Hydrodynamics and the early thermalization (?) of quark-gluon plasma

Sunil Jaiswal

Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai **tifr**

ET-HCVM

February 3, 2023

Heavy-ion collision

 \sim 15-20 years ago:

Discovery of the "unreasonable effectiveness of hydrodynamics" in describing ultrarelativistic heavy-ion collision dynamics. hundreds of papers..

Hydrodynamic simulation of HIC

\sim 15-20 years ago:

Discovery of the "unreasonable effectiveness of hydrodynamics" in describing ultrarelativistic heavy-ion collision dynamics. hundreds of papers..

Hydrodynamic simulation of HIC

\sim 15-20 years ago:

Discovery of the "unreasonable effectiveness of hydrodynamics" in describing ultrarelativistic heavy-ion collision dynamics. hundreds of papers..

Hydrodynamics is applied in regime of large gradients...

Hydrodynamic simulation of HIC

\sim 15-20 years ago:

Discovery of the "unreasonable effectiveness of hydrodynamics" in describing ultrarelativistic heavy-ion collision dynamics. hundreds of papers..

Simulations like these explains data \rightarrow "Early thermalization puzzle"

What is the domain of hydrodynamics?

- Textbooks: Close to local equilibrium, $\lambda_{mfp} \ll L$ or $|\nabla^{\mu} u^{\nu}|/T \ll 1$. Hence, hydrodynamics is formulated as an expansion in velocity gradients. Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)
- Viscous hydrodynamics: Add out-of-equilibrium corrections to $T^{\mu\nu}_{ideal}$:

 $T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \pi^{\mu\nu} + \Pi\Delta^{\mu\nu}$

- The operator $\Delta^{\mu\nu} \equiv g^{\mu\nu} u^{\mu}u^{\nu}$ projects on the space orthogonal to u^{μ} .
- Landau frame chosen: $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}, \ \epsilon = \epsilon_{eq}.$
- Vanishing chemical potential no net conserved charge.
- 1st order hydrodynamics: Navier-Stokes: Eckart, Phys. Rev.58 (1940). Landau and Lifshitz. "Fluid mechanics" (191

$$\pi^{\mu\nu} = \eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right) = 2 \eta \sigma^{\mu\nu}, \qquad \Pi = -\zeta \,\partial_{\mu} u^{\mu}.$$

 However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes to dissipative forces - Acausal + Instabilities! Hiscock and Lindblom (1983, 1985)

What is the domain of hydrodynamics?

- Textbooks: Close to local equilibrium, $\lambda_{mfp} \ll L$ or $|\nabla^{\mu} u^{\nu}|/T \ll 1$. Hence, hydrodynamics is formulated as an expansion in velocity gradients. Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)
- Viscous hydrodynamics: Add out-of-equilibrium corrections to $T^{\mu\nu}_{\text{ideal}}$:

 $T^{\mu\nu} = T^{\mu\nu}_{\rm ideal} + \Pi^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \pi^{\mu\nu} + \Pi\Delta^{\mu\nu}$

- The operator $\Delta^{\mu\nu} \equiv g^{\mu\nu} u^{\mu}u^{\nu}$ projects on the space orthogonal to u^{μ} .
- Landau frame chosen: $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}, \ \epsilon = \epsilon_{eq}.$
- Vanishing chemical potential no net conserved charge.
- 1st order hydrodynamics: Navier-Stokes:

ckart, Phys. Rev.58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)

$$\pi^{\mu\nu} = \eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right) = 2 \eta \sigma^{\mu\nu}, \qquad \Pi = -\zeta \,\partial_{\mu} u^{\mu}.$$

 However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes to dissipative forces - Acausal + Instabilities! Hiscock and Lindblom (1983, 1985)

What is the domain of hydrodynamics?

- Textbooks: Close to local equilibrium, $\lambda_{mfp} \ll L$ or $|\nabla^{\mu} u^{\nu}|/T \ll 1$. Hence, hydrodynamics is formulated as an expansion in velocity gradients. Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)
- Viscous hydrodynamics: Add out-of-equilibrium corrections to $T^{\mu\nu}_{\text{ideal}}$:

 $T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \pi^{\mu\nu} + \Pi\Delta^{\mu\nu}$

- The operator $\Delta^{\mu\nu} \equiv g^{\mu\nu} u^{\mu}u^{\nu}$ projects on the space orthogonal to u^{μ} .
- Landau frame chosen: $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}, \ \epsilon = \epsilon_{eq}.$
- Vanishing chemical potential no net conserved charge.
- 1st order hydrodynamics: Navier-Stokes: Eckart, Phys. Rev.58 (1940), Landau and Lifshitz, "Fluid mechanics" (1987)

$$\pi^{\mu\nu} = \eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right) = 2 \eta \sigma^{\mu\nu}, \qquad \Pi = -\zeta \,\partial_{\mu} u^{\mu}.$$

 However, Navier-Stokes eqs. imposes instantaneous response of dissipative fluxes to dissipative forces - Acausal + Instabilities! Hiscock and Lindblom (1983, 1985)

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Starting point:

$$S^{\mu} \equiv S^{\mu} \left(T, u^{\mu}, \mu, N^{\mu}, T^{\mu\nu} \right) \equiv S^{\mu} \left(T, u^{\mu}, \mu, \Pi, \pi^{\mu\nu}, V^{\mu} \right)$$

Here, N^{μ} is conserved current, V^{μ} is particle diffusion.

