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The deconfined quark-gluon plasma(QGP) matter 
produced in the heavy ion collision experiments  is most 
likely to possess substantial  deviation  from  perfect local 
isotropic equilibrium. 

QGP produced in URHIC is not momentum 
space isotropic.  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Momentum space 

anisotropy

Phys.Lett.B 314 (1993) 118-121

arXiv:1603.08946v2

JHEP08(2003)002



• The collective modes that possess  a positive imaginary part in 
their mode  frequencies result an exponential growth in the 
chromomagneic and chromoelectric fields.  

• Romatschke and Strickland introduced an elegant Ansatz to model 
anisotropic distributions by squeezing or stretching isotropic ones  
  
                               

• The large momentum space anisotropy in early stages can be 
efficiently incorporated in the aHydro framework.

faniso(k) ≡ fiso( 1
Λ

k2 + ξ(k ⋅ n)2) Phys. Rev. D 68, 036004


faniso(k) ≡ fiso( 1
Λ

k2 + ξa(k ⋅ a)2 + ξb(k ⋅ b)2) PHYSICAL REVIEW D 97, 054022 (2018)

Phys. Rev. Lett. 119, 042301 (2017).



Magnetic field
Non-central heavy ion 

collision

Krill Tuchin

Magnetic field strength 
(10 − 30)m2

π

Decreases rapidly 
(1 − 2)m2

π after (4 − 5)fm /c

m2
π ∼ 1018G

1fm/c = 3.3 × 10−24 sec

z
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Kharzeev et al, 2008

Skokov et al 2009



Magnetic field in core of 
neutron star 

     ∼ (1010 − 1013) G

Earth magnetic field 

∼ 10−1G

RHIC
∼ 1018G

So, the production of strong magnetic field at early stage of 
heavy ion collisions motivates to investigate the magnetic 

field effects on anisotropic QGP. 
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Tuchin, 2013

In vacuum (blue line)

In expanding medium (Green line)

In Static conducting medium (other lines)



Formalism 
Constructing general structure of the gauge boson self-energy

Anisotropic momentum  distribution characterized by two independent  
four vectors  . 

Heat bath velocity   and gluon momentum  . 

Set of ten  independent symmetric  tensors:
  
  

The transversality condition    further reduce the number of independent basis 
tensors to six.

aμ and bμ

uμ Pμ

PμPν, uμuν, bμbν, aμaν, Pμuν + Pνuμ, Pμbν + Pνbμ, Pμaν + Pνaμ,
uμbν + bμuν, uμaν + uνaμ and bμaν + aμbν

PμΠμν = 0
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In the  rest frame of the heat bath with  ,  one of the anisotropy 
directions  can be taken along  z,  say   , whereas the other  
anisotropy direction can be assumed to lie in the   plane without any loss of 
generality. 

The general structure of the  gauge boson self-energy in vacuum  
  

Using the tensor  , we obtain  . First basis tensor    

   is used to  obtain   defined as   such that it  
becomes orthogonal to   by construction.  
 

uμ = (1,0,0,0)
bμ = (0,0,0,1)

xz

Πμν = (ημν −
PμPν

P2 ) Π(P2) = VμνΠ(P2) .

Vμν ũμ = Vμνuν Aμν =
ũμũν

ũ2
.

Uμν = Vμν − Aμν b̃μ b̃μ = Uμνbν

ũμ

Bμν =
b̃μb̃ν

b̃2
.
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 . Then we obtain the   as 

 .  
 . 

All the four vectors of the set   are orthogonal to 
the gluon four momentum  .  

 ,  ,   

The general structure of the gauge boson self-energy in presence of an 
ellipsoidal  anisotropic  medium can be expressed as a linear combination 
of the six basis tensors as 
 

Rμν = Uμν − Bμν ãμ from aμ

ãμ = Rμνaν

Dμν =
ãμãν

ã2

ũμ, b̃μ and ãμ

Pμ

Cμν =
ũμb̃ν + b̃μũν

ũ2 b̃2
Eμν =

ũμãν + ãμũν

ũ2 ã2
Fμν =

ãμb̃ν + b̃μãν

ã2 b̃2
.

Πμν = αAμν + βBμν + γCμν + δDμν + σEμν + λFμν .
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Effective propagator

The Dyson-Schwinger equation  
! , where the inverse bare propagator is given by 

!  with !  representing the gauge fixing parameter. 

