Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. Seminar

Seminar

By klpatra on Wed, 07/06/2017 - 06:49
Venue
SMS Seminar Hall
Speaker
Dr Saswata Adhikari
Affiliation
IIT Madras
Title
Frames of twisted shift-invariant spaces in $L^{2}(\mathbb{R}^{2n})$ and shift-invariant spaces on the Heisenberg group

Abstract:  A well known result on translates of a function $\varphi$ in $L^{2}(\mathbb{R})$ states that the collection $\{\tau_{k}\varphi: k\in\mathbb {Z}\}$ forms an orthonormal system in $L^{2}(\mathbb{R})$ iff $p_{\varphi}(\xi)=\sum\limits_{k\in\mathbb {Z}}|\widehat{\varphi}(\xi+k)|^{2}= 1~ a.e.~ \xi\in\mathbb {T}$. Similarly in the literature there are interesting characterizations of Bessel sequence, frame, Riesz basis of a system of translates in $L^{2}(\mathbb{R})$ in terms of Fourier transform.In this talk, we aim to study frames in twisted shift-invariant spaces in $L^{2}(\mathbb{R}^{2n})$ and shift-invariant spaces on the Heisenberg group $\mathbb{H}^{n}$. First we shall define a twisted shift-invariant space $V^{t}(\varphi)$ in $L^{2}(\mathbb{R}^{2n})$ as the closed linear span of the twisted translates of $\varphi$. We shall obtain characterizations of orthonormal system, Bessel sequence, frame and Riesz basis consisting of twisted translates $\{T_{(k,l)}^{t}\varphi: k,l\in\mathbb{Z}^{n}\}$ of $\varphi\in L^{2}(\mathbb{R}^{2n})$ in terms of the kernel $K_{\varphi}$ of the Weyl transform of $\varphi$. In particular, we shall prove that if $\{T_{(k,l)}^{t}\varphi:k,l\in\mathbb{Z}^{n}\}$ is an orthonormal system in $L^{2}(\mathbb{R}^{2n})$, then $w_{\varphi}(\xi)=1$ a.e. $\xi\in\mathbb{T}^{n}$, where $w_{\varphi}(\xi)=\sum\limits_{m\in\mathbb{Z}^{n}}\int\limits_{\mathbb{R}^{n}}|K_{\varphi}(\xi+m,\eta)|^{2}d\eta,~\xi~\in\mathbb{T}^{n}$. Unlike the classical case on $\mathbb{R}^{n}$, it turns out to be a surprising fact that the converse of the above theorem need not be true. The converse is true with an additional condition, which we call "condition C". In fact, we shall see that $\{T_{(k,l)}^{t}\varphi:k,l\in\mathbb{Z}^{n}\}$ is an orthonormal system in $L^{2}(\mathbb{R}^{2n})$ if and only if $w_{\varphi}(\xi)=1$ a.e. $\xi\in\mathbb{T}^{n}$ and $\varphi$ satisfies condition C. Next we shall study shift-invariant spaces associated with countably many mutually orthogonal generators $\mathscr{A}$ on the Heisenberg group. We shall conclude the talk by providing a sampling formula on a subspace of a twisted shift-invariant space as an application of our results.

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.