Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. Seminar

Seminar

By dinesh on Thu, 29/07/2021 - 15:50
Venue
Online (Google Meet)
Speaker
Veekesh Kumar
Affiliation
IMSc, Chennai
Title
On inhomogeneous extension of Thue-Roth's type inequality with moving targets

Let $\Gamma\subset \overline{\mathbb Q}^{\times}$ be a  
finitely generated multiplicative group of algebraic numbers.  Let  
$\delta, \beta\in\overline{\mathbb Q}^\times$  be  algebraic numbers  
with $\beta$ irrational.  In this talk,  I will prove  that  there  
exist only finitely many triples $(u, q,  p)\in\Gamma\times\mathbb{Z}^2$
with $d = [\mathbb{Q}(u):\mathbb{Q}]$  such that
$$
0<|\delta qu+\beta-p|<\frac{1}{H^\varepsilon(u)q^{d+\varepsilon}},
$$
where $H(u)$ denotes  the absolute Weil height.  As an application of  
this result, we also prove a transcendence result, which states as  
follows:  Let $\alpha>1$ be a real number. Let $\beta$ be an algebraic  
irrational and  $\lambda$ be a non-zero real algebraic number.   For a  
given real number $\varepsilon >0$, if there are infinitely many  
natural numbers $n$ for which  $||\lambda\alpha^n+\beta|| < 2^{-  
\varepsilon n}$ holds true, then  $\alpha$ is transcendental, where  
$||x||$ denotes the distance from its nearest integer.

 

Google Meet Link: meet.google.com/rpj-qpwn-ows

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.