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Motivation

@ To model the bulk evolution of the strongly interacting matter produced in
relativistic heavy-ion collisions, relativistic viscous hydrodynamics has become
the basic theoretical tool. ' 2.

@ Concepts used in hydrodynamics: energy density and pressure, both are defined
locally and, formally, the fluid cell has zero size.

o Interestingly, hydro models which are successful in explaining the experimental
data can be used to conclude about the energy density attained in the collision
processes.

o Is the energy density a well defined concept for a fluid cell of arbitrary size?
@ Does quantum fluctuation play any role?

@ Noether’s theorem does not give a unique choice for the energy-monetum tensor
— pseudo-gauge choices.

@ Possible pseudo-gauge dependence?

IC. Gale, S. Jeon, B. Schenke, Int.J.Mod.Phys.A 28 (2013) 1340011
28. Jeon, U. Heinz, Int.J.Mod.Phys.E 24 (2015) 10, 1530010.
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Scale dependence of quantum fluctuation

@ For areal scalar field the canonical energy-momentum tensor is :
T =n¢— L =H. 1)

In natural units, & = ¢ = 1, [T%] = [£] = [M%] = [H].
@ We define a smeared operator,

Ala) = (ay/m) / 4% 1 (0, x)e ¥ o)
@ Variance of the operator A(a),
varA = (A?) — (A)? = [varA] = [A)* = [H]? = [M]*. 3)
o If we set,
varA(a) ~a® — = —-2d “)

@ Therefore the fluctuations of the energy density grow rapidly at small distances .

3Quantum Field Theory: Lectures of Sidney Coleman
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@ S is closed/isolated system described
by microcanonical ensemble.

@ Sy is a sub system of the closed

Sy system in equilibrium, described by
the canonical ensemble. Fluctuation
in energy in Sy (large volume limit):

() - (1) TCy

0.
(H)? ve

®)

Sv H is the Hamiltonian, 7 is
temperature, ¢ is energy density, Cy

is specific heat.

2 _
Og =

@ S, is a subsystem of Sy which is
described by the "Gaussian box":

(ay/7)? exp(—x /).
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Quantum scalar field
@ We describe our system by a quantum scalar field in thermal equilibrium®.
&k —ik-x T ikx T 3) ’
o(t,x) = | ——— (ake +aze ) i laga] =0 (k=K (6)
A4 (271')3 Zwk
Single particle energy: wy = VA* +m?, a*b, = a-b = a’b’ —a - b.
@ Hamiltonian density:
1 /.
H=3 (8 +(Vop+nme?). )
@ We define an operator #,, for a finite subsystem S, placed at the origin of the
coordinate system,
1 3 x?
Ha = ((1—71_)3 /d x’H(x) exXp (—;) . (8)

@ Our objective:

(<HaHa> — <Ha>2)1/2
(Ha)

4S. Coleman, Lectures of Sidney Coleman on Quantum Field Theory.-WSP,-Hackensack, 12, 2018.
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Jz(a,m, T) == <HaHa> - <Ha>27 Un(aam, T) = (9)




@ Normal ordering: Composite QFT operators — Some "Normal ordering"
prescription required.
Hy —: Hy e (10)
HoHo —: Ha 2 Ha : 11)

@ To perform thermal averaging, it is sufficient to know the thermal expectation

values of the products of two and four creation and/or annihilation operators 3>
6,7

(afay) = 6@ (k — k' )f (wi), (12)
<a,ta,t,a,,ap,> = (5<3> (k—p) 6K —p')+ 6Pk —p") 6O (k' — p)) f(we)f (wie)

The Bose—Einstein distribution function, f(wg) = 1/(exp[8 wi] — 1).
@ Any other combinations of two and four creation and/or annihilation operators
can be obtained through the commutation relation between a, and a,t.

5C. Cohen-Tannoudji, B. Diu, F. Lalog, and S. R. Hemley, Quantum mechanics: Vol. 3, Wiley, New
York, 1977.

T. Evans and D. A. Steer, Nucl. Phys. B 474 (1996) 481.

7C. Itzykson and J. Zuber, Quantum Field Theory. International Series In Pure and Applied Physics.
McGraw-Hill, New York, 1980.
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@ The thermal expectation value of the operator H, is
(Ha o) = / Ak f(wr) = e(T) well known result (13)
. a ] — (27T)3 k k) =

o Important new result: Fluctuation,

(a,m, T) = / dK dK'f(wx) (1 +f (@)
2 , ra ’
X [(wkwk/ + kK 4 m?)?eTUk s (wrwpr +k -k — m?)2e™ T (ktk s

(14)

here dK = d°k/((27)>2wy).

o All the vacuum energy term coming from the composite operator may not be
removed by "normal ordering".

o (: H, :) is independent of the scale a, but the fluctuation o2 (a, m, T) depends on
the scale.

e Degeneracy factor: € — gg, 0> — go>.
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Temperature and mass dependence of o,
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Thermodynamic limit

SV SV SV
. . .

o Gaussian representation of the three dimensional Dirac delta function

3

5Ok —p) = lim e 5D (15)

a
a—00 (27‘(‘)3/2
@ One obtains,

T2 HZ*HZ
ot - Tev )= i)

2 wp 1o

o V, = a’(2m)3/? can be considered as the volume of the subsystem S, — a
nontrivial factor of (27)%/2 is an artifact of using the “Gaussian” box.

