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Hydrodynamic simulation of HIC

~ 15-20 years ago:
Discovery of the “unreasonable effectiveness of hydrodynamics” in describing

ultrarelativistic heavy-ion collision dynamics. hundreds of papers..
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Hydrodynamics is applied in regime of large gradients...
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Simulations like these explains data — “Early thermalization puzzle”
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What is the domain of hydrodynamics?

e Textbooks: Close to local equilibrium, Ay < L or [VAu|/T < 1.

Hence, hydrodynamics is formulated as an expansion in velocity gradients.
Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, “Fluid mechanics” (1987)
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= Vanishing chemical potential — no net conserved charge.
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= The operator A" = g"¥ — u*u” projects on the space orthogonal to u*.
= Landau frame chosen: T""u, = eu!, €= €cq.

= Vanishing chemical potential — no net conserved charge.

e 1%% order hydrodynamics: Navier-Stokes:
Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, “Fluid mechanics” (1987)

2
T =7 (V“u" + VVut — SA””VQU(X) =2not, II=—-(0,u".

= However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes

. . . T 3/15
to dissipative forces — Acausal + Instabilities! Hiscock and Lindblom (1983, 1985) S



Miiller-Israel-Stewart theory : 1

e Starting point:
St = S*(T,u", u, N*, TH) = S* (T, u", u, IL, 7" VH)

Here, N* is conserved current, V* is particle diffusion.
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Here, N* is conserved current, V* is particle diffusion.

e Expand S* in powers of the dissipative currents around a fictitious equilibrium state

/2 1 w
B SR g, T — BN X (SN ST
S TY + 7Y T TN (ONH,6TH")

e Expanding X" to second-order
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Miiller-Israel-Stewart theory : 2

e Demand entropy divergence is positive
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Here, Q, Qv ,Qr > 0. Co-moving derivative A= ut o, A.

e Relaxation type equations for dissipative stresses
Qv
T52 T62

g4

e Causal and stable phenomenological theory. IT, 7#”  V* promoted to independent

dynamical variables.



Second-order hydrodynamics

e Gradient expansion till second order (for conformal systems):
R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)
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I;er a broader domain than
nal hydrodynamics?
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Bjorken flow

e Bjorken symmetries: homogeneity in the transverse (z,y) plane, boost invariance
along the z (beam) direction, and reflection symmetry z — —z.

e Appropriate description of early-time dynamics of matter formed in ultra-relativistic

heavy-ion collisions.

t
A Tls=const.

Milne coordinate system (7,1, ¢, 7ns).

Proper time: 7 = /12 — 22.

Space-time rapidity: ns = tanh™'(z/t).

e Fluid appears static, u* = (1,0,0,0). Finite expansion rate, d,u* = 1/7.

e All scalars depends only on proper time 7. Shear tensor is diagonal,

W“":diag(Oﬂ'ﬂ- 77).

rrT_nT T*‘“:'(PHEPHEP H—).
72727 T2 dla’g 67 + +27 + +27 + 7T
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Set of special moments of distribution function

e Boltzmann equation in RTA approximation undergoing Bjorken expansion:
< 0 p: O f(Tvp)fqu(pO/T)

5~ B ) (o = - TEES
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The coefficients @, by, cn, al,, by, ¢, are pure numbers. Depends on expansion geometry.

e Only three moments are hydro quantities: (Lo =€, L1, Mo = T}/)

1 1 3
€=Lo, PL=P+Il—m=2(Lo+2L), PT:P+H+g:§(L‘o—£1—§Mo>‘ 0/



Fixed point structure

e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M,, evolution.
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e Free-streaming fixed points ((w < 1):
= Exact fixed point: go = —1 (stable) and go = —2 (unstable).

= Considering only the two lowest moments:
go = —0.93 (stable) and go = —2.21 (unstable). Captures FP structure.

e Hydrodynamic fixed point (w > 1) : g. = —1 — P/e (governed by EoS). 10/15



Three-moment truncation

e Equation of three moments:

oL 1 oL 1 L1 — %4
870:—;(00504-0(%1)7 6771 :—;(alﬁl-"—blﬁo-‘rclﬁz)—(Til)v
T R
oM 1 Mo — MG
0:Am,@&MO+C&M1),£4£444£l.
or T TR
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Three-moment truncation

e Equation of three moments:

oL 1 oL 1 £, -4
6770 = (aoLo + coLl1), 877'1 = (a1l +b1Lo+ c13€) — (17_71),
R
oM 1 Mo — M4
a 0 :*7(a6M0+06M)7M'
T T R

e Considering three lowest moments (Lo, £1 and M) is enough to approximately
capture the exact evolution.