• Expand S^{μ} in powers of the dissipative currents around a fictitious equilibrium state

$$S^{\mu} = \frac{P}{T} u^{\mu} + \frac{1}{T} u_{\nu} T^{\mu\nu} - \frac{\mu}{T} N^{\mu} - X^{\mu} \left(\delta N^{\mu}, \delta T^{\mu\nu} \right)$$

• Expanding X^{μ} to second-order

$$S^{\mu} = su^{\mu} - \frac{\mu}{T}V^{\mu} - \frac{u^{\mu}}{2} \left(\delta_0 \Pi^2 - \delta_1 V_{\alpha} V^{\alpha} + \delta_2 \pi_{\alpha\beta} \pi^{\alpha\beta} \right) - \gamma_0 \Pi V^{\mu} - \gamma_1 \pi^{\mu}_{\nu} V^{\nu} + \mathcal{O}(\delta^3)$$

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Starting point:

$$S^{\mu} \equiv S^{\mu} (T, u^{\mu}, \mu, N^{\mu}, T^{\mu\nu}) \equiv S^{\mu} (T, u^{\mu}, \mu, \Pi, \pi^{\mu\nu}, V^{\mu})$$

Here, N^{μ} is conserved current, V^{μ} is particle diffusion.

• Expand S^{μ} in powers of the dissipative currents around a fictitious equilibrium state

$$S^{\mu} = \frac{P}{T}u^{\mu} + \frac{1}{T}u_{\nu}T^{\mu\nu} - \frac{\mu}{T}N^{\mu} - X^{\mu}\left(\delta N^{\mu}, \delta T^{\mu\nu}\right)$$

• Expanding X^{μ} to second-order

$$S^{\mu} = su^{\mu} - \frac{\mu}{T}V^{\mu} - \frac{u^{\mu}}{2} \left(\delta_0 \Pi^2 - \delta_1 V_{\alpha} V^{\alpha} + \delta_2 \pi_{\alpha\beta} \pi^{\alpha\beta} \right) - \gamma_0 \Pi V^{\mu} - \gamma_1 \pi^{\mu}_{\nu} V^{\nu} + \mathcal{O}(\delta^3)$$

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Starting point:

$$S^{\mu} \equiv S^{\mu} (T, u^{\mu}, \mu, N^{\mu}, T^{\mu\nu}) \equiv S^{\mu} (T, u^{\mu}, \mu, \Pi, \pi^{\mu\nu}, V^{\mu})$$

Here, N^{μ} is conserved current, V^{μ} is particle diffusion.

• Expand S^{μ} in powers of the dissipative currents around a fictitious equilibrium state

$$S^{\mu} = \frac{P}{T}u^{\mu} + \frac{1}{T}u_{\nu}T^{\mu\nu} - \frac{\mu}{T}N^{\mu} - X^{\mu}\left(\delta N^{\mu}, \delta T^{\mu\nu}\right)$$

• Expanding X^{μ} to second-order

$$S^{\mu} = su^{\mu} - \frac{\mu}{T}V^{\mu} - \frac{u^{\mu}}{2} \left(\delta_0 \Pi^2 - \delta_1 V_{\alpha} V^{\alpha} + \delta_2 \pi_{\alpha\beta} \pi^{\alpha\beta}\right) - \gamma_0 \Pi V^{\mu} - \gamma_1 \pi^{\mu}_{\nu} V^{\nu} + \mathcal{O}(\delta^3)$$

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Demand entropy divergence is positive

$$\begin{split} \partial_{\mu}S^{\mu} &= \frac{\Pi}{T} \underbrace{\left(-\theta - T\delta_{0}\dot{\Pi} - \frac{T}{2}\Pi\dot{\delta}_{0} - \frac{T}{2}\delta_{0}\Pi\theta - T\gamma_{0}\partial_{\mu}V^{\mu} - T(1-r)V^{\mu}\nabla_{\mu}\gamma_{0}\right)}_{\Omega_{\Pi}\Pi} \\ &+ V_{\mu}\underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right) + \delta_{1}\dot{V}^{\langle\mu\rangle} + \frac{V^{\mu}}{2}\dot{\delta}_{1} + \frac{\delta_{1}}{2}V^{\mu}\theta - \gamma_{0}\nabla^{\mu}\Pi - r\Pi\nabla^{\mu}\gamma_{0} - \gamma_{1}\partial_{\nu}\pi^{\mu\nu} - y\pi^{\mu\nu}\nabla_{\nu}\gamma_{1}\right)}_{-\Omega_{V}V^{\mu}} \\ &+ \frac{\pi^{\mu\nu}}{T}\underbrace{\left(\sigma^{\mu\nu} - T\delta_{2}\dot{\pi}^{\langle\mu\nu\rangle} - \frac{T}{2}\pi^{\mu\nu}\dot{\delta}_{2} - \frac{T}{2}\delta_{2}\pi^{\mu\nu}\theta - T\gamma_{1}\nabla^{\mu}\langle V^{\rangle\nu} - T(1-y)V^{\langle\mu}\nabla^{\nu\rangle}\gamma_{1}\right)}_{\Omega_{\pi}\pi_{\mu\nu}} \\ &\text{Here, } \Omega_{\Pi}, \Omega_{V}, \Omega_{\pi} > 0. \text{ Co-moving derivative } \dot{A} \equiv u^{\mu}\partial_{\mu}A. \end{split}$$

