

Heavy Quark Polarization: two EFTs

Sourendu Gupta

Emerging Topics in Hydrodynamics, Chirality, Vorticity and Magnetic Fields Toshali Sands (February 04, 2023)

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ - 로 - K 이익(연

[Energy scales and the EFTs](#page-4-0)

[Thermal Heavy Quark EFT: HQE](#page-8-0)T

Why

イロト (御) (ミ) (ミ) (ミ) ミーのQ (V)

[Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0) 00000 aaaaa \circ Why are hadrons polarized in HIC?

- **•** Particle spin can only couple to an axial vector
- The only axial vectors available in the fireball are **B** and **J**
- \bullet If coupling to **B** then why does the particle remain polarized after initial EM fields decay?
- If coupling to **J** then how does a microscopic element (the particle) feel a macroscopic quantity (value of J of the fireball)?

KOD KAR KED KED E YOUR

Energy scales and the **EFTs**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

For physics at scales $Q < \Lambda$, with

 $Λ_{\alpha c} \ll Λ \ll M$

pair creation suppressed by powers of Λ/M . Use effective theory: HQET.

Pauli spinor for heavy quark (HQ) and gluons with $k \ll M$. Effect of all other modes absorbed into low-energy couplings (LECs). Heavy quark velocity $v = p/M$ is conserved. EFT in powers of v; leading terms kinetic.

The Lagrangian at order v^0 is

$$
L_0 = \overbrace{ \frac{1}{2}(\textbf{E}^2 - \textbf{B}^2) + \psi^\dagger \left(i D_0 + \frac{1}{2m} \textbf{D}^2 \right) }^{Dure\ gauge} \psi
$$

Quark mass term dropped. Notation: $iD_{\mu} = i\partial_{\mu} - ieA_{\mu}$. Use $D_0 = v \cdot D$, with $D = D - vD_0$ (space and time components in RF of quark). Used Coulomb gauge. No Pauli matrices, so spin symmetry at this order. Seen in heavy meson spectra, decays.

KEIKARIKERKE POLO

Magnetic interactions arise at order v^2 . Break spin symmetry: recall fine structure and L-S coupling in atomic physics.

No hadrons, but many scales. At LHC, initial $T > T_{co}$. Electric scale $g\mathcal{T}$, magnetic scale $g^2\mathcal{T}$. Realistically $g\simeq 1$, but can control the theory more easily by first setting g small and then taking limit $g \to 1$. Also much longer scale of hydro: no quarks, no gluons, only stress tensor.

Theory at scale T : HQE T (new). Theory at electric scales previously considered for HQ diffusion. Theory at hydrodynamic scales: heavy quark sono-dynamics (HQSD, new).

Thermal Heavy Quark EFT: HQET

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 → 9 Q @

The HQET Lagrangian

oooc

Choose Λ , the UV cutoff of the EFT so that $M \gg \Lambda \gg T > T_{co}$. With $\Lambda \simeq 1$ GeV, hierarchy satisfied at LHC for M_b but not M_c . So this theory works for bottom at LHC.

[Why](#page-2-0) [Scales](#page-4-0) **[HQET](#page-8-0)** [HQSD](#page-13-0) [Experimental outlook](#page-18-0)
OO OOOO OOOO OOOO OOOOO OOOOO OOOOO

aaaaa

OΟ

 00000

The integration over hard modes can be done in perturbative QCD, with very little difference from the $T = 0$ theory. Carried to order v^2 , we have

$$
L = \frac{1}{2}\overline{\psi}\Big[iD_0 - \frac{c_1}{2M}\mathbf{D}^2 + \frac{c_2g}{4M}\sigma \cdot \mathbf{B}\Big]\psi + \cdots
$$

with $c_1 = 1 + \mathcal{O}(\alpha_s)$ and $c_2 = 1 + \mathcal{O}(\alpha_s)$, where **B** is the chromomagnetic field and σ its spin tensor in the RF of the HQ.

Weibel Instability

Large B at initial times: leads to HQ spin alignment in reaction plane. However, the direction of B fluctuates from event to event, so this spin alignment is washed out. Unfortunately no direct evidence for instability.

oooc Heavy quark polarization

Same construction with EM fields too. In this case $g \to e$ and ${\bf B} \to {\bf B}_{\scriptscriptstyle EM}$. $e{\bf B}_{\scriptscriptstyle EM} = \zeta\, T_{co}^2$ with $\zeta = \mathcal{O}(1)$ always out of the reaction plane; $|E_{\text{EM}}| \simeq |B_{\text{EM}}|$. May give observable spin alignment. Boost to RF of HQ first.