act KT 0507
§ z=m/T
ree—moment 0.451 5 P . 5 /
1 #\ Isotropic IC
= 0.40F ¢
g \
-
3 .
& 0ash Constant 7r
0.30F == "%(1)=0.0 \
— =1
of 0.25]- R
0.1 05 1 5 10 0.1 05 1 5 10

T/TR T/TR Al



Three-moment truncation: with interpolation for £, and

e Equation of three moments:

oL 1 oL 1 B = [
877'0 =7 (a0Lo + coLly), 8771 = (a1Ly1 +b1Lo +c1L2) — ¥7
R
M 1 Mo — Mgt
0 :ff(aéMOJrCéMl)*M'
or T TR

e Using a simple interpolation for £, and M; —

T T T T T T T T T

0.50F ]

— exact KT
---- three-moments
0.450 ] z=m/T
G 040f - Isotropic IC
=
& 0350 Constant 7r

— z(1)=0.01
— z(1)=1

0.1 05 1 5 10 0.1 05 1 5 10
T/TR T/TR 12/15




ISL hydrodynamics from moments

e Equation of three moments:

oL 1 oL 1 B = [
877'0 =z (aoLo + coL1), 8771 = (a1Ly1 +b1Lo + c1L2) — ¥7
R
oM 1 Mo — M
0 = —= (ah)Mo + chM1) ,M’
or T R

e [SL hydro equations can be obtained from truncation of £> and M. However, there

is an inherent ambiguity in the definition of some second-order transport coefficients.
SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)
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ISL hydrodynamics from moments

e Equation of three moments:

oL 1 oLy _ 1 bt
87'[) - (aoLo + coLl1), difrl - (a1£1 +b1Lo +c1L2) — %7
R
M 1 Mo — M4
0 _ L (e Mo+ cypty) - M= MoY)
or T TR

e [SL hydro equations can be obtained from truncation of £> and M. However, there

is an inherent ambiguity in the definition of some second-order transport coefficients.
SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; Phys. Rev. C 106, 044912 (2022)

e Relaxation-type structure inherent in moments equations — necessary for extending
domain in free-streaming regime.

e Time derivative of £1 and My, and correspondingly, m = 7% ([11 + %) and
IT= (Lo — 3P — My) /3 in ISL hydro, captures approximately the features of the
collisionless regime of the expanding system.

Ilustration = 13/15



ISL hydrodynamics captures free-streaming!

Isotropic initial conditions.

— exact KT 0.50
0.3\ =-==1SL hydro
- 0.45
------ free—s reamly
P
w 0.2 ; w 0.40
= - =
- & 0.35f
0.1
0.30F —— 4(1)=0.0
— z(1)=1
0 === 0.25 b
0.1 5 10 0.1 05 1 5 10
T/TR

Short free-streaming regime (dotted curves) seen in both the kinetic theory and ISL
hydrodynamic. There is nothing typically “hydrodynamic” here; hydrodynamics

becomes a valid description only for times 7 2 Tr. 14/15



~ 15-20 years ago:

Discovery of the “unreasonable effectiveness of hydrodynamics” in

describing ultrarelativistic heavy-ion collision dynamics.

15/15



~ 15-20 years ago:

Discovery of the “unreasonable effectiveness of hydrodynamics” in

describing ultrarelativistic heavy-ion collision dynamics.

Is “early thermalization puzzle” really a puzzle?
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Thank Youl!



Extras



Evolution of g,

Solving the truncated three-moment egs. using a simple interpolation for £o and M.

&o

= Attractor initial condition.

. ! ! : 1 2(1)=0.01 -
1O f—— e A — z(1)=0.5-
T s e
12 NN T

 — exact KT attractor
_13 :_,,Tff:,,,tw,(?fmqm,e,nt,s ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ro Navier Stokes 7

C 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 11 17
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z=m/T



Ambiguity of second-order transport coefficients

e Equation of £,, moments are decoupled from M,, moments = evolution of energy
density (Lo) does not depend on M., evolution.

e Since only Il — 7 = ¢o(L1 — Eiq) enters in evolution of €, similar decoupling in the
hydrodynamic equations expected. Such decoupling holds in the ISL hydro iff
2 1
6HH 2l g)‘wn = Arr + 57_7\'7\' + Ornr
Not satisfied by transport coefficients derived in A. Jaiswal et. al., PRC 90 (2014) 044908

e New transport coefficients derived following a different truncation for L2 and M appearing
in the equation for £1 and M. Coefficients of the gradient series of II and 7 unchanged.

o Al(r:fl;::m - (6/m+rzm/3)CE:AI

AP IS I PP I Y

L ol I Ll L

0.01 0.10 1 10 100
m/T
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