• Relaxation type equations for dissipative stresses

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\Omega_{\pi}}{T\delta_2}\pi^{\mu\nu} = \frac{1}{T\delta_2}\sigma^{\mu\nu} + \cdots$$

• Causal and stable phenomenological theory. II, $\pi^{\mu\nu}$, V^{μ} promoted to independent dynamical variables.

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Demand entropy divergence is positive

$$\begin{split} \partial_{\mu}S^{\mu} &= \frac{\Pi}{T} \underbrace{\left(-\theta - T\delta_{0}\dot{\Pi} - \frac{T}{2}\Pi\dot{\delta}_{0} - \frac{T}{2}\delta_{0}\Pi\theta - T\gamma_{0}\partial_{\mu}V^{\mu} - T(1-r)V^{\mu}\nabla_{\mu}\gamma_{0}\right)}_{\Omega_{\Pi}\Pi} \\ &+ V_{\mu}\underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right) + \delta_{1}\dot{V}^{\langle\mu\rangle} + \frac{V^{\mu}}{2}\dot{\delta}_{1} + \frac{\delta_{1}}{2}V^{\mu}\theta - \gamma_{0}\nabla^{\mu}\Pi - r\Pi\nabla^{\mu}\gamma_{0} - \gamma_{1}\partial_{\nu}\pi^{\mu\nu} - y\pi^{\mu\nu}\nabla_{\nu}\gamma_{1}\right)}_{-\Omega_{V}V^{\mu}} \\ &+ \frac{\pi^{\mu\nu}}{T}\underbrace{\left(\sigma^{\mu\nu} - T\delta_{2}\dot{\pi}^{\langle\mu\nu\rangle} - \frac{T}{2}\pi^{\mu\nu}\dot{\delta}_{2} - \frac{T}{2}\delta_{2}\pi^{\mu\nu}\theta - T\gamma_{1}\nabla^{\mu}\langle V^{\rangle\nu} - T(1-y)V^{\langle\mu}\nabla^{\nu\rangle}\gamma_{1}\right)}_{\Omega_{\pi}\pi_{\mu\nu}} \end{split}$$
 Here Ω_{T} , Ω_{ν} ,

Here, Ω_{Π} , Ω_V , $\Omega_{\pi} \ge 0$. Co-moving derivative $\dot{A} \equiv u^{\mu} \partial_{\mu} A$.

• Relaxation type equations for dissipative stresses

$$\dot{\pi}^{\langle \mu\nu\rangle} + \frac{\Omega_{\pi}}{T\delta_2}\pi^{\mu\nu} = \frac{1}{T\delta_2}\sigma^{\mu\nu} + \cdots$$

• Causal and stable phenomenological theory. II, $\pi^{\mu\nu}$, V^{μ} promoted to independent dynamical variables.

Müller, Z. Phys, 198, 329 (1967), Israel and Stewart, Ann. Phys. 100, 310 (1976)

• Demand entropy divergence is positive

$$\begin{split} \partial_{\mu}S^{\mu} &= \frac{\Pi}{T} \underbrace{\left(-\theta - T\delta_{0}\dot{\Pi} - \frac{T}{2}\Pi\dot{\delta}_{0} - \frac{T}{2}\delta_{0}\Pi\theta - T\gamma_{0}\partial_{\mu}V^{\mu} - T(1-r)V^{\mu}\nabla_{\mu}\gamma_{0}\right)}_{\Omega_{\Pi}\Pi} \\ &+ V_{\mu}\underbrace{\left(-\nabla^{\mu}\left(\frac{\mu}{T}\right) + \delta_{1}\dot{V}^{\langle\mu\rangle} + \frac{V^{\mu}}{2}\dot{\delta}_{1} + \frac{\delta_{1}}{2}V^{\mu}\theta - \gamma_{0}\nabla^{\mu}\Pi - r\Pi\nabla^{\mu}\gamma_{0} - \gamma_{1}\partial_{\nu}\pi^{\mu\nu} - y\pi^{\mu\nu}\nabla_{\nu}\gamma_{1}\right)}_{-\Omega_{V}V^{\mu}} \\ &+ \frac{\pi^{\mu\nu}}{T}\underbrace{\left(\sigma^{\mu\nu} - T\delta_{2}\dot{\pi}^{\langle\mu\nu\rangle} - \frac{T}{2}\pi^{\mu\nu}\dot{\delta}_{2} - \frac{T}{2}\delta_{2}\pi^{\mu\nu}\theta - T\gamma_{1}\nabla^{\mu}\langle V^{\rangle\nu} - T(1-y)V^{\langle\mu}\nabla^{\nu\rangle}\gamma_{1}\right)}_{\Omega_{\pi}\pi_{\mu\nu}} \end{split}$$
 Here Ω_{T} , Ω_{ν} ,

