Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. M556 - Lie Groups and Lie Algebras - I

M556 - Lie Groups and Lie Algebras - I

By admin_sms on Thu, 17/07/2014 - 14:33
Course No
M556
Credit
4
Approval
2014
UG-Elective
Syllabus
General Properties: Definition of Lie groups, subgroups, cosets, group actions on manifolds, homogeneous spaces, classical groups. Exponential and logarithmic maps, Adjoint representation, Lie bracket, Lie algebras, subalgebras, ideals, stabilizers, center Baker-Campbell-Hausdorff formula, Lie’s Theorems. Structure Theory of Lie Algebras: Solvable and nilpotent Lie algebras (with Lie/Engel theorems), semisimple and reductive algebras, invariant bilinear forms, Killing form, Cartan criteria, Jordan decomposition. Complex semisimple Lie algebras, Toral subalgebras, Cartan subalgebras,Root decomposition and root systems. Weight decomposition, characters, highest weight representations, Verma modules, Classification of irreducible finite-dimensional representations, BGG resolution, Weyl character formula.
Reference Books
  1. D. Bump, “Lie Groups”, Graduate Texts in Mathematics 225, Springer, 2013.
  2. J. Faraut, “Analysis on Lie Groups”, Cambridge Studies in Advanced Mathematics 110, Cambridge University Press, 2008.
  3. B. C. Hall, “Lie Groups, Lie algebras and Representations”, Graduate Texts in Mathematics 222, Springer-Verlag, 2003.
  4. W. Fulton, J. Harris, “Representation Theory: A first course”, Springer-Verlag, 1991.
  5. J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory”, Graduate Texts in Mathematics 9, Springer-Verlag, 1978.
  6. A. Kirillov, “Introduction to Lie Groups and Lie Algebras”, Cambridge Studies in Advanced Mathematics 113, Cambridge University Press, 2008.

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.