
contains two children (corrs. to 𝑃', 𝑃0
obtained by guillotine cut from 𝑃).

• Each leaf node contains exactly one 
item.
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Guillotine Cuts

• A cutting sequence can be naturally 
imagined as a binary tree: 

• Each node corresponds to a 
rectangular region.

• Each nonleaf node (corrs. to region 𝑃) 
contains two children (corrs. to 𝑃', 𝑃0
obtained by a guillotine cut in 𝑃).

• Each leaf node contains exactly one 
item.



• A rectangle is extracted if it is not killed 
and is the only rectangle in its sub-piece.

• All rectangles except 𝑅# are extracted in 
this example.

• Given configuration is guillotine 
separable if all rectangles can be 
extracted using some cutting sequence.
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Guillotine Cuts



Not Guillotine separable

Guillotine Cuts

• Is it always possible to separate out 
all rectangles using a sequence of 
guillotine cuts?  
• NO!



Guillotine separability of rectangles

• Goal: Separate out a constant fraction of 
rectangles using a sequence of guillotine cuts?
• Pach-Tardos [SoCG’00] conjectured  it to be true.
• BIG OPEN QUESTION in computational geometry, 

operations research and combinatorics.



Guillotine separability of rectangles

• Hardness: [Abed et al., APPROX’15]
Given n rectangles, there are instance where 
we can not separate out > n/2 rectangles 
using a sequence of guillotine cuts.

• Algorithm: [K., Reddy, APPROX’20]
We can separate out > n/(log n+1) rectangles 
using a sequence of guillotine cuts.



Extraction of 𝑛/(log 𝑛 + 1) rectangles

• Observation 1:  If all rectangles intersect a 
straight line then they are guillotine 
separable.
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0,2𝑛 ×[0,2𝑛] grid with integral corners.



Extraction of 𝑛/(log 𝑛 + 1) rectangles
• Assume:  Rectangles are embedded in 
0,2𝑛 ×[0,2𝑛] grid with integral corners.

• Define pole lines: level 1 at 𝑛, level 2 at 
𝑛/2, 3𝑛/2, level 3 at 𝑛/4, 3𝑛/4, 5𝑛/4, 7𝑛/4 ….
• There are (log 𝑛 + 1) levels.
• The union of all poles of level 1 to 𝑖, divides the 

plane into 2> equal partitions. 
• Level of a rectangle is the smallest level 𝑖 such 

that some level-𝑖 pole intersects the rectangle. 



Extraction of 𝑛/(log 𝑛 + 1) rectangles

• Pole lines: level 1 at !
"

, level 2 at !
#
, $!
#

, level 3 at !
%
, $!
%
, &!
%
, '!
%

….

• Level of a rectangle is the smallest level 𝑖 such that some level-𝑖
pole intersects the rectangle. 



Extraction of 𝑛/(log 𝑛 + 1) rectangles

• We get a partition into (log 𝑛 + 1) color classes.
• Each color class is 2-stage guillotine separable.
• Take color of maximum cardinality. 
• This gives guillotine separable ≥ !

()*+, !
rectangles



Further improvement and Hardness.

• Using a similar decomposition using T-cuts (existentially), we can 
improve extraction factor from 𝑛/ log7(𝑛 + 1) to 𝑛/ log? 𝑛 + 2 .
• Question: 

Can one obtain 𝑛/ log 𝑛 (2@-) using constant number of stages?

• Answer: No.
• In fact, to extract Ω(𝑛) rectangles we need at least log 𝑛/ log log 𝑛

stages (and log log 𝑛 stages for the unweighted case).



Connecting guillotine & MISR
• Assume an existential property (P1):  For any embedding of 𝑛 nonoverlapping 

rectangles, there are  𝑛/𝛼 fraction of rectangles separable by guillotine cuts.
• Assume optimal MISR solution is 𝑂𝑃𝑇. 
• The rectangles in 𝑂𝑃𝑇 are nonoverlapping, but may not be guillotine separable.

• From P1: 123
4

rectangles that are guillotine separable.

• We will show a Dynamic Program (DP) that returns optimal guillotine separable 
set for a MISR instance in 𝑂 𝑛5 time.

• DP returns guillotine separable set 𝑅’,  𝑅/ ≥ 123
4

.
• Guillotine separable rectangles are structured and gives 𝛼-approximation for 

MISR. (Pach-Tardos Conjecture: 𝛼 = 2).



Processing before DP
• All rectangle corners have integral coordinates in 0,2𝑛 − 1 ×[0,2𝑛 − 1].



DP for optimal guillotine separable set for MISR instance. 

• 𝐷𝑃[𝐶] stores optimal guillotine separable set 
for MISR for rectangular region  𝐶.
• Base cases: 

If 𝐶 coincide with a rectangle 𝑅, give {𝑅} as 
solution. 
• If 𝐶 contains no rectangle, give {𝜙} as 

solution. 