Here, Ω_{Π} , Ω_V , $\Omega_{\pi} \ge 0$. Co-moving derivative $\dot{A} \equiv u^{\mu} \partial_{\mu} A$.

• Relaxation type equations for dissipative stresses

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\Omega_{\pi}}{T\delta_2}\pi^{\mu\nu} = \frac{1}{T\delta_2}\sigma^{\mu\nu} + \cdots$$

• Causal and stable phenomenological theory. II, $\pi^{\mu\nu}$, V^{μ} promoted to independent dynamical variables.

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma} + \lambda_3 \omega_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma}$$
$$\bullet \theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2} (\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

• However, hydrodynamic equations are still acausal.

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma} + \lambda_3 \omega_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma}$$
$$\bullet \theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2} (\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

• However, hydrodynamic equations are still acausal.

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \lambda_3 \omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$
$$\theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2}(\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

- However, hydrodynamic equations are still acausal.
- Replace $\sigma^{\mu\nu} \rightarrow \pi^{\mu\nu}/(2\eta)$ using NS relation R. Baier et al., JHEP 04, 100 (2008):

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\left(\frac{\eta}{\tau_{\pi}}\right)\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + \frac{\lambda_{1}}{4\eta^{2}\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\pi^{\nu\rangle\gamma} + \frac{\lambda_{2}}{2\eta\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \frac{\lambda_{3}}{\tau_{\pi}}\omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$

- Restores causality and stability. Israel-Stewart-like equation.
 Many variants A. Muronga '02; Denicol, Niemi, Molnár, Rischke '12; A. Jaiswal '13; ...
- Promotes $\pi^{\mu\nu}$ into dynamic variable new degree of freedom.

н

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \lambda_3 \omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$
$$\theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2}(\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

- However, hydrodynamic equations are still acausal.
- Replace $\sigma^{\mu\nu} \rightarrow \pi^{\mu\nu}/(2\eta)$ using NS relation R. Baier et al., JHEP 04, 100 (2008):

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\left(\frac{\eta}{\tau_{\pi}}\right)\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + \frac{\lambda_{1}}{4\eta^{2}\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\pi^{\nu\rangle\gamma} + \frac{\lambda_{2}}{2\eta\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \frac{\lambda_{3}}{\tau_{\pi}}\omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$

- Restores causality and stability. Israel-Stewart-like equation.
 Many variants A. Muronga '02; Denicol, Niemi, Molnár, Rischke '12; A. Jaiswal '13; ...
- Promotes $\pi^{\mu\nu}$ into dynamic variable new degree of freedom.

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma} + \lambda_3 \omega_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma}$$
$$\theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2}(\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

- However, hydrodynamic equations are still acausal.
- Replace $\sigma^{\mu\nu} \rightarrow \pi^{\mu\nu}/(2\eta)$ using NS relation R. Baier et al., JHEP 04, 100 (2008):

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\left(\frac{\eta}{\tau_{\pi}}\right)\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + \frac{\lambda_{1}}{4\eta^{2}\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\pi^{\nu\rangle\gamma} + \frac{\lambda_{2}}{2\eta\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \frac{\lambda_{3}}{\tau_{\pi}}\omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$

- Restores causality and stability. Israel-Stewart-like equation.
 Many variants A. Muronga '02; Denicol, Niemi, Molnár, Rischke '12; A. Jaiswal '13; ...
- Promotes $\pi^{\mu\nu}$ into dynamic variable new degree of freedom.