Now the gluon propagator: 
�  

Denominator of basis tensors: 
  

  

Once the form factors are extracted from the polarization function, the desired 
collective modes of the gluon can be obtained from the pole of the effective 
propagator.  

i𝒟μν = i𝒟μν
0 + i𝒟μρ

0 (iΠρρ′ �)i𝒟ρ′ �ν

(𝒟−1
0 )μν = − P2ημν −

1 − ζ
ζ

PμPν ζ

𝒟μν = −
βδ − (β + δ) P2 − λ2 + P4

Δ
Aμν −

δα − (δ + α) P2 − σ2 + P4

Δ
Bμν −

γ (P2 − δ) + σλ
Δ

Cμν −
αβ − (α + β) P2 − γ2 + P4

Δ
Dμν −

σ (P2 − β) + λγ
Δ

Eμν −
λ (P2 − α) + γσ

Δ
Fμν − ζ

PμPν

P4

Δ = P6 − (α + β + δ)P4 − (γ2 + σ2 + λ2 − αβ − βδ − δα)P2 + αλ2 + βσ2 + δγ2 − αβδ − 2γσλ .

Δ = (P2 − Ω0)(P2 − Ω+)(P2 − Ω−) .
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One-loop 

!

Distribution function:  ! .

 In our case we use the  ellipsoidal momentum distribution parametrized 

as  !

!

!  corresponds to the QCD Debye mass scale. !  

represents a temperature-like scale which, in the equilibrium limit, 
corresponds to the temperature.

Πμν(p0 = ω, p) = g2
s ∫

d3k
(2π)3

Kμ

Ek

∂f(k)
∂Kρ [ηρν −

KρPν

P ⋅ K + i0+ ]
f(k) = 2Ncng(k) + Nf[nq(k) + nq(k)]

faniso(k) ≡ fiso( 1
Λ

k2 + ξa(k ⋅ a)2 + ξb(k ⋅ b)2)

Πμν(ω, p, ξ) = m2
D ∫

dΩ
4π

vμ vl + ξa(v ⋅ a)al + ξb(v ⋅ b)bl

(1 + ξa(v ⋅ a)2 + ξb(v ⋅ b)2)2 [ηνl −
vνPl

ω − p ⋅ v + i0+ ]

m2
D = (Nc + Nf /2)

g2
s Λ2

3
Λ

!11



Ω0 =
1
2 (α + β + (α − β)2 + 4γ2)

Ω+ =
1
2 (α + β − (α − β)2 + 4γ2)

Ω− = δ

One anisotropic case:

Without anisotropy:

β = δ = ΠT =
m2

D

2
ω2

p2 [1 −
ω2 − p2

2ωp
ln

ω + p
ω − p ]

α = ΠL =
m2

D

ũ2 [1 −
ω
2p

ln
ω + p
ω − p ]

Ω0 = α

Ω+ = Ω− = β = δ



Small anisotropy



FERMION PROPAGATOR: WEAK AND STRONG 
FIELD APPROXIMATION

S(K ) =
K + mf

K2 − m2
f

+ iγ1γ2
K∥ + mf

(K2 − m2
f )2

(eB) + 2 [ {(K ⋅ u) u − (K ⋅ n) n} − K
(K2 − m2

f )3
−

k2
⊥(K + mf )

(K2 − m2
f )4 ](eB)2 + 𝒪 [(eB)3]

Strong field: lowest Landau level approximation

Weak field approximation: eB < mth ∼ eT < T

eB > T

iS(K) = ie− k2
⊥

qB
K∥ + mf

K2
∥ − m2

f
(1 − iγ1γ2)

K2
∥ = k2

0 − k2
z



• One loop gluon self-energy in obtained using HTL approximation. 

•  Πμν = ∑
f

g2

2 ∫
d4k

(2π)4
Tr[γμS(K)γνS(Q)]



Reference frame



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Collective modes

Solid line:   
Dotted line:  

θp = π/2
θp = π/4

Green and Cyan: isotropic case

Phys.Rev.D 106 (2022) 11, 116006

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B.karmakar, R. Ghosh, A. Mukherjee



��� ��� ��� ��� ���
����

����

����

����

����

����

����

����

��� ��� ��� ��� ���
����

����

����

����

����

����

����

����

Growth rate of   modeΩ+(ω = iΓΩ−
)2 − p2 − Ω−(ω = iΓΩ−

, p, θp, ϕp) = 0.
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The collective modes of gluon in the presence of momentum space anisotropy along 
with a constant background magnetic field have been studied using the hard-thermal 
loop (HTL) perturbation theory. 

Unstable modes are studied. 

No unstable gluon mode exists in an isotropic medium even in the presence of a 
background magnetic field. It is the momentum space anisotropy that gives rise to the 
instability. 

 The external magnetic field has a significant influence on the growth rate of the 
unstable modes. 

In particular, the amplitude as well as the critical momentum corresponding to the 
growth rate of the unstable mode is significantly reduced in presence of strong magnetic 
background. 

Summary
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