Evolution of quarkonium states in rapidly varying magnetic field at Relativistic Heavy Ion Collision Experiment

Partha Bagchi

National Institute of Science Education and Research, BHubaneswar, India

February 3, 2023

EMERGENT TOPICS IN RELATIVISTIC HYDRODYNAMICS, CHIRALITY. VORTICITY AND MAGNETIC FIELD

02 - 05 Feb 2023 National Institute of Science Education and Research, Bhubaneswar

Outline of Talk

- Review of Conventional Mechanism of quarkonia suppression
- Non Adiabaticity: An Important Aspect of Evolution of Quarkonia
- Quarkonia in Magnetic Field
- Results

Outline

Summary

Conventional Mechanism for Quarkonia Suppression

- Matsui and Satz¹ proposed J/ψ suppression as a signal for QGP due to Debye screening of the potential between $q\bar{q}$.
- If at a temperature T_D , the Debye screening length of the medium becomes less than the radius of quarkonia, then $q\bar{q}$ may not form bound states.
- In the above picture, suppression of quarkonia occurs when the temperature of QGP achieves a value higher than T_D .

¹T. Matsui and H. Satz, Phys.Lett. B178,416 (1986)

Adiabatic Approximation

• If the QGP temperature remains below T_D , no quarkonia suppression is expected due to color screening(?) in the conventional mechanism.

Description of quarkonia through effective potential

- $q\bar{q}$ potential changes slowly from initial temperature $(V(T = T_i))$ to the final temperature $(V(T_f))$.
- Initial quarkonium state evolves to the state corresponding to $V(T_f)$ which is also a bound state for $T_f < T_D$ with same quantum number as initial state, hence no quarkonium suppression for $T < T_D$. \Longrightarrow Adiabatic

Evolution of Fireball Created in Heavy Ion Collisions

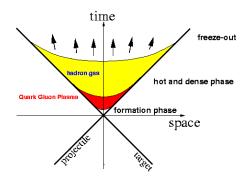


Figure: Nuclear collision evolution epoch.

Some Important Observations

- The fireball created in Heavy Ion Collision is rapidly evolving with time.
- If quarkonia is described in potential model then $q\bar{q}$ potential is no-doubt time dependent.

Note:

Matsui and Satz picture considers the static QGP only.

 One need to solve Schrödinger equation for time-dependent Hamiltonian.

Adiabaticity Violation: An Important Aspect of Quarkonia Evolution

Several possible Example of Adiabaticity Violation

- During Thermalisation ¹
- Cooling Phase ²
- In presence of initial fluctuation ³
- During Freeze-out
- Non adiabatic evolution of quarkonia in p p collision
- In presence of transient magnetic field
 - Spin Mixing ⁴
 - Spacial Excitation ⁵

¹Bagchi and Srivastava, Mod.Phys.Lett. A30 (2015) no.32, 1550162

²Dutta and Borghini, Mod.Phys.Lett. A30 (2015) no.37, 1550205

³Bagchi et al., Springer Proc. Phys. 203 (2018) 493-495

⁴Dutta et al., Eur. Phys. J. C78 (2018) no.6, 525

⁵Basgchi et al., arXiv:1805.04082

During Thermalisation

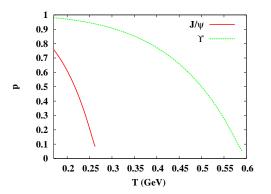


Figure: Survival Probability p of J/ψ and Υ vs. temperature of medium. Plots are given upto the temperature T_D for J/ψ and Υ .

Initial Fluctuation in Heavy Ion Collisions

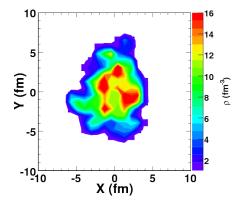


Figure: Initial energy density fluctuation (Phys.Rev. C92 (2015) no.5, 054902).

• In medium Debye screened potential between quark (q) and anti-quark $(ar{q})^{-1}$

$$V(r) = -\frac{\alpha}{r} \exp(-m_D r) + \frac{\sigma}{m_D} (1 - \exp(-m_D r))$$
 (1)

- m_D is the Debye mass $^2 \Rightarrow$ Static limit $(p_0 \to 0, |\vec{p}| = 0)$ of the longitudinal part of the gluon self energy $\pi_{\mu\nu}$
- m_D for three flavor case ³

$$m_D = gT\sqrt{1 + N_f/6} \tag{2}$$

³F. Karsch, M.T. Mehr, and H. Satz, Z. Phys. C **37**, 617 (1988).

¹H. Satz, J. Phys. Conf. Ser. **455**, 012045 (2013).

²E. Braaten and A. Nieto, Phys. Rev. Lett. **73**, 2402 (1994)

Quark Anti-quark Potential in Presence of Magnetic Field

- The effect of magnetic field in the fermion self energy is incorporated through the fermion propagator.
- In the strong field limit:

$$S_0(k) = i \frac{m + \gamma \cdot k_{\parallel}}{k_{\parallel}^2 - m^2} (1 - i \gamma_1 \gamma_2) e^{\frac{-k_{\perp}^2}{|q_f B|}}$$
(3)

- B is along Z-axis.
- The self energy is calculated by using thermal propagator in imaginary time formalism.
- Debye mass is then obtained as¹:

$$m_D^2 = g'^2 T^2 + \frac{g^2}{4\pi^2 T} \sum_f |q_f B| \int_0^\infty dp_z \frac{e^{\beta \sqrt{p_z^2 + m_f^2}}}{\left(1 + e^{\beta \sqrt{p_z^2 + m_f^2}}\right)^2}$$
(4)

