Quark-Gluon Plasma — the smallest, hottest, densest, and the most perfect fluid ever produced in the laboratory

Rajeev S. Bhalerao

Indian Institute of Science Education & Research (IISER)
Pune, India

XI SERC School on Experimental High Energy Physics

NISER, Odisha, 7 November 2017

Quark-Gluon Plasma is

the smallest, hottest, densest, and most perfect

fluid ever produced in the laboratory

- Life-time: $\sim 3 \times 10^{-23}$ sec
- Smallest: $R \sim 10$ fm
- Hottest: $T\sim 200$ MeV $\sim 2\times 10^{12}$ K (T at the core of the sun $\sim 1.6\times 10^7$ K)
- Densest: several GeV/fm³ ≫ nuclear density
- Most perfect: Even more so than liquid helium

Constant-pressure (P_{crit}) curves

Meson gas: χ PT (50 % error not shown)

QGP: LGT calc. of Nakamura & Sakai

Small η/s has been seen also in some ultracold trapped atomic systems

Liquids & gases behave differently. QCD: Liquid cools into a gas !!

Recreating the "Early Universe" in the Lab

Temperature history of the universe

The Big Bang and the Little Bang

Initial quantum fluctuations \rightarrow Macroscopic fluctuations in the final state. Aim: To study the (unknown) early state.

Features	Big Bang	Little Ba

Occurrence	Only once
Initial state	Inflation? $(10^{-35}s)$
Thermalization	Inflaton $E \to thermal\ E$
• • •	of radiation & matter
Expansion	General Relativity
Phase transitions	EW and QCD
Expansion velocity	$v = H_0 r$ (Hubble)
${\sf Freezeout/Decoupling}$	γ : 2.73 K, $ u$: 1.95 K

Millions of times Glasma? $(10^{-24}s)$ Coherent Glasma \rightarrow $q, \bar{q}, g \rightarrow \text{QGP}$ Rel. Dissip. hydro. QCD $v_z = z/t$ (Bjorken) $\sim 150, \sim 120 \text{ MeV}$

The Glasma (initial stage)

(Raju Venugopalan)

Coloured flux lines produced in *pp* or *AA* collisions just after the collision. Glasma: Highly excited, coherent, classical field configuration

The Big Bang and the Little Bang (contd.)

Features

Anisotropy observed Penetrating probes Chemical probes Colour shift Parameters (5-10) Tools

Starting years

Big Bang

Final temp. (CMB)
Photons
Light nuclei
Red shift
Initial density, age, etc.
COBE, WMAP, Planck
1989, 2001, 2009

Little Bang

Final flow profile Photons, ℓ , jets Various hadron species Blue shift $\tau_0, T_0^{\mu\nu}, T_{\rm f.o.}$ SPS, RHIC, LHC 1987, 2000, 2009

Fundamental Questions

This field addresses some fundamental questions regarding QCD:

- Nature of equilibration processes in QCD
- Collectivity (especially in small systems) as an emergent phenomenon in QCD
- How to experimentally probe the physical degrees of freedom relevant in the QCD transition region

Lattice QCD Results for EOS

- ullet $T\simeq 155$ MeV: increase in entropy or the no. of degrees of freedom
- Release of partonic degrees of freedom
- ullet p rises less rapidly than ϵ
- High-T limit: $\epsilon = 3p$
- SB: Stephan-Boltzmann limit

Phase Diagram of Water

© Prentice-Hall

QCD Phase Diagram (schematic)

Baryon Chemical Potential (μ_B)

THE BIG IDEA IS TO MAP OUT THE QCD PHASE DIAGRAM QUALITATIVELY and QUANTITATIVELY, and also STUDY QCD NON-EQLBM (TRANSPORT) PROPERTIES.

RELATIVISTIC HEAVY-ION COLLISIONS IS THE ONLY AVAILABLE LABORATORY TOOL.

Ultrarelativistic Nucleus-Nucleus Collisions

Various Stages

- Collision of two Lorentz-contracted nuclei (or two CGC plates)
- Deposition of kinetic energy & formation of a fireball (or Glasma)
- Liberation of partons from the strong chromofields (or Decoherence)
- Approx. local thermalization of partons: Formation of QGP
- Hydrodynamic expansion, cooling, dilution. QCD EoS.
- Particlization Kinetic theory
- Chemical freezeout: inelastic processes stop
- Kinetic freezeout: elastic scatterings stop. Free streaming.
- Detection of particles Extraction of QGP properties

Wealth of Data

- Initial-State Variables: beam energy, beam species, centrality of collision
- Final-State Variables: particle species, transverse momentum, rapidity or pseudo-rapidity
- Observables (differential or integrated): charged particle multiplicity, p_T spectra, anisotropic transverse flows for n=1-6, strangeness enhancement, J/ψ suppression, Υ suppression, BE correlations, jet quenching, 2-,3- and multi-particle correlations, γ and $\ell\ell$ spectra, ...

Any model has to agree with this body of data