When $v = 0$ in the CM of the fireball, then the spin polarization

[Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0)

 00000

$$
P = \frac{\text{Tr}(\sigma_y \rho)/2}{\text{Tr}\rho} = \frac{c_2 q \zeta T_{co}^2}{8MT},
$$

with $q = -1/3$ and $c_2q\zeta \simeq 1$. So $P \approx 1.7\%$ for $T = 500$ MeV and 4.3% for $T = 200$ MeV. For arbitrary $v = \beta \gamma$, boosting to the RF of HQ and averaging over directions gives $P\simeq (T_{co}^2m_\tau)(8M^2T)$. We have assumed that the HQ is at $y = 0$ so its momentum is p_T and $m_{\scriptscriptstyle T} = \sqrt{M^2 + p_{\scriptscriptstyle T}^2}.$

OΟ

 $\sigma \cdot \mathbf{B}$ terms can be guessed for light quarks as well. However (1) the coupling is unknown (2) the problem cannot be reduced to a one-particle Hilbert space and (3) the spin of light degrees of freedom changes during thermal evolution of the fireball. This prevents us from making a QCD computation of the polarization of light quarks.

For the polarization of charm quarks one could take smaller values of Λ and use HQET for charm starting at a later time with $T = 200$ MeV. But this gives a spin polarization only if a strong magnetic field persists until this time.

Does later dynamics change the **bottom quark** spin polarization? HQ-HTL and lattice computations show that gluons may be able to thermalize low- p_{τ} bottom quarks, so it is possible that the magnetic field effect is wiped out by multipl[e s](#page-11-0)[oft](#page-13-0)[i](#page-11-0)[nt](#page-12-0)[e](#page-13-0)[r](#page-7-0)[a](#page-8-0)[c](#page-12-0)[ti](#page-13-0)[o](#page-7-0)[n](#page-8-0)[s](#page-12-0)[.](#page-13-0)
Represent to the solid of the second series of the series of the series

Heavy Quark Sono-Dynamics

KED KAD KED KED E YOUR

[Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0) oooc റ⊜റററ OΟ Interactions at the hydrodynamic scale

At momentum scales smaller than $\mathit{g}^2\mathit{T}$ colour is screened, but flavour is not. Flavour currents are hydrodynamic modes. Can the heavy and light flavour currents interact? Since the momentum exchange is below $g^2\,T$, screening implies that there are no excitations which can couple heavy and light flavours.

However, there is a remnant mode which can couple to HQ at the hydro scale. The breaking of a part of the conformal invariance of the fluid gives rise to a Goldstone boson which we know as sound. Since it is a longitudinal pressure wave it has no polarization and is described by a scalar field ϕ .

This EFT cannot be derived from QCD, but we can use symmetry and dimensional arguments, and the fact that ϕ is a Goldstone field, to write the Lagrangian. Its form is valid in all phases, but the couplings depend on the phase.**KORKAR KERKER SAGA** [Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0)

oo ooo ooo oooo oooo oooo ooooo oo oooo oooc ററ●ററ OΟ Kinetic terms and equations of motion

Up to mass dimension 4 we have only mass and kinetic terms. Since ϕ is a Goldstone field, the terms $\phi \overline{\psi} \psi$ is forbidden. We introduce the velocity 4-vector of the fluid u , and the HQ velocity v to write

$$
L_4 = \overbrace{\Delta M \overline{\psi} \psi + \frac{1}{2} \overline{\psi} (i D_v) \psi - \frac{c_1}{2M} \overline{\psi} \nabla_v^2 \psi + \frac{1}{2} (D_0 \phi)^2 - \frac{c_s^2}{2} \nabla \phi \cdot \nabla \phi}_{\phi}
$$

The notation is $D_v = v \cdot \partial$ and $\nabla_v = \partial - vD_v$, with $D_0 = u \cdot \partial$ and $\nabla = \partial - \mu D_0$.

