Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. M558 - Representations of Linear Lie Groups

M558 - Representations of Linear Lie Groups

By admin_sms on Thu, 17/07/2014 - 14:37
Course No
M558
Credit
4
Approval
2014
UG-Elective
Syllabus
Introduction to topological group, Haar measure on locally compact group, Representation theory of compact groups, Peter Weyl theorem, Linear Lie groups, Exponential map, Lie algebra, Invariant Differentail operators, Representation of the group and its Lie algebra. Fourier analysis on SU (2) and SU (3). Representation theory of Heisenberg group . Representation of Euclidean motion group.
Reference Books
  1. J. E. Humphreys, “Introduction to Lie algebras and representation theory”, Springer-Verlag, 1978.
  2. S. C. Bagchi, S. Madan, A. Sitaram, U. B. Tiwari, “A first course on representation theory and linear Lie groups”, University Press, 2000.
  3. Mitsou Sugiura, “Unitary Representations and Harmonic Analysis”, John Wiley & Sons, 1975.
  4. Sundaram Thangavelu, “Harmonic Analysis on the Heisenberg Group”, Birkhauser, 1998.
  5. Sundaram Thangavelu, “An Introduction to the Uncertainty Principle”, Birkhauser, 2003. 

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.