5.1.10-05 Zeeman effect

Principle:

The "Zeeman effect" is the splitting up of the spectral lines of atoms within a magnetic field. The simplest is the splitting up of one spectral line into three components called the "normal Zeeman effect". The normal Zeeman effect is studied using a cadmium spectral lamp as a specimen. The cadmium lamp is submitted to different magnetic flux densities and the splitting up of the red cadmium line (643.8 nm) is investigated using a Fabry-Perot interferometer. The evaluation of the results leads to a fairly precise value for Bohr's magneton.

Tasks:

1. Using the Fabry-Perot interferometer and a selfmade telescope the splitting up of the central line into two α-lines is measured in wave numbers as a function of the magnetic flux density.
2. From the results of point 1, a value for Bohr's magneton is evaluated.
3. The light emitted within the direction of the magnetic field is qualitatively investigated.

What you need:

- Fabry-Perot interferometer
- Cadmium lamp for Zeeman effect
- Electromagnet without pole shoes
- Pole pieces, drilled, conical
- Rotating table for heavy loads
- Power supply for spectral lamps
- Variable transformer, 25 V AC/20 V DC, 12 A
- Capacitor, electrolytic, 22000 µF
- Digital multimeter
- Fabry-Perot interferometer
- Plate holder with tension spring
- Iris diaphragm
- Polarising filter, on stem
- Polarization specimen, mica
- Connecting cord, length 25 cm, red
- Connecting cord, length 25 cm, blue
- Connecting cord, length 50 cm, red
- Connecting cord, length 50 cm, blue
- Connecting cord, length 75 cm, red
- Connecting cord, length 100 cm, red
- Connecting cord, length 100 cm, blue
- CDC-Camera for PC incl. measurement software
- Swinging arm
- Screen, with aperture and scale
- Slide mount for opt. profile-bench, $h = 80$ mm
- Complete Equipment Set, Manual on CD-ROM included

What you can learn about:

- Bohr’s atomic model
- Quantisation of energy levels
- Electron spin
- Bohr’s magneton
- Interference of electromagnetic waves
- Fabry-Perot interferometer

Screenshot of software used to measure the diameters of the interference rings as captured by the CCD-Camera.

Tasks:

1. Using the Fabry-Perot interferometer and a selfmade telescope the splitting up of the central line into two α-lines is measured in wave numbers as a function of the magnetic flux density.
2. From the results of point 1, a value for Bohr’s magneton is evaluated.
3. The light emitted within the direction of the magnetic field is qualitatively investigated.

What you can learn about ...

- Bohr’s atomic model
- Quantisation of energy levels
- Electron spin
- Bohr’s magneton
- Interference of electromagnetic waves
- Fabry-Perot interferometer

Tasks:

1. Using the Fabry-Perot interferometer and a selfmade telescope the splitting up of the central line into two α-lines is measured in wave numbers as a function of the magnetic flux density.
2. From the results of point 1, a value for Bohr’s magneton is evaluated.
3. The light emitted within the direction of the magnetic field is qualitatively investigated.

What you need:

- Fabry-Perot interferometer
- Cadmium lamp for Zeeman effect
- Electromagnet without pole shoes
- Pole pieces, drilled, conical
- Rotating table for heavy loads
- Power supply for spectral lamps
- Variable transformer, 25 V AC/20 V DC, 12 A
- Capacitor, electrolytic, 22000 µF
- Digital multimeter
- Fabry-Perot interferometer
- Plate holder with tension spring
- Iris diaphragm
- Polarising filter, on stem
- Polarization specimen, mica
- Connecting cord, length 25 cm, red
- Connecting cord, length 25 cm, blue
- Connecting cord, length 50 cm, red
- Connecting cord, length 50 cm, blue
- Connecting cord, length 75 cm, red
- Connecting cord, length 100 cm, red
- Connecting cord, length 100 cm, blue
- CDC-Camera for PC incl. measurement software
- Swinging arm
- Screen, with aperture and scale
- Slide mount for opt. profile-bench, $h = 80$ mm
- Complete Equipment Set, Manual on CD-ROM included

What you can learn about:

- Bohr’s atomic model
- Quantisation of energy levels
- Electron spin
- Bohr’s magneton
- Interference of electromagnetic waves
- Fabry-Perot interferometer

Tasks:

1. Using the Fabry-Perot interferometer and a selfmade telescope the splitting up of the central line into two α-lines is measured in wave numbers as a function of the magnetic flux density.
2. From the results of point 1, a value for Bohr’s magneton is evaluated.
3. The light emitted within the direction of the magnetic field is qualitatively investigated.
Zeeman Effect with CCD-Camera

Related topics
Bohr's atomic model, quantisation of energy levels, electron spin, Bohr's magneton, interference of electromagnetic waves, Fabry-Perot interferometer.