DP for optimal guillotine separable set for MISR instance. 

• Recurrence: 𝐷𝑃[𝐶] = 𝐷𝑃 𝐶2 ∪ 𝐷𝑃 𝐶7 ,
where 𝐷𝑃 𝐶2 + |𝐷𝑃 𝐶7 | is maximum 
among all partitions 𝐶2, 𝐶7 of 𝐶 by some 
guillotine cut. 
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DP for optimal guillotine separable set for MISR instance. 

• Recurrence: 𝐷𝑃[𝐶] = 𝐷𝑃 𝐶2 ∪ 𝐷𝑃 𝐶7 ,
where 𝐷𝑃 𝐶2 + |𝐷𝑃 𝐶7 | is maximum 
among all partitions 𝐶2, 𝐶7 of 𝐶 by some 
guillotine cut. 
• There are 𝑂(𝑛) such cuts. 𝑂(𝑛A) DP cells. 
⇒ 𝑂(𝑛B)-algorithm.



Alternate Structured Solution?
• Problem with Guillotine separability:

We only know 𝛼 ≤ (log 𝑛 + 1).
• Can we generalize this idea?

-- Instead of binary tree to k-ary tree.
-- Instead of rectangular region allow 
orthogonal polygons with t sides. 
-- (𝑘 ≥ 2, 𝑡 ≥ 4, are integers).

• Generalizes guillotine! By allowing 
more flexibility we might have a 
better approximation as well.

• For 6-approximation, we will use 
𝑘 = 3, 𝑡 = 26.



k-ary Partition into t-sided polygons
• Problem with Guillotine separability:

We only know 𝛼 ≤ (log 𝑛 + 1).
• Can we generalize this idea?

-- Instead of binary tree to k-ary tree.
-- Instead of rectangular region allow 
orthogonal polygons with t sides. 
-- (𝑘 ≥ 2, 𝑡 ≥ 4, are integers).

• Generalizes guillotine! By allowing 
more flexibility we might have a 
better approximation as well.

• For 6-approximation, we will use 
𝑘 = 3, 𝑡 = 26.

• For 2 + 𝜖-approximation, we will use 
𝑘 = 2 + 𝜖, 𝑡 = 𝑂) 1 .



k-ary Partition into t-sided polygons

• Property of DP Table:
• Number of possible orthogonal polygons:

≤ (2𝑛)6.
• Maximum number of segments in a possible 

cut for k-ary partition of a t-sided orthogonal 
polygon ≤ 𝑘𝑡/2.

• Number of possible cuts: (2𝑛)76/0 .

• DP Runtime = 𝑂 𝑛
(&#'))
' .

• We will show such 𝑘 = 3, 𝑡 = 26 partitions 
give  6-approximation, implying time 
complexity 𝑂 𝑛95 .



Recursive partitioning

• If there exists a recursive partition with 𝑘 and 𝑡 to be 𝑂(1) then DP will 
find the best such solution.
• Main problem: How to show the existence of such a recursive partition?

-- cutting strategy [fences and cutting].
-- analysis [nesting and token counting].



• Assume Maximality for ℛ
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• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• We made no progress 

Recursive partitioning



• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Fences are horizontal line 
segments that join boundary 
of piece to boundary of a 
rectangle without intersecting 
any rectangles 

• A rectangle is boundary 
rectangle in a piece if any of 
its horizontal edge is 
contained in a fence
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• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Fences are horizontal line 
segments that join boundary 
of piece to boundary of a 
rectangle without intersecting 
any rectangles 

• A rectangle is boundary 
rectangle in a piece if any of 
its horizontal edge is 
contained in a fence

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

Violates 1 Violates 2
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• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

Recursive partitioning



• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

Recursive partitioning



• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

Recursive partitioning



• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

Recursive partitioning



• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

How do we make sure that the piece complexity 
doesn't go up in this process? 
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• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

• Invariant: Assume the pieces are 
horizontally convex
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• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

• Invariant: Assume the pieces are 
horizontally convex

• Invariant  is maintained and 
piece complexity does not 
increase

Recursive partitioning



Recursive partitioning

• Idea:  Protect rectangles using fences.
• From each point 𝑝 on left vertical edge of piece 
𝑃 shoot a horizontal ray towards right till it 
reaches point 𝑝’ without intersecting any 
rectangle of 𝑂𝑃𝑇(𝑃) and  𝑝’ is contained in the 
interior of the left side of a rectangle in 
𝑂𝑃𝑇(𝑃) or reaches boundary.
• 𝑝𝑝’ is a line fence.
• Symmetrically, for points on right vertical edge 

shoot horizontal ray towards left.
• A rectangles is protected if its top or bottom 

edge is contained in some fence. 



