Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. Seminar

Seminar

By sde on Thu, 09/04/2015 - 15:13
Venue
PL-8
Speaker
Dr. Naraparaju Kishore Kumar
Affiliation
Birla Institute of Technology, Pilani
Title
Tensor Decompositions

Abstract: Tensor is a multidimensional array (for example matrix is a tensor of order 2). Tensors often arises from the discretizations of multidimensional functions that are involved in the numerical treatment of complex problems in many different areas of natural, financial or social sciences. The direct numerical treatment of these arrays leads to serious problems like memory requirements and the complexity of basic operations (they grow exponentially in d). In the last decade the approximation of multidimensional arrays has become a central issue in approximation theory and numerial analysis. The main idea of the approximation of a tensor is decomposing the given tensor as sums of outer products of vectors. In the language of functions, it is an approximation of multivariable functions by sums of products of univariate functions. Tensor decompositions has lot of applications in image processing, quantum chemistry, data mining, machine learning stochastic partial differential equations etc.In the matrix case (i.e tensor of order 2), the singular value decomposition (SVD) represents a matrix as sum of outer product of vectors. SVD algorithm requires O(n3) arithmeticoperations (if the matrix is of size n × n). So it is very expensive when the matrix dimensions are large. Various inexpensive techniques of low rank approximation based on skeleton/cross approximation are available in the literature. SVD and its applications, other low rank approximation techniques like RRQR, Interpolative decomposition, randomized algorithms, skeleton/cross approximation techniques will be discussed in the talk. Canonical,Tucker, Tensor Chain and Tensor Train formats for higher order tensors will be introduced.

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.