Principle
The "Zeeman effect" is the splitting up of the spectral lines of atoms within a magnetic field. The simplest is the splitting up of one spectral line into three components called the "normal Zeeman effect". The normal Zeeman effect is studied using a cadmium spectral lamp as a specimen. The cadmium lamp is submitted to different magnetic flux densities and the splitting up of the red cadmium line (643.8 nm) is investigated using a Fabry-Perot interferometer. The evaluation of the results leads to a fairly precise value for Bohr's magneton.

Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabry-Perot interferometer</td>
<td>09050.02</td>
<td>1</td>
</tr>
<tr>
<td>Cadmium lamp for Zeeman effect</td>
<td>09050.01</td>
<td>1</td>
</tr>
<tr>
<td>Electromagnet without pole shoes</td>
<td>06480.01</td>
<td>1</td>
</tr>
<tr>
<td>Pole pieces, drilled, conical</td>
<td>06480.03</td>
<td>1</td>
</tr>
<tr>
<td>Rotating table for heavy loads</td>
<td>02077.00</td>
<td>1</td>
</tr>
<tr>
<td>Power supply for spectral lamps</td>
<td>13662.97</td>
<td>1</td>
</tr>
<tr>
<td>Variable transformer, 25 V AC/20 V DC, 12 A</td>
<td>13531.93</td>
<td>1</td>
</tr>
<tr>
<td>Capacitor, electrolytic, 22000 μF</td>
<td>06211.00</td>
<td>1</td>
</tr>
<tr>
<td>Digital multimeter</td>
<td>07134.00</td>
<td>1</td>
</tr>
<tr>
<td>Optical profile-bench, (l = 1000) mm</td>
<td>08282.00</td>
<td>1</td>
</tr>
<tr>
<td>Base for opt. profile-bench, adjust</td>
<td>08284.00</td>
<td>2</td>
</tr>
<tr>
<td>Slide mount for opt. profile-bench, (h = 30) mm</td>
<td>08286.01</td>
<td>5</td>
</tr>
<tr>
<td>Slide mount for opt. profile-bench, (h = 80) mm*</td>
<td>08286.02</td>
<td>2</td>
</tr>
<tr>
<td>Lens holder</td>
<td>08012.00</td>
<td>4</td>
</tr>
<tr>
<td>Lens, mounted, (f = +50) mm</td>
<td>08020.01</td>
<td>2</td>
</tr>
<tr>
<td>Iris diaphragm</td>
<td>08045.00</td>
<td>1</td>
</tr>
<tr>
<td>Polarising filter, on stem</td>
<td>08610.00</td>
<td>1</td>
</tr>
<tr>
<td>Polarization specimen, mica</td>
<td>08664.00</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 25) cm, 32 A, red</td>
<td>07360.01</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 25) cm, 32 A, blue</td>
<td>07360.04</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 50) cm, 32 A, red</td>
<td>07361.01</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 50) cm, 32 A, blue</td>
<td>07361.04</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 75) cm, 32 A, red</td>
<td>07362.01</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 100) cm, 32 A, red</td>
<td>07363.01</td>
<td>1</td>
</tr>
<tr>
<td>Connecting cord, (l = 100) cm, 32 A, blue</td>
<td>07363.04</td>
<td>1</td>
</tr>
<tr>
<td>CDC-Camera for PC incl. measurement software*</td>
<td>88037.00</td>
<td>1</td>
</tr>
<tr>
<td>PC with USB interface, Windows 98SE/Windows Me/Windows 2000/Windows XP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Alternative to CCD-Camera incl. measurement software, two slide mounts, \(h = 80 \) mm for classical version of the Zeeman Effect:

- Slide mount for optical profile-bench, \(h = 80 \) mm 08286.02 1
- Sliding device, horizontal 08713.00 1
- Swinging arm 08256.01 1
- Plate holder with tension spring 08288.00 1
- Screen, with aperture and scale 08340.00 1
- Slide mount for opt. profile-bench, \(h = 80 \) mm 08286.02 1

Tasks
1. Using the Fabry-Perot interferometer, a self-made telescope, a CCD-camera and measurement software, the splitting up of the central line into two \(\sigma \)-lines is measured in wave numbers as a function of the magnetic flux density. In the classical version where the CCD-Camera is not available, a screen with scale and a sliding device are used to measure the splitting.