• Gradient expansion till second order (for conformal systems): R. Baier et al., JHEP 04, 100 (2008) S. Bhattacharyya et al., JHEP 02, 045 (2008)

$$\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} - 2\eta\tau_{\pi} \left[\dot{\sigma}^{\langle\mu\nu\rangle} + \frac{1}{3}\sigma^{\mu\nu}\theta \right] + \lambda_1 \sigma^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} + \lambda_2 \sigma^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \lambda_3 \omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$
$$\theta \equiv \partial_{\mu}u^{\mu}, \quad \omega^{\mu\nu} \equiv \frac{1}{2}(\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu})$$

- However, hydrodynamic equations are still acausal.
- Replace $\sigma^{\mu\nu} \rightarrow \pi^{\mu\nu}/(2\eta)$ using NS relation R. Baier et al., JHEP 04, 100 (2008):

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\left(\frac{\eta}{\tau_{\pi}}\right)\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + \frac{\lambda_{1}}{4\eta^{2}\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\pi^{\nu\rangle\gamma} + \frac{\lambda_{2}}{2\eta\tau_{\pi}}\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} + \frac{\lambda_{3}}{\tau_{\pi}}\omega^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}$$

- Restores causality and stability. Israel-Stewart-like equation.
 Many variants A. Muronga '02; Denicol, Niemi, Molnár, Rischke '12; A. Jaiswal '13; ...
- Promotes $\pi^{\mu\nu}$ into dynamic variable new degree of freedom.

\sim 15-20 years ago:

Discovery of the "unreasonable effectiveness of hydrodynamics" in describing ultrarelativistic heavy-ion collision dynamics. hundreds of papers..

Simulations like these explains data, however, hydrodynamics is applied in regime of large gradients. Does it even make sense?

Bjorken flow J. D. Bjorken, PRD 27, 140 (1983)

- Bjorken symmetries: homogeneity in the transverse (x, y) plane, boost invariance along the z (beam) direction, and reflection symmetry z → -z.
- Appropriate description of early-time dynamics of matter formed in ultra-relativistic heavy-ion collisions.

Milne coordinate system $(\tau, x_{\perp}, \phi, \eta_s)$.

Proper time: $\tau = \sqrt{t^2 - z^2}$. Space-time rapidity: $\eta_s = \tanh^{-1}(z/t)$.

• Fluid appears static, $u^{\mu} = (1, 0, 0, 0)$. Finite expansion rate, $\partial_{\mu}u^{\mu} = 1/\tau$.

• All scalars depends only on proper time τ . Shear tensor is diagonal, $\pi^{\mu\nu} = \operatorname{diag}\left(0, \frac{\pi}{2}, \frac{\pi}{2}, -\frac{\pi}{\tau^2}\right).$ $T^{\mu\nu} = \operatorname{diag}\left(\epsilon, P + \Pi + \frac{\pi}{2}, P + \Pi + \frac{\pi}{2}, P + \Pi - \pi\right).$ _{8/15}

• Boltzmann equation in RTA approximation undergoing Bjorken expansion:

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\tau, p) = -\frac{f(\tau, p) - f_{\rm eq}(p_0/T)}{\tau_R(\tau)}$$

• Consider the moments:

$$\mathcal{L}_n \equiv \int_p p_0^2 P_{2n}(p_z/p_0) f(\tau, p), \qquad \mathcal{M}_n \equiv m^2 \int_p P_{2n}(p_z/p_0) f(\tau, p)$$

re $\int_p \equiv \frac{d^3p}{(2\pi)^3 p_0}$ and P_{2n} is the Legendre polynomial of order $2n$.
and Yan, PLB **780** (2018) ext{ SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC **106**, 044912 (2022)

• Boltzmann equation can be recast as:

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left(a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right) - \left(1 - \delta_{n,0} \right) \frac{\left(\mathcal{L}_n - \mathcal{L}_n^{\text{eq}} \right)}{\tau_R}$$
$$\frac{\partial \mathcal{M}_n}{\partial \tau} = -\frac{1}{\tau} \left(a'_n \mathcal{M}_n + b'_n \mathcal{M}_{n-1} + c'_n \mathcal{M}_{n+1} \right) - \frac{\left(\mathcal{M}_n - \mathcal{M}_n^{\text{eq}} \right)}{\tau_R}$$

The coefficients $a_n, b_n, c_n, a'_n, b'_n, c'_n$ are pure numbers. Depends on expansion geometry.

• Only three moments are hydro quantities: $(\mathcal{L}_0 = \varepsilon, \mathcal{L}_1, \mathcal{M}_0 = T^{\mu}_{\mu})$

$$\epsilon = \mathcal{L}_0, \quad P_L = P + \Pi - \pi = \frac{1}{3} \left(\mathcal{L}_0 + 2\mathcal{L}_1 \right), \quad P_T = P + \Pi + \frac{\pi}{2} = \frac{1}{3} \left(\mathcal{L}_0 - \mathcal{L}_1 - \frac{3}{2} \mathcal{M}_0 \right). \quad \mathbf{9/15}$$

• Boltzmann equation in RTA approximation undergoing Bjorken expansion:

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\tau, p) = -\frac{f(\tau, p) - f_{\rm eq}(p_0/T)}{\tau_R(\tau)}$$

