Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. M476 - Lie Algebras

M476 - Lie Algebras

By admin_sms on Thu, 17/07/2014 - 12:31
Course No
M476
Credit
4
Approval
2014
UG-Elective
Syllabus
Definitions and Examples, Derivations, Ideals, Homomorphisms, Nilpotent Lie Algebras and Engel’s theorem, Solvable Lie Algebras and Lie’s theorem, Jordan decomposition and Cartan’s criterion, Semisimple Lie algebras, Casimir operator and Weyl’s theorem, Representations of sl(2, F ), Root space decomposition, Abstract root systems, Weyl group and Weyl chambers, Classification of irreducible root systems, Abstract theory of weights, Isomorphism and conjugacy theorems, Universal enveloping algebras and PBW theorem, Representation theory of semi-simple Lie algebras, Verma modules and Weyl character formula.
Reference Books
  1. J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory”, Graduate Texts in Mathematics 9, Springer-Verlag, 1978.
  2. K. Erdmann, M. J. Wildon, “Introduction to Lie Algebras”, Springer Undergraduate Mathematics Series, Springer-Verlag, 2006.
  3. J.-P. Serre, “Complex Semisimple Lie Algebras”, Springer Monographs in Mathematics, Springer-Verlag, 2001.
  4. N. Jacobson, “Lie Algebras”, Dover Publications, 1979.

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.