Fig.1: Experimental set-up for the Zeeman effect.
2. From the results of point 1. a value for Bohr’s magneton is evaluated.

3. The light emitted within the direction of the magnetic field is qualitatively investigated.

Set-up

The electromagnet is put on the rotating table for heavy loads and mounted with the two pole-shoes with holes in such a way that a gap large enough for the Cd-lamp (9-11 mm) remains for the Cd-lamp. The pole-shoes have to be well tightened in such a way that they cannot move later on when the magnetic flux is established. The Cd-lamp is inserted into the gap without touching the pole-shoes and connected to the power supply for spectral lamps. The coils of the electromagnet are connected in parallel and via an ammeter connected to the variable power supply of up to 20 VDC, 12 A. A capacitor of 22000 μF is in parallel to the power output to smoothen the DC-voltage.

The optical bench for investigation of the line splitting carries the following elements (their approximate position in cm is given in brackets):

1. CDC-Camera
2. \(L_3 = +50 \text{ mm} \)
3. Screen with scale (only in classical version)
4. Analyser
5. \(L_2 = +300 \text{ mm} \)
6. Fabry-Perot Etalon
7. \(L_1 = +50 \text{ mm} \)
8. Iris diaphragm
9. Drilled pole-shoes
10. Cd-spectral lamp on rotating table

The iris diaphragm is eliminated for initial adjustment and for the observation of the longitudinal Zeeman effect. During observation of the transverse Zeeman effect the iris diaphragm is illuminated by the Cd-lamp and such it acts as the light source. The lens \(L_1 \) and a lens of \(f = 100 \text{ mm} \), incorporated in the étalon, create a nearly parallel light beam which the Fabry-Perot étalon needs for a proper interference pattern.

The étalon contains a removable colour filter that lets the red cadmium line at 643.8 nm pass. The lens \(L_2 \) produces an interference pattern of rings which can be observed through \(L_3 \). The ring diameters can be measured using the CCD-camera and the software supplied with it. In the classical version the interference pattern is produced within the plane of the screen with a scale mounted on a slide mount which can laterally be displaced with a precision of \(1/100 \text{th} \) of a millimeter. The measurement here can be done for instance, by systematic displacement of the slash representing the „0“ of the scale.

The initial adjustment is done in the following way:

The rotating table with electromagnet, pole-shoes and Cd-lamp already mounted is adjusted so that the center of the holes in the pole-shoes lies about 28 cm above the table. The optical bench with all elements (except iris diaphragm and CCD-camera) mounted, is then moved closer to the electromagnet in such a way that one of the outlet holes of the pole-shoes coincides with the previous position of the iris diaphragm. \(L_1 \) is then adjusted so that the outlet hole is within the focal plane of it. All other optical elements of Fig. 2. are subsequently readjusted with respect to their height corre-

Fig. 2: Arrangement of the optical components.

Fig. 1b: Set-up for the classical version of the experiment.
The current of the coils is set for some time to 8 A (increase in light intensity of the Cd-lamp!) and the ring interference pattern in axial direction is observed through \(L_2 \) by the eye. The pattern must be centered and sharp which is eventually achieved by a last, slight movement of the étalon (to the right or to the left) and by displacement of \(L_2 \) (vertically and horizontally).

Finally the CCD-camera with the 8 mm lens attached is mounted to the optical bench and adjusted in horizontal and vertical position as well as in tilt and focus until a clear picture of the ring pattern is visible on the computer screen. For installation and use of the camera and software please refer to the manual supplied with the camera.

In the classical version the screen with scale is shifted in a way that the slash representing the „0“ of the scale is clearly seen coinciding, for instance, with the center of the fairly bright inner ring. The scale itself must be able to move horizontally along the diameter of the ring pattern. (set-up see Fig. 1b)

Hint: best results are achieved when the experiment is carried out in a darkened room.

The electromagnet is now turned by 90°, the iris diaphragm is inserted and the analyzer turned until the \(\pi \)-line (explanation follows) disappears completely and the two \(\sigma \)-lines appear clearly visible.