Line-partitioning lemma
• Given a horizontally convex polygon P with 

at most 26 sides, there exits a cut 𝐶 s.t.
1. 𝐶 has at most 8 line segments.
2. 𝐶 divides 𝑃 into at most 3 axis-

parallel polygons (each with at most 
26 sides).

3. There is only a single line segment ℓ
that can intersect some rectangles in 
𝑂𝑃𝑇 𝑃 .

4. However, ℓ does not intersect any 
protected rectangles (so ℓ does not 
cross any fence).



Proof of Line-partitioning lemma

• 𝑃 has ≤ 26 edges, i.e. 𝑣 ≤ 13 vertical edges.
• Say there are ≥ ⌈𝑣/2⌉ left vertical edges. 
• Divide them into 3 groups 𝐸3 , 𝐸:, 𝐸; s. t.
|𝐸3 , 𝐸; ≥ 𝑣/6, |𝐸: ≥ ⌈𝑣/6⌉
• Let fence 𝑓 from 𝐸: have the rightmost p/.
• Shoot vertical rays to top and bottom till it hits 

a protected rectangle to create ℓ.
• Cut 𝐶 is formed by line fences on top and 

bottom and boundary of the protected 
rectangle alongwith ℓ.



Proof of Line-partitioning lemma

Easy to check the following properties:
1. 𝐶 has at most 8 line segments.
[implies 𝑂(𝑛(09<=)) = 𝑂(𝑛>?) runtime.]
3. There is only a single line segment ℓ
that can intersect some rectangles in 
𝑂𝑃𝑇 𝑃 .
4. However, ℓ does not intersect any 
protected rectangles (so ℓ does not cross 
any fence).



Proof of Line-partitioning lemma

• Property 2. 𝐶 divides 𝑃 into at most three axis-
parallel polygons (each with at most 26 sides).
• Boundary of C% (resp. C#)  is disjoint from E*

(resp. E+). 

• Number of vertical edges in C% is ≤ 𝑣 – ,
) +

2 = (,
) + 2 ≤ (×%&

) + 2 = 13.
• Boundary of C& is disjoint from E.. 

• Number of vertical edges in C& is ≤ 𝑣 – (,
) +

3 = (,
) + 3 ≤ (×%&

) + 3 = 13.



Recursive Partitioning

• We continue the partitioning till each leaf node 
contains one node. 
• We return ℛ, all rectangles that were not cut (i.e. 

belong to some leaf).
• Need to show |ℛ| ≥ |𝑂𝑃𝑇|/6
• High level idea: (Charging/token counting argument)
• Killed rectangles save sufficient rectangles.
• Each killed rectangle that is not 

horizontally nested will distribute 
one token to some of its neighbors 
that it can see.



• Assumption: 
All rectangles in OPT are maximal.
• Nesting Relationship: 

A rectangle is vertically nested or blue (resp. 
horizontally nested or red) if its top or bottom 
edge (resp. right or left edge) is contained in 
the interior of some other rectangle  or 
interior of a boundary edge. 
• Observation: A rectangles is either 

red or blue or none (grey).
• Wlog assume at most half rectangles are red. 

Proof of Approximation Guarantee



Vertically nested Horizontally nested Neither
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Vertically nested Horizontally nested Neither

Left vertical

Right vertical

Proof of Approximation Guarantee



Proof of Approximation Guarantee

• Rectangle 𝑅 sees the top-left corner 𝑐 of 
rectangle 𝑅’ ∈ 𝑂𝑃𝑇 on its right if there is a 
line segment ℎ joining a point 𝑝 on 𝑅 with 
𝑐 s. t. ℎ does not intersect any rectangle in 
𝑂𝑃𝑇, ℎ does not contain the top edge of 
any rectangle in 𝑂𝑃𝑇, and 𝑝 is not the 
bottom-right corner of 𝑅.
• If 𝑅 is hor. nested, it does not see any 

corner in the nested sides. 
• If 𝑅 is ver. nested or grey, it sees at least 

one corner on each side.

𝑝
𝑐ℎ

𝑅
𝑅′



Proof of Approximation Guarantee
• Claim 1: If 𝑅 is not horizontally nested, then it sees at least one corner on each 

side, or is protected.

• Charging argument: For each 𝑅 that is not horizontally nested and intersected by 
ℓ, we assign a (fractional) charge of 
½ to a corner that 𝑅 sees on left and  ½ to a corner that 𝑅 sees on right. 



Proof of Approximation Guarantee

• Claim 2: 𝑅′ receives a charge 
to at least one of its corners 
⇒ 𝑅/ is protected. 

• Claim 3: Each corner of 𝑅′ is 
charged at most once.



Proof of Approximation Guarantee
• Claim 2: 𝑅′ receives a charge to at least one of its corners ⇒ 𝑅/ is protected. 
• Claim 3: Each corner of 𝑅′ is charged at most once.
• Lemma: |ℛ/| ≥ |𝑂𝑃𝑇|/6.