¹Hasan et al., arXiv:1802.06874, Nucl.Phys.A 995 (2020) 121688

Quark Anti-quark Potential in Presence of Magnetic Field

- First term is the contribution from the gluon loops and this is solely dependent on temperature
- $g'^2 = 4\pi\alpha_s'(T)$ where $\alpha_s'(T)$ is the usual temperature dependent running coupling where the renormalization scale is taken as $2\pi T$

•

$$\alpha_s'(T) = \frac{2\pi}{\left(11 - \frac{2}{3}N_f\right)\ln\left(\frac{\Lambda}{\Lambda_{QCD}}\right)} \tag{5}$$

Where $\Lambda = 2\pi T$ and $\Lambda_{QCD} \sim 200$ MeV

Quark Anti-quark Potential in Presence of Magnetic Field Continued

- Second term is the contribution from the fermion loop and this term strongly depends on magnetic field.
- $g^2 = 4\pi\alpha_s^{\parallel}(k_z, q_f B)$, where $\alpha_s^{\parallel}(k_z, q_f B)$ is the magnetic field dependent coupling and doesn't depend on temperature. 1 2

$$\alpha_s^{\parallel}(k_z,q_fB) = \frac{1}{\alpha_s^0(\mu_0)^{-1} + \frac{11N_c}{12\pi} \ln\left(\frac{k_z^2 + M_B^2}{\mu_0^2}\right) + \frac{1}{3\pi} \sum_f \frac{q_fB}{\sigma}}$$
 (6 where, $\alpha_s^0(\mu_0) = \frac{12\pi}{11N_c \ln\left(\frac{\mu_0^2 + M_B^2}{\Lambda_V^2}\right)}$ and, $M_B = 1$ GeV, $\sigma = 0.18$ GeV², $\mu_0 = 1.1$ GeV, $\Lambda_V = 0.385$ GeV.

¹Andreichikov et al., Phys. Rev. Lett. 110, 162002 (2013) ²Ferrer et al., Phys. Rev. D91, 054006 (2015)

Evolution of Magnetic Field in Non Central Collisions

- In Heavy Ion Collisions there are certain possibilities of production of huge magnetic field for non-central collision.
- The magnetic field will last for only few fm/c time¹.

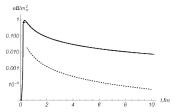


Figure: Magnetic field for $\sigma_e=5.8 MeV$, z=0.2 fm, $t_0=0.2 fm$. Solid, dashed, and dotted lines stand for B, B_{init} and B_{val} , $\gamma=2000$.

• σ_e (Electrical conductivity)= 0, for $t < t_0$ (QGP formation time)

Time-Dependent Potential for Studying Quarkonia Wave-Function Evolution

- Magnetic Field is Transient in Nature
- Decays to order of magnitude within few fm/c time.
- The evolution of the wave function, thus, cannot be taken to be adiabatic and it should be treated in terms of a time dependent perturbation theory (is one of the tool).
- Survival probability of quarkonia should be calculated under this perturbation.

- We have calculated dissociation energy of J/ψ ($T=1.4T_c$) and $\Upsilon(1S)(T=3.5T_c)$ for different values of magnetic field.
- In the strong field limit, the effect of the temperature is suppressed.
 - ⇒ strongly bound quarkonia¹, ²

¹Hasan et al., arXiv:1802.06874, Nucl.Phys.A 995 (2020) 121688

²Singh et al., Phys. Rev. D 97, 096011

Results Dissociation Energy

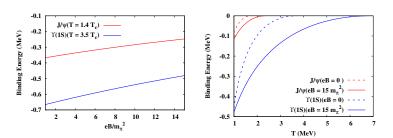


Figure: Left Panel: Magnetic field vs dissociation energy for charmonia. Right Panel: Temperature vs dissociation energy for charmonia.

Evolution of magnetic field

• Considering magnetic field starting from $15m_\pi^2$, decays with time like

$$B = B_0 \left(\frac{1}{1 + a\tau(1 + b\tau)} \right)$$

 $a = 1.5$ and $b = 2$

• The temperature starting from 1.4 T_c for J/ψ (3.5 T_c for $\Upsilon(1S)$) decays like

$$T(\tau) = T_0 \left(\frac{\tau_0}{\tau_0 + \tau}\right)^{\frac{1}{3}}$$

 Then we have calculated the transition probability of quarkonia from its ground states to continuum states using 1st order perturbation theory.

Evolution of magnetic field

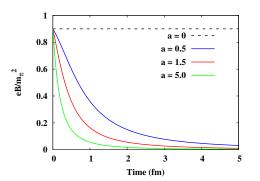


Figure: Decay of magnetic field with time for different "a"

Dissociation Probability

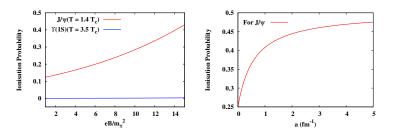


Figure: Left Panel: Magnetic field vs dissociation probability. Right Panel: Dissociation Probability as a function of "a"

Summary

- Here we have not consider the Imaginary Potential, This will provide extra suppression of quarkonia.
- The presence of strong magnetic field makes quarkonia strongly bound .
 - \Rightarrow more or less true for all available potential present in the community still now
- Even non-adiabatic evolution can not dissociate $\Upsilon(1S)$ at an initial temperature $T=3.5\,T_c$.
 - ⇒ contradictory with experimental results

Possibilities:

- There will be no(/very weak) magnetic field present when medium formed
- Behavior of quarkonia may be drastically opposite in presence of weak(/intermediate) magnetic field in comparison with the presence of strong field.
- Quarkonia may start dissociating in a transient magnetic field before the medium thermalizes.

Thank You!