Remark: For later evaluations the calibration curve of the magnetic flux density versus the coil current has to be traced previously. This can be done if a teslameter is available. Otherwise the results of Fig. 3 must be used. The curve of Fig. 3 was traced by measuring the flux density in the center of the gap in the absence of the Cd-lamp. For the evaluations these center-values were increased by 3.5% to account for the non-uniform flux distribution within the gap.

Remark: For later evaluations the calibration curve of the magnetic flux density versus the coil current has to be traced previously. This can be done if a teslameter is available. Otherwise the results of Fig. 3 must be used. The curve of Fig. 3 was traced by measuring the flux density in the center of the gap in the absence of the Cd-lamp. For the evaluations these center-values were increased by 3.5% to account for the non-uniform flux distribution within the gap.

Theory
As early as 1862, Faraday investigated whether the spectrum of coloured flames changes under the influence of a magnetic field, but without success. It was not until 1885 that Fievez from Belgium was able to demonstrate an effect, but it was forgotten and only rediscovered 11 years later by the Dutchman Zeeman, who studied it together with Lorentz.

This experiment, which was of importance to the development of the theory of the atomic shell, can now be carried out with modern equipment in the students’ experiment laboratory.

The splitting of the Cd-spectral line \(\lambda = 643.8 \text{ nm} \) into three lines, the so-called Lorentz triplets, occurs since the Cd-atom represents a singlet system of total spin \(S = 0 \). In the absence of a magnetic field there is only one possible \(D \rightarrow P \) transition of 643.8 nm, as indicated by Fig. 4.

In the presence of a magnetic field the associated energy levels split into \(2L + 1 \) components. Radiating transitions between these components are possible, provided that the selection rules

\[
\Delta M_L = \pm 1; \Delta M_L = 0; \Delta M_L = \mp 1
\]

are taken into account. In this case, therefore, there are a total of nine permitted transitions. These nine transitions can be grouped into three groups of three transitions each, where all transitions in a group have the same energy and hence the same wavelength. Therefore, only three lines will be visible.

![Fig. 3](image)

Fig. 3: Magnetic flux density \(B \) in the center of gap without the Cd-lamp (gap width: 9 mm) as a function of twice the coil current.

![Fig. 4](image)

Fig. 4: Splitting up of the components in the magnetic field and permitted transitions.

The first group where \(\Delta M_L = -1 \) gives a \(\sigma \)-line the light of which is polarized vertically to the magnetic field. The middle group \(\Delta M_L = 0 \) gives a \(\pi \)-line. This light is polarized parallel to the direction of the field. The last group where \(\Delta M_L = +1 \) gives a \(\sigma \)-line the light of which is again polarized vertically to the magnetic field.
In the absence of the analyser all three lines can be seen simultaneously. Each ring which was observed in the absence of a magnetic field is split into three rings when a magnetic field is applied. Inserting the analyser the two σ-lines can be observed exclusively if the analyser is in the vertical position, while only the π-line appears if the analyser is turned into its horizontal position (transverse Zeeman effect). Turning the electromagnet by 90° the light coming from the spectral lamp parallel to the direction of the field can also be studied since the pole-shoes have been drilled. It can be shown that this light is circular polarized light. Whatever the position of the analyser may be, each of the rings seen without a magnetic field is now permanently split into two rings in the presence of a magnetic field (longitudinal Zeeman effect). Fig. 5 summarizes the facts.

The étalon consists of two parallel flat glass plates coated on the inner surface with a partially reflecting layer. Let us consider the two partially transmitting surfaces (1) and (2) in Fig. 6 separated by a distance t. An incoming ray forming an angle Θ with the normal to the plates will be split into the rays AB, CD, EF, etc. the path difference between the wave fronts of two adjacent rays (for example, AB and CD) is

$$\delta = BC + CK$$

where, obviously, BK is normal to CD. With

$$CK = BC \cos 2 \Theta \text{ and } BC \cos \Theta = t$$

we obtain

$$\delta = BCK = BC (1 + \cos 2 \Theta) = 2 BC \cos^2 \Theta = 2 t \cos \Theta$$

and for a constructive interference to occur one must demand:

$$n \lambda = 2 t \cos \Theta$$

where n is an integer. If the refractive index of the medium between the plates is $\mu \neq 1$, the equation still has to be modified in the following way:

$$n \lambda = 2 \mu t \cos \Theta$$

(1)

Equation (1) is the basic interferometer equation. Let the parallel rays B, D, F, etc. be brought to a focus by the use of a lens of focal length f as shown in Fig. 7.