Consider the moments: •

Blaizot a

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left(a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right) - (1 - \delta_{n,0}) \frac{\left(\mathcal{L}_n - \mathcal{L}_n^{\text{eq}} \right)}{\tau_R}$$
$$\frac{\partial \mathcal{M}_n}{\partial \tau} = -\frac{1}{\tau} \left(a'_n \mathcal{M}_n + b'_n \mathcal{M}_{n-1} + c'_n \mathcal{M}_{n+1} \right) - \frac{\left(\mathcal{M}_n - \mathcal{M}_n^{\text{eq}} \right)}{\tau_R}$$

$$\epsilon = \mathcal{L}_0, \quad P_L = P + \Pi - \pi = \frac{1}{3} \left(\mathcal{L}_0 + 2\mathcal{L}_1 \right), \quad P_T = P + \Pi + \frac{\pi}{2} = \frac{1}{3} \left(\mathcal{L}_0 - \mathcal{L}_1 - \frac{3}{2} \mathcal{M}_0 \right). \quad \mathbf{9/15}$$

• Boltzmann equation in RTA approximation undergoing Bjorken expansion:

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\tau, p) = -\frac{f(\tau, p) - f_{\rm eq}(p_0/T)}{\tau_R(\tau)}$$

• Consider the moments:

$$\mathcal{L}_n \equiv \int_p p_0^2 P_{2n}(p_z/p_0) f(\tau, p), \qquad \mathcal{M}_n \equiv m^2 \int_p P_{2n}(p_z/p_0) f(\tau, p)$$

where $\int_p \equiv \frac{d^3p}{(2\pi)^3 p_0}$ and P_{2n} is the Legendre polynomial of order $2n$.
Blaizot and Yan, PLB **780** (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC **106**, 044912 (2022)

• Boltzmann equation can be recast as:

$$\frac{\partial \mathcal{L}_{n}}{\partial \tau} = -\frac{1}{\tau} \left(a_{n} \mathcal{L}_{n} + b_{n} \mathcal{L}_{n-1} + c_{n} \mathcal{L}_{n+1} \right) - (1 - \delta_{n,0}) \frac{\left(\mathcal{L}_{n} - \mathcal{L}_{n}^{\text{eq}}\right)}{\tau_{R}}$$
$$\frac{\partial \mathcal{M}_{n}}{\partial \tau} = -\frac{1}{\tau} \left(a_{n}' \mathcal{M}_{n} + b_{n}' \mathcal{M}_{n-1} + c_{n}' \mathcal{M}_{n+1} \right) - \frac{\left(\mathcal{M}_{n} - \mathcal{M}_{n}^{\text{eq}}\right)}{\tau_{R}}$$

The coefficients $a_n, b_n, c_n, a'_n, b'_n, c'_n$ are pure numbers. Depends on expansion geometry.

• Only three moments are hydro quantities: $(\mathcal{L}_0 = \varepsilon, \mathcal{L}_1, \mathcal{M}_0 = T^{\mu}_{\mu})$

$$\epsilon = \mathcal{L}_0, \quad P_L = P + \Pi - \pi = \frac{1}{3} \left(\mathcal{L}_0 + 2\mathcal{L}_1 \right), \quad P_T = P + \Pi + \frac{\pi}{2} = \frac{1}{3} \left(\mathcal{L}_0 - \mathcal{L}_1 - \frac{3}{2} \mathcal{M}_0 \right). \quad \mathbf{9/15}$$

• Boltzmann equation in RTA approximation undergoing Bjorken expansion:

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\tau, p) = -\frac{f(\tau, p) - f_{\rm eq}(p_0/T)}{\tau_R(\tau)}$$

• Consider the moments:

$$\mathcal{L}_n \equiv \int_p p_0^2 P_{2n}(p_z/p_0) f(\tau, p), \qquad \mathcal{M}_n \equiv m^2 \int_p P_{2n}(p_z/p_0) f(\tau, p)$$

where $\int_p \equiv \frac{d^3p}{(2\pi)^3 p_0}$ and P_{2n} is the Legendre polynomial of order $2n$.
Blaizot and Yan, PLB **780** (2018) SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC **106**, 044912 (2022)

• Boltzmann equation can be recast as:

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left(a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right) - \left(1 - \delta_{n,0} \right) \frac{\left(\mathcal{L}_n - \mathcal{L}_n^{\text{eq}} \right)}{\tau_R}$$
$$\frac{\partial \mathcal{M}_n}{\partial \tau} = -\frac{1}{\tau} \left(a'_n \mathcal{M}_n + b'_n \mathcal{M}_{n-1} + c'_n \mathcal{M}_{n+1} \right) - \frac{\left(\mathcal{M}_n - \mathcal{M}_n^{\text{eq}} \right)}{\tau_R}$$

The coefficients $a_n, b_n, c_n, a'_n, b'_n, c'_n$ are pure numbers. Depends on expansion geometry.