The EoM of sound is $(D_0^2 - c_s^2 \nabla^2) \phi = 0$. For bounded ϕ this gives plane waves. However, there is a vector **u** in the problem and an axial vector $\mathbf{w} = \nabla \times \mathbf{u}$ of vorticity. So we can look for solutions with $\nabla \phi = \mathcal{M}^2 \mathbf{u}$, with the hydrodynamic scale M of the order of the expansion rate $\nabla \cdot \mathbf{u} \simeq 0.02$ GeV. This gives a solution with $D_0^2 \phi = \mathcal{M}^2 c_s^2 \nabla \cdot \mathbf{u}.$ **KORKAR KERKER SAGA** [Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0)
OO OOOO OOOO OOOOO OOOOO OOOOO OOOOOO OO oooc OΟ Interaction terms: spin-vorticity coupling

Dimension 5 terms are $\mathbf{v} \cdot \partial \phi \overline{\psi} \psi$ and $\overline{\psi}(\mathbf{v} \cdot \sigma \cdot \partial \phi) \psi$. The second is ruled out by CPT, and the first is clearly a contribution to the renormalized mass of the HQ.

There are several dimension 6 terms. One turns out to be a contribution to the renormalized mass of the HQ, and others are corrections to the kinetic terms. The interaction term is

$$
L_6 = \frac{c_6}{M} \epsilon^{\mu\nu\lambda\rho} \overline{\psi} \sigma_{\mu\nu} \psi \partial_{\lambda} \partial_{\rho} \phi = c_6 \frac{\mathcal{M}^2}{M} \left(v \cdot u \right)^2 \overline{\psi} (\sigma \cdot \mathbf{w}) \psi.
$$

Writing $\sigma \cdot \mathbf{w} = \mathbf{s} \cdot \mathbf{J}$, and taking the angular momentum of the fireball in mid-central collisions to be about $\mathbf{J} \simeq 100$, for $c_6 \approx 1$ and $p_{\tau} \simeq 0$, the alignment energy turns out to be about 10 MeV, much smaller than $T\approx 150$ MeV. But due to the factor $\gamma^2 = ({\bf v} \cdot {\bf u})^2$, the alignment energy rapidly exceeds ${\bf \mathcal{T}}$ and leads to complete polarization.**KORKAR KERKER SAGA**

Viscous effects are negligible

oooc

If the viscosity is large enough then sound is attenuated. This is a mass term for ϕ , *i.e.*, converts this Goldstone boson to a pseudo-Goldstone boson. The mass is the inverse of the Stokes' attenuation length, *i.e.*, $m_{\text{St}} \simeq 1/\ell_{\text{St}}$.

[Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0)

റററെ∈

OΟ

Pseudo-Goldstone bosons can interact with terms that are multilinear in the fields. The corresponding couplings are proportional to positive powers of m_{St} . The presence of such terms would complicate HQSD.

The Goldstone mass is

$$
m_{\rm St} = \frac{2\eta\omega^2}{3\epsilon c_s^3} \simeq \frac{\eta}{S} \times \frac{\mathcal{M}^2}{T} \ll \mathcal{M}
$$

where we have assumed $\epsilon \simeq S T$ and $\omega \simeq \mathcal{M}$. So the Goldstone mass would have become important only at times much larger than the actual fireball lifetime.**KOD KARA A BIDA BIDA A GA KURA**

Experimental outlook

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Why](#page-2-0) [Scales](#page-4-0) [HQET](#page-8-0) [HQSD](#page-13-0) [Experimental outlook](#page-18-0)
OO OOOO OOOO OOOOO OOOOO OOOOO OOOOO oooc aaaac aaaaa 0● B and D meson polarization

Since b is copiously produced at the LHC, one can study its polarization through the angular distribution of the decay of B^\ast mesons. However, one can equally well study it in the angular distribution of non-prompt D^* decays.

Due to HQ spin symmetry, the polarization of b quarks is transferred to the decay c quark. Consider the decay $\overline{B}^0 \to D^{*+} e \overline{\nu}_e$. Fully polarized b quarks in \overline{B}^0 will lead to fully polarized c quark in the $D^{*+}.$ The polarization of the D^{*+} can be easily computed from particle masses and the Isgur-Wise function. Perfect fit for physics program of LHCb.

When either of these measurements is performed it would be possible to fix the low-energy coupling c_6 in HQSD. Consistency check by doing both B^* and D^* polarizations.