The Fabry-Perot étalon has a resolution of approximately 300 000. That means that a wavelength change of approximately 0.002 nm can still be detected.

Turning the electromagnet back for the observation of the two σ-lines of the transverse Zeeman effect it is easy to see that the size of the splitting increases with increasing magnetic field strength. For a quantitative measurement of this splitting in terms of number of wavelengths, a Fabry-Perot interferometer is used, the functioning of which may briefly be explained.

Then, when Θ fulfills equation (1), bright rings will appear in the focal plane, their radius being given by

$$r_n = f \tan \Theta_n = f \Theta_n$$

(2)

for small values Θ_n, e.g. rays nearly parallel to the optical axis.
Zeeman Effect CCD-Camera

Since
\[n = \frac{2\mu}{A} \cos \Theta_n = n_0 \cos \Theta_0 \]
\[= n_0 \left(1 - 2 \sin^2 \frac{\Theta_n}{2} \right) \]
with
\[n_0 = \frac{2\mu}{A} \]
we finally obtain
\[n = n_0 \left(1 - \frac{\Theta_n^2}{2} \right) \]
or
\[\Theta_n = \sqrt{\frac{2(n_0 - n)}{n_0}} \tag{3} \]

If \(\Theta_n \) is to correspond to a bright fringe, \(n \) must be an integer. However, \(n_0 \), which gives the interference at the center (cos \(\Theta \) = 1 or \(\Theta = 0 \) in equation [1]), is in general not an integer. If \(n_1 \) is the interference order of the first ring, clearly \(n_1 < n_0 \) since \(n_1 = n_0 \cos \Theta_{n_1} \). Then we let
\[n_1 = n_0 - \varepsilon ; 0 < \varepsilon < 1 \]
where \(n_1 \) is the closest integer to \(n_0 \) (smaller than \(N_0 \)). Thus, we have in general for the \(p \)-th ring of the pattern, as measured from the center out,
\[n_p = (n_0 - \varepsilon) - (p - 1) \tag{4} \]

Combining equation (4) with equations (2) and (3), we obtain for the radii of the rings, substituting \(r_p \) for \(r_{n_p} \):
\[r_p = \sqrt{\frac{2\mu}{n_0} \cdot \sqrt{(p - 1) + \varepsilon}} \tag{5} \]

we note that the difference between the squares of the radii of adjacent rings is a constant:
\[r_{p+1}^2 - r_p^2 = \frac{2\mu^2}{n_0} \tag{6} \]
\(\varepsilon \) can be determined graphically plotting \(r_p^2 \) versus \(p \) and extrapolating to \(r_p = 0 \).

Now, if there are two components of a spectral line (splitting of one central line into two components) with wavelengths \(\lambda_a \) and \(\lambda_b \), which are very close to one another, they will have fractional orders at the center \(\varepsilon_a \) and \(\varepsilon_b \):
\[\varepsilon_a = \frac{2\mu}{\lambda_a} - n_{1,a} = n_0 \frac{2\mu}{\lambda_a} - n_{1,a} \]
\[\varepsilon_b = \frac{2\mu}{\lambda_b} - n_{1,b} = n_0 \frac{2\mu}{\lambda_b} - n_{1,b} \]

where \(n_{1,a}, n_{1,b} \) is the interference order of the first ring. Hence, if the rings do not overlap by a whole order \(n_{1,a} = n_{1,b} \) and the difference in wave numbers between the two components is simply
\[\Delta \nu = \frac{\nu_a - \nu_b}{2\mu} \tag{7} \]

Furthermore, using equations (5) and (6), we get
\[\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_p^2} - p = \varepsilon_a \tag{8} \]

Applying equation (8) to the components \(a \) and \(b \), yields
\[\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_{p,a}^2} - p = \varepsilon_a \]
and
\[\frac{r_{p+1,b}^2}{r_{p+1,b}^2 - r_{p,b}^2} - p = \varepsilon_b \]

By substituting these fractional orders into equation (7), we get for the difference of the wave numbers:
\[\Delta \nu = \frac{1}{2\mu} \left(\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_{p,a}^2} - \frac{r_{p+1,b}^2}{r_{p+1,b}^2 - r_{p,b}^2} \right) \tag{9} \]