• Only three moments are hydro quantities: $(\mathcal{L}_0 = \varepsilon, \mathcal{L}_1, \mathcal{M}_0 = T^{\mu}_{\mu})$

$$\epsilon = \mathcal{L}_0, \quad P_L = P + \Pi - \pi = \frac{1}{3} \left(\mathcal{L}_0 + 2\mathcal{L}_1 \right), \quad P_T = P + \Pi + \frac{\pi}{2} = \frac{1}{3} \left(\mathcal{L}_0 - \mathcal{L}_1 - \frac{3}{2} \mathcal{M}_0 \right).$$
9/15

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{dg_0}{dw}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 (a_0 + a_1 + w) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \frac{\mathcal{L}_2}{\mathcal{L}_0} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$):
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{dg_0}{dw}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 (a_0 + a_1 + w) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \frac{\mathcal{L}_2}{\mathcal{L}_0} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$):
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{\mathrm{d}g_0}{\mathrm{d}w}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 \left(a_0 + a_1 + w\right) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \frac{\mathcal{L}_2}{\mathcal{L}_0} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$):
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{\mathrm{d}g_0}{\mathrm{d}w}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 \left(a_0 + a_1 + w\right) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \frac{\mathcal{L}_2}{\mathcal{L}_0} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w\ll 1)$:
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{\mathrm{d}g_0}{\mathrm{d}w}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 (a_0 + a_1 + w) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \underbrace{\mathcal{L}}_{\mathcal{L}} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$):
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).
 - Considering only the two lowest moments:

 $g_0 = -0.93$ (stable) and $g_0 = -2.21$ (unstable). Captures FP structure.

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Consider the quantity: $g_0 \equiv \frac{\tau}{\mathcal{L}_0} \frac{\partial \mathcal{L}_0}{\partial \tau}$. In the regimes where the energy density behave as power law, g_0 is the exponent in that power law.
- Define $\beta(g_0, w) \equiv w \frac{dg_0}{dw}$ where $w = \tau/\tau_R$. Equation for \mathcal{L}_n becomes: $-\beta(g_0, w) = g_0^2 + g_0 (a_0 + a_1 + w) + a_0 a_1 - c_0 b_1 + a_0 w - c_0 c_1 \frac{\mathcal{L}_2}{\mathcal{L}_0} - \frac{c_0}{2} w \left(1 - 3\frac{P}{\epsilon}\right)$
- Zeros of $\beta(g_0, w)$ gives fixed points.
- Free-streaming fixed points ($w \ll 1$):
 - Exact fixed point: $g_0 = -1$ (stable) and $g_0 = -2$ (unstable).
 - Considering only the two lowest moments: $g_0 = -0.93$ (stable) and $g_0 = -2.21$ (unstable). Captures FP structure.
- Hydrodynamic fixed point $(w \gg 1)$: $g_* = -1 P/\epsilon$ (governed by EoS).

Three-moment truncation

• Equation of three moments:

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right), \qquad \frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left(a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 + c_1 \mathcal{L}_2 \right) - \frac{\left(\mathcal{L}_1 - \mathcal{L}_1^{eq} \right)}{\tau_R},$$
$$\frac{\partial \mathcal{M}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0' \mathcal{M}_0 + c_0' \mathcal{M}_1 \right) - \frac{\left(\mathcal{M}_0 - \mathcal{M}_0^{eq} \right)}{\tau_R}.$$

Three-moment truncation

• Equation of three moments:

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right), \qquad \frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left(a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 + c_1 \right), \qquad \frac{\left(\mathcal{L}_1 - \mathcal{L}_1^{\text{eq}} \right)}{\tau_R},$$

$$\frac{\partial \mathcal{M}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0' \mathcal{M}_0 + c_0' \right), \qquad \frac{\left(\mathcal{M}_0 - \mathcal{M}_0^{\text{eq}} \right)}{\tau_R}.$$

• Considering three lowest moments $(\mathcal{L}_0, \mathcal{L}_1 \text{ and } \mathcal{M}_0)$ is enough to approximately capture the exact evolution.

11/15

Three-moment truncation: with interpolation for \mathcal{L}_2 and \mathcal{M}_1

• Equation of three moments:

$$\frac{\partial \mathcal{L}_{0}}{\partial \tau} = -\frac{1}{\tau} \left(a_{0}\mathcal{L}_{0} + c_{0}\mathcal{L}_{1} \right), \qquad \frac{\partial \mathcal{L}_{1}}{\partial \tau} = -\frac{1}{\tau} \left(a_{1}\mathcal{L}_{1} + b_{1}\mathcal{L}_{0} + c_{1}\mathcal{L}_{2} \right) - \frac{\left(\mathcal{L}_{1} - \mathcal{L}_{1}^{\text{eq}}\right)}{\tau_{R}},$$
$$\frac{\partial \mathcal{M}_{0}}{\partial \tau} = -\frac{1}{\tau} \left(a_{0}^{\prime}\mathcal{M}_{0} + c_{0}^{\prime}\mathcal{M}_{1} \right) - \frac{\left(\mathcal{M}_{0} - \mathcal{M}_{0}^{\text{eq}}\right)}{\tau_{R}}.$$

• Using a simple interpolation for \mathcal{L}_2 and $\mathcal{M}_1 \rightarrow$

z = m/TIsotropic IC Constant τ_R

12/15

ISL hydrodynamics from moments

• Equation of three moments:

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right), \qquad \frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left(a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 + c_1 \mathcal{L}_2 \right) - \frac{\left(\mathcal{L}_1 - \mathcal{L}_1^{\text{eq}} \right)}{\tau_R},$$
$$\frac{\partial \mathcal{M}_0}{\partial \tau} = -\frac{1}{\tau} \left(a'_0 \mathcal{M}_0 + c'_0 \mathcal{M}_1 \right) - \frac{\left(\mathcal{M}_0 - \mathcal{M}_0^{\text{eq}} \right)}{\tau_R},$$

• ISL hydro equations can be obtained from truncation of \mathcal{L}_2 and \mathcal{M}_1 . However, there is an inherent ambiguity in the definition of some second-order transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

ISL hydrodynamics from moments

• Equation of three moments:

ć

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left(a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right), \qquad \frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left(a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 + c_1 \mathcal{L}_2 \right) - \frac{\left(\mathcal{L}_1 - \mathcal{L}_1^{\text{eq}} \right)}{\tau_R},$$
$$\frac{\partial \mathcal{M}_0}{\partial \tau} = -\frac{1}{\tau} \left(a'_0 \mathcal{M}_0 + c'_0 \mathcal{M}_1 \right) - \frac{\left(\mathcal{M}_0 - \mathcal{M}_0^{\text{eq}} \right)}{\tau_R},$$

- ISL hydro equations can be obtained from truncation of \mathcal{L}_2 and \mathcal{M}_1 . However, there is an inherent ambiguity in the definition of some second-order transport coefficients. SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; Phys. Rev. C 106, 044912 (2022)
- Relaxation-type structure inherent in moments equations necessary for extending domain in free-streaming regime.
- Time derivative of \mathcal{L}_1 and \mathcal{M}_0 , and correspondingly, $\pi \equiv -\frac{2}{3}\left(\mathcal{L}_1 + \frac{\mathcal{M}_0}{2}\right)$ and $\Pi \equiv \left(\mathcal{L}_0 3P \mathcal{M}_0\right)/3$ in ISL hydro, captures approximately the features of the collisionless regime of the expanding system.

Illustration \Rightarrow

ISL hydrodynamics captures free-streaming!

SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

exact KT 0.50 0.3 ISL hvdro 0.45 free-streaming B_L/ϵ ---- NS 0.40 P_T/ϵ 0.35 0.1 0.30 z(1)=0.01 z(1)=10.25 0 0.1 0.5 5 10 0.1 0.5 5 10 τ/τ_{R} τ/τ_R

Short free-streaming regime (dotted curves) seen in both the kinetic theory and ISL hydrodynamic. There is nothing typically "hydrodynamic" here; hydrodynamics becomes a valid description only for times $\tau \gtrsim \tau_R$. 14/15

Isotropic initial conditions.

\sim 15-20 years ago:

Discovery of the "**unreasonable effectiveness of hydrodynamics**" in describing ultrarelativistic heavy-ion collision dynamics.

Schenke, Jeon, Gale, PRL 106 (2011), 042301 Heinz, Snellings, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 Is "early thermalization puzzle" really a puzzle? Simulations like these explains data, however, hydrodynamics is applied in regime of large gradients. Does it even make sense?

\sim 15-20 years ago:

Discovery of the "**unreasonable effectiveness of hydrodynamics**" in describing ultrarelativistic heavy-ion collision dynamics.

Schenke, Jeon, Gale, PRL 106 (2011), 042301 Heinz, Snellings, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 Is "early thermalization puzzle" really a puzzle? Simulations like these explains data, however, hydrodynamics is applied in regime of large gradients. Does it even make sense?

Thank You!

Solving the truncated three-moment eqs. using a simple interpolation for \mathcal{L}_2 and \mathcal{M}_1 .

• Attractor initial condition.

z = m/T

Ambiguity of second-order transport coefficients

SJ, Blaizot, Bhalerao, Chen, Jaiswal, Yan; PRC 106, 044912 (2022)

- Equation of \mathcal{L}_n moments are decoupled from \mathcal{M}_n moments \implies evolution of energy density (\mathcal{L}_0) does not depend on \mathcal{M}_n evolution.
- Since only Π π = c₀(L₁ L₁^{eq}) enters in evolution of ε, similar decoupling in the hydrodynamic equations expected. Such decoupling holds in the ISL hydro iff

$$\delta_{\Pi\Pi} + \frac{2}{3}\lambda_{\pi\Pi} = \lambda_{\Pi\pi} + \frac{1}{3}\tau_{\pi\pi} + \delta_{\pi\pi}$$

Not satisfied by transport coefficients derived in A. Jaiswal et. al., PRC 90 (2014) 044908

• New transport coefficients derived following a different truncation for \mathcal{L}_2 and \mathcal{M}_1 appearing in the equation for \mathcal{L}_1 and \mathcal{M}_0 . Coefficients of the gradient series of Π and π unchanged.

