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Introduction

Figure: Schematic sketch of relativistic heavy ion
collisions.[http://wl33.web.rice.edu/research.html]

I Quark-Gluon Plasma (QGP) has extreme low value of η/s (= 1/4π).
[KSS, Phys. Rev. Lett. 94, 111601 (2005)]

I The expansion of QGP can be modelled using relativistic viscous
hydrodynamics.
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Introduction

I First-order Navier Stokes theory −→ acausal behaviour [W. A.

Hiscock and L. Lindblom, Annals Phys. 151 466-96 (1983)]

I Second order theories −→ no unique prescription to derive existing
evolution equations for the dissipative quantities and there exist
several successful formalisms.

I Recently, a new second order viscous hydrodynamics was developed
within the effective fugacity quasiparticle model (EQPM) for the hot
QCD medium [S. Bhadury et al., JPhysG 48, 105104 (2021)]

→ consistent analysis of evolution and particle spectra within this
formalism
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Effective fugacity Quasi-Particle Model

I Model initiates with an ansatz that the lattice QCD EoS can be
interpreted in terms of non-interacting quasi-particles with effective
fugacity parameters, zq,g encoding the interaction effects.

I Equilibrium momentum distribution functions of the quasi-particles
are given by

f 0
k =

zk exp[−β(uµpµk )]

1± zk exp[−β(uµpµk )]
,

k ≡ (q, g) represent the quarks and gluons.

[V. Chandra and V. Ravishankar, EPJC 64, 63-72 (2009); PRD 84, 074013

(2011)]
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Effective fugacity Quasi-Particle Model

I In this model, quasi-particle 4−momenta is given by the dispersion
relation

p̃µg ,q = pµg ,q + δωg ,quµ; δωg ,q = T 2∂T ln(zg ,q)

δωg ,q is the modified part of dispersion relation.

I Determination of equilibrium distribution function is achieved by
fixing the temperature dependencies of zk from lattice QCD EoS
[M. Cheng et al., Phys. Rev. D 77, 014511 (2008); S. Borsanyi et al., Phys.

Lett. B 730, 99104 (2014)]

Lakshmi J. Naik (Amrita University) ET-HCVM 2023 February 05, 2023 6 / 29



Effective fugacity Quasi-Particle Model

I In this model, quasi-particle 4−momenta is given by the dispersion
relation

p̃µg ,q = pµg ,q + δωg ,quµ; δωg ,q = T 2∂T ln(zg ,q)

δωg ,q is the modified part of dispersion relation.

I Determination of equilibrium distribution