\(\Delta \nu \) is equal to (within a very small part) the same difference for component \(b \):
\[\Delta \nu = \frac{1}{2\mu} \left(\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_{p,a}^2} - \frac{r_{p+1,b}^2}{r_{p+1,b}^2 - r_{p,b}^2} \right) \]

Hence,
\[\Delta \nu = \Delta \nu \frac{\mu}{\mu} \]
\(\delta \) whatever the value of \(p \) may be. Similarly, all values
\[\delta_{ab} = \frac{r_{p+1,a} - r_{p+1,b}}{r_{p,a} - r_{p,b}} \]
must be equal, regardless of \(p \) and their average can be taken as may be done for the different \(\Delta \)-values. With \(\delta \) as average values we get for the difference of the wave numbers of the components \(a \) and \(b \), anticipating \(\mu = 1 \),
\[\Delta \nu = \frac{1}{2\pi} \frac{\delta}{\Delta} \tag{10} \]

Equation (10)* gives evidence of the fact that \(\Delta \nu \) does not depend on the dimensions used in measuring the radii of the ring system nor on the amplification of the interference pattern.

* Melissinos, Adv. Exp. in modern Physics
Measurement and Evaluation

1. Provided the ring pattern has been properly established as explained in the section “set-up” above, the radii of the rings have to be measured at different magnetic flux densities. Then it is possible by using equation (10) to determine the corresponding difference in wave numbers \(\Delta n \).

We proceed in two steps: first we take pictures of the ring patterns at different coil currents/magnetic field intensities. Then in a second step the ring diameters in these pictures are measured.

To get a life picture from the camera go to the <File> menu and chose the entry <Capture Window>. In the capture window the settings regarding e.g. contrast, brightness and saturation of the image can be optimized via the menu you get to when choosing <Video Capture Filter> from the <Option> menu.

When satisfied with the image quality and a certain coil current (magnetic field) is established, the picture is captured by using the <Capture> menu. This action also closes the capture window and the picture appears in the main window of the application. At this stage it is advisable to write the value of the coil current at which the picture was taken into it by using the <Text> tool. This prevents a mix-up later on.

The above procedure is repeated using different magnetic fields for instance, with coil currents of 5 A, 6 A, 8 A and 10 A. Once these pictures have been collected, we proceed to measure the radii of the rings choosing <Circle> from the <Measure> menu. By dragging the mouse across the picture, a circle is drawn. Fit this circle in size and position as good as possible to the innermost ring. You will see that radius, area and perimeter of the circle will be displayed in a little box and in a table below the picture (compare Fig. 8). What we are mainly interested in is the radius of the circle, this is \(r_{1,a} \). Note that the units (\(\mu \text{m}, \text{mm}, \text{cm} \)) are of no importance in this experiment, that means no calibration of the camera has to be performed. Proceed to draw and fit circles to as many sets of rings as are visible in the picture, this will give you: \(r_{1,b}, r_{2,a}, r_2, r_{3,a,b} \). Do the same with the other pictures captured.

In the classical version without the CCD-camera a set of radii of rings is determined in the following way:

The slash of the scale „0“ is shifted horizontally along a diameter through the ring pattern until it coincides, for instance, with the fourth ring to the left. A magnetic field corresponding to a coil current of lets say 4 A is established and the splitting of the rings observed. The analyzer is put into the vertical position so that only the two \(\sigma \)-lines appear. The „0“ slash is now adjusted to coincide perfectly with the outer ring of the two rings, into which the fourth ring has split. The first reading on the socket of the sliding mount is taken. The „0“ slash is then moved from left to right through all the rings. The last reading is taken when the „0“ slash coincides with the outer ring of the fourth ring to the right. The last reading minus the first reading divided by two then provides the radius \(r_{4,b} \). Evaluating the previous readings in a similar way leads to the following radii:

\[
I = 4 [\text{A}]: r_{3,2,a}; r_{3,2,b}; r_{3,3,a}; r_{3,3,b}; r_{2,2,a}; r_{2,3,a}; r_{1,2}; r_{1,3}
\]

Further sets of radii are received when repeating the procedure, for instance, for coil currents of 5 A, 6 A, 8 A and 10 A. Using the slide mount, all readings are done in “\(\text{mm} \)” with a precision of 1/100th of a mm. Still, the dimension used is not significant since it cancels out when evaluating \(\Delta \tau \) due to equation (10).