@ Vo2 can be identified as the normalized energy fluctuation in the system Sy.
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Approach to the thermodynamic limit
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@ Variation of V,02/Vo? with the size of the subsystem S, in the case where
particles have a non vanishing mass and they obey Bose-Einstein statistics.

@ One expects that in the thermodynamic limit V,02/Vo? should approach unity.

@ Quantum fluctuations agree with the thermodynamic ones already for a > 1 fm.

@ Quantum fluctuations become very important at the scale of 0.1 fm.
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System of fermions

@ We describe our system by a spin-1/2 field in thermal equilibrium. The field
operator has the standard form 3

3
00 =3 [ 5 (U W 0 vl @),

@ The canonical anti-commutation relations,

{a,(k),al(K')} = (2m)*6,,0%) (k — k') (18)
{b, (k), bl (k")} = (2)*6,,6®) (k — k') (19)

U, (k)U, (k) = 2mb, (20)
V. (k)V, (k) = —2md,s Q1)

8L. Tinti and W. Florkowski, arXiv:2007.04029, a chapter in "Strongly Interacting Matter Under

Rotation", edited by F. Becattini, J. Liao and M. Lisa
11/20
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o To perform thermal averaging:

(af (R)a, (K')) = (2m)*6,,6 @) (ke — &' )f (cn), 22)
(af (k)af (K )a,. (p)ay (p"))
= (2m)° (880 (k= p) 5 (K —p)

- 5rr’ 5ss’5(3) (k _p) 6(3) (kl —pl))f(wk)f(Wk/). (23)

Here f(wi) = 1/(exp|B (wk — p)] + 1) is the Fermi—Dirac distribution function
for particles.

@ Anti particle operators also satisfies similar relation.

e For antiparticles, the Fermi-Dirac distribution function differs by the sign of the
chemical potential y, i.e. f(wg) = 1/(exp[8 (wr + )] + 1)
@ We consider a case with zero baryon chemical potential.
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@ Contrary to the real scalar field, the canonical energy momentum tensor operator
is not symmetric,

Tt = %1/77"%)”1,0 — gL = %%ﬂ?%p, Gr=Fr_9r (4

Here Lp denotes the Lagrangian density of a spin-1/2 field, which can be
expressed as

Lo = 507" Ty — iy, e3)

e Mathematically, for any original energy-momentum tensor 74 satisfying
0,T" = 0 we can construct a different one by adding the divergence of an
antisymmetric object, namely °

T/;,LV — THV + 8}\Ayu)\; AIJM)\ — _Auku (26)

@ By construction, the new tensor is also conserved, i.e., 9,7'*" = 0.

@ For spin 1/2 field the energy momentum tensor is pseudo-gauge dependent.

9E. Speranza and N. Weickgenannt, Spin tensor and pseudo-gauges: from nuclear collisions to
gravitational physics, arXiv:2007.00138, Eur. Phys. J. A 57 (2021) 155.
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@ Belinfante-Rosenfeld framework (BR):

i = S0 Ty — o (9 [.r] Ju). @

o de Groot-van Leeuwen-van Weert framework (GLW)'?:
Tty =~ 00" Ty~ gL
= ﬁ { — p(O*DV1) + (8")(8" ) + (0¥ ) (")
- (3"5‘”1/7)1#] : (28)
e Hilgevoord-Wouthuysen framework HW)':
T = T8+ 5 (07000t + Db 0

g0y (307 T ) 29)

105, R. De Groot, Relativistic Kinetic Theory. Principles and Applications. 1980.
11 Hilgevoord and S. Wouthuysen, Nucl. Phys. 40 (1963) 1-12; J. Hilgevoord and E. De Kerf, Physica
31 No.7 (1965) 1002-1016
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-
Energy density is pseudo-gauge independent

o We define an operator, 7%

R 1 . 2
9= / P T (x) exp <_Z_2) (30)