• Proof: 
• We lose a factor 2 by removing horizontally nested rectangles and consider only rectangles 

that are not horizontally nested. 
• Any 𝑅* ∈ ℛ receives charge  at most +

,
×4 = 2 from not horizontally nested rectangles. 

• Let 𝑘 be the number of not horizontally nested rectangles that are cut by vertical lines.
If they save 𝑡 rectangles in ℛ, then 𝑡 ≥ -

,
i.e. .

/0.
≥ 1/3.

• Total loss = +
,
× +
1
= +

2
.



Proof of Approximation Guarantee
• Claim 2: 𝑅′ receives a charge to at least one of its corners ⇒ 𝑅/ is protected. 
• Claim 3: Only two corners of 𝑅′ are charged (and at most once).
• Lemma: |ℛ/| ≥ |𝑂𝑃𝑇|/4.

• Proof: 
• We lose a factor 2 by removing horizontally nested rectangles and consider only rectangles 

that are not horizontally nested. 
• Any 𝑅* ∈ ℛ receives charge at most +

,
×2 = 1 from not horizontally nested rectangles. 

• Let 𝑘 be the number of not horizontally nested rectangles that are cut by vertical lines.
If they save 𝑡 rectangles in ℛ, then 𝑡 ≥ 𝑘 i.e. .

/0.
≥ 1/2.

• Total loss = +
,
× +
,
= +

3
.



4-approximation

• Fences with more bends (x-
monotone curves) ensure 
corners for only one side 
get tokens. 
• However, bounds for 

partitioning lemma gets 
worse: t = 30𝜏 + 18 for 𝜏-
fences. 



3-approximation

• More sophisticated charging!
• Charge additional corners (may not be seen) or charge hor. nested rectangles.
• Corners of nonhor-nested (resp hor-nested) gets at most  1/4 (resp. 1/2) tokens. 



(2 + 𝜖)-approximation
• Even more general polygons and even more general fence to 

accommodate more sophisticated charging argument. 



Tight Example



Weighted MISR

• Our techniques don’t extend to weighted case.
• Best Approximation: O(log log n) [Chalermsook et al., SODA’21]
• Showed: 𝜒 𝑖𝑠 𝑂(𝜔 log𝜔), where 𝜒 is chromatic number and 
𝜔 is the clique number and using LP rounding.

max∑>∈C𝑤>𝑥> : ∑D∈E 𝑥D ≤ 1 for every clique 𝑄 ∈ 𝐺, 0 ≤ 𝑥> ≤ 1.

• Conjecture:  𝜒 𝑖𝑠 𝑂 𝜔
• The conjecture, if true, will give a O(1)-approximation. 



Open Problems

• PTAS for MISR.
• Obtaining (2 − 𝜖)-approximation for axis-parallel line segments.
• O(1)-approximation for maximum weighted independent set of rectangles.
• Resolution of 𝜒 𝐺 = 𝑂 𝜔 𝐺 conjecture for rectangle intersection graphs.
• Resolution of Pach-Tardos conjecture.
• Extension to higher dimensions.
• Obtaining O(1)-approximation (even poly(n)-approx) for arbitrary line 

segments.  [Present best: 𝑛: ∶ Fox-Pach SODA’11]



Thank you!



2-D Geometric Bin Packing
• Given: Collection of rectangles (by width, height),
• Goal: Pack them into minimum number of unit square bins.
- Orthogonal Packing: rectangles packed parallel to bin edges.
- With 90 degree rotations and without rotations.
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Geometric Knapsack: (2-D)
• Input :

- Rectangles I:=	{R1, R2,	,…,	Rn}; Each Ri has integral width and height (wi ,	hi) and profit pi .
- A Square K	× K knapsack.

K=10

Variant 2: (2DKR)
90 degree rotations 

are allowed!

OPT=165
60 $

5 $
100 $

• Goal : Find an axis-parallel non-overlapping  packing of a subset of input rectangles into
the knapsack that maximizes the total profit. 

100 $ 95 $ 90 $ 60 $ 5 $
1 $

(9,6) (7,6) (5,8)
(4,4) (2,3)

60 $

(4,6)
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SAP
• Input: A path with edge capacities and a set of tasks (rectangles) that are 

specified by start and end vertices (fixed starting coordinate and width), 
demands (heights) and profits.  
• Goal:  Select a subset of tasks that can be drawn as non-overlapping 

rectangles underneath the capacity profile.
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UFP (sliced version of SAP)
• Input: A path with edge capacities and a set of tasks (rectangles) that are 

specified by start and end vertices (fixed starting coordinate and width), 
demands (heights) and profits.  
• Goal:  Select a subset of tasks such that total demand of selected tasks at 

any edge is less than the edge capacity.  
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