Now the following square array can be formed for each set of radii measured, regardless if they are measured with the CCD-camera and the software or the classical way:

<table>
<thead>
<tr>
<th>component</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(r_{2,1,a}^{A,1})</td>
<td>(r_{2,2,a}^{A,2})</td>
<td>(r_{3,2,a}^{A,3})</td>
<td>(r_{4,2,a}^{A})</td>
</tr>
<tr>
<td>(b)</td>
<td>(r_{2,1,b}^{A,1})</td>
<td>(r_{2,2,b}^{A,2})</td>
<td>(r_{3,2,b}^{A,3})</td>
<td>(r_{4,2,b}^{A})</td>
</tr>
</tbody>
</table>

The mean values \(\Delta \) and \(\delta \) are calculated here in the following way:

\[
\Delta = \frac{1}{4} \sum_{p=1}^{2} (\Delta_{2p,2p}^{\sigma,2\sigma} - 1) + \Delta_{2p,2p}^{\sigma,2\sigma} \]

\[
\delta = \frac{1}{4} \sum_{p=1}^{4} \delta_{a,b}^{2p,2p} \]

The étalon spacing is \(t = 3 \cdot 10^{-3} \text{[m]} \).

Equation (10) was used to calculate the difference in wave numbers of the \(\sigma \)-lines as a function of the magnetic flux density and the coil current respectively. The following table summarizes the results:

<table>
<thead>
<tr>
<th>(I) [A]</th>
<th>(B) [mT]</th>
<th>(\Delta \tau) [m^-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>417</td>
<td>43.0</td>
</tr>
<tr>
<td>5</td>
<td>527</td>
<td>52.2</td>
</tr>
<tr>
<td>6</td>
<td>638</td>
<td>59.0</td>
</tr>
<tr>
<td>8</td>
<td>810</td>
<td>75.4</td>
</tr>
<tr>
<td>10</td>
<td>911</td>
<td>83.6</td>
</tr>
</tbody>
</table>

* Note that not every available \(\Delta \)-value can be used. Only alternate ones avoid loss of inormation.
2. The difference in wave numbers of one of the μ-lines with respect to the central lines is Δν/2. For the radiating electrons this means, for instance, a change in energy of

$$\Delta E = E_{L,M_L} - E_{L-1,M_{L-1}}$$

$$= \hbar c \frac{\Delta \nu}{2}$$ \hspace{1cm} (11)

On the other hand the change in energy ΔE is proportional to the magnetic flux density B. The factor of proportionality between ΔE and B is μ_B, Bohr’s magneton.

$$\Delta E = \mu_B B$$ \hspace{1cm} (12)

Combining equations (11) and (12) results in an expression for μ_B:

$$\mu_B = \frac{\hbar c \Delta \nu}{2B}$$ \hspace{1cm} (13)

In Fig. 9 $\Delta \nu /2$ was plotted versus the magnetic flux density B. From the regression-line we find a mean value for $\Delta \nu /2$ and its standard deviation. Hence,

$$\mu_B = \frac{\hbar c \Delta \nu}{2B}$$

$$= (9.06 \pm 0.46) \times 10^{-24} \text{ J/T}$$

The literature value for Bohr’s magneton is:

$$\mu_{B, \text{Lit.}} = (9.273) \times 10^{-24} \text{ J/T}$$

3. The electromagnet is turned by 90° to observe the longitudinal Zeeman effect. In the presence of a magnetic field (a coil current of 8 A is recommended) each of the rings is always split up into two, whatever the position of the analyser may be.

A λ/4-plate is generally used to convert linear into elliptical polarized light. In this experiment the λ/4-plate is used in the opposite way. Namely, by means of the λ/4-plate, inserted manually between L_2 and the analyser, the light of the longitudinal Zeeman effect is investigated. If the optic axis of the λ/4-plate coincides with the vertical, it is observed that one ring disappears if the analyser includes an angle of +45° with the vertical while the other ring disappears for a position of –45°. That means that the light of the longitudinal Zeeman effect is polarized in a circular (opposed way).

Fig. 9: Zeeman splitting of spectral line $\lambda = 643.8$ nm as a function of Flux density B.

![Graph](image-url)
Zeeman Effect CCD-Camera