@ We consider the variance

oX(a,m,T) = (: T :: 7902y — (: 790 )2 (31)

a a

and the normalized standard deviation

((: fﬁ’o : TSO ) — (: T :>2)1/2

on(a,m,T) = 5 . (32)
(1207
@ Mean/thermal averaged T2°:
. &k
(78009 =4 [ s ) = () 6
= <: Tg(})l,a :> = <: Tg%W,a :> = <: TSI(\)Na :> (34)
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Energy density fluctuation— pseudo-gauge dependent

o Contrary to energy density the energy density fluctuation is pseudo-gauge
dependent, e.g.
@ For the Canonical framework:

Frulam,T) =2 [ AR dK 7)1~ fen)
x [(wk ) (e + kK + mP)e 56K
— (k= w2 (kne + kK — m)em TR (35)
@ For the de Groot-van Leeuwen-van Weert framework:
ulam D) = 5 [ aK dK ) (1~ )
X | (wr + wir)* (wkwrr — k- K+ m?) oG —K)?

a2 /
— (wk — wk/)4 (wkwk/ —k-K - mz) e~ TUHD | (36)
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@ A comparison of the normalized standard deviation of fluctuations obtained for
three different pseudo-gauges (Can=BR, GLW, HW).

@ For a < 0.5 fm, we observe that the results obtained with various pseudo-gauges
differ, with differences growing as a decreases.

o Irrespective of the choice of pseudo-gauges with growing system size the
normalized standard deviation of fluctuations (o,,) decreases.

17/20
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What about thermodynamic limit??

@ Using the Gaussian representation of the Dirac delta function it can be shown
that, in the large a limit,

4¢g / Pk
2 2 2 2 2
O, = wi f(wr)(1 = f(wg)) = ozp = 0, = oqqw. (37
Can (271_)3/2(13 (27‘_)3 kf( )( f( )) BR GLW HW ( )
@ In the large a limit we find,
T’c (E*) — (E)
2 _ v — 2. _ 3 3/2
Veo, = o = 1% T =Vog;, V,=a (2m)"~. (38)
14 10 -
T =0.15 GeV — Can/BR o T =0.15 GeV — Can/BR
135 m=10GeV [ GLW 9 Lom=015CeV | GLW
wog=10 === HW 8 tog=10 -=- HW
13t -
A7 "
S 6
=
~s 5
g
5 4
3
2
’ 04 05 0.6 0.7 0.8 09 10 10.4 0.5 0.6 0.7 0.8 0.9 10
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Conclusions

@ We have derived the formula characterizing the quantum fluctuation of energy in
subsystems of a hot relativistic gas.

o It agrees with the expression for thermodynamic fluctuations, if the size of the
subsystem is sufficiently large.

o For smaller sizes the effects of quantum fluctuations become relevant and the
classical description with well defined energy density makes sense only after
coarse graining over sufficiently large scale.

@ For fermions quantum fluctuation of energy density does depend on the choice of
the pseudo-gauge.

@ On the practical side, the results of our calculations can be used to determine a
scale of coarse graining for which the choice of the pseudo-gauge becomes
irrelevant.

o This may be useful, in particular, in the context of hydrodynamic modeling of
high-energy collisions.

@ These results might be relevant for small systems.
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-
Pseudo-gauge personal manisfest

e QFT POV: all pseudo-gauges are equivalent — if field equations are satisfied, all
equations considered in different pseudo-gauges are fulfilled
canonical: 9, Ty =0,  OxSeit” = Tilh — Tt
Belinfante: 9, T4% =0, d\Spi = 0.
GLW: 9, Ty =0,  OxSale = Thh — Tl
@ Densities of locally conserved currents have no absolute sense (Coleman’s

lectures), perhaps, if integrated over sufficiently large volumes (this talk).

124 : ANV _Apvp : :
@ Ty, couples to gravity, Sciy = *#YPA, couples to weak interactions

(with A being the axial current) .

@ Lessons from the proton spin puzzle (discussion by Leader and Lorce): gauge
invariance constrains observables but gauge dependent expressions describe
certain observables after fixing the gauge.

@ Pseudo-gauge dependent expressions describe certain observables after fixing
the pseudo-gauge.

@ We cannot require that the only reasonable energy-momentum tensor is a
symmetric one.
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Normal ordering: alternative approach

@ For a composite operator we considered the following normal ordering method:
HoHy —: Hy s Ha e

@ Therefore we are first normal ordering first then then multiplying to construct the
composite operator.

o Alternatively one can also argue about different method of normal ordering:
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(:Tooz(z): Yemalt TDO(I): )2

cuz) (: Too?(2):)

@ If we consider such a normal ordering then:

o*(a,m, T) = (: HoHa:) — ( Ha ) = /dK dK'f (wr)f (wir)
a2 ’ e ’
X | (wpwpr + Kk -k +m?)2e” TRk ” 4 (wrwp: + k- k' — m?)?e 7 kK ’l.

(39)

Wojciech Florkowski (UJ) 1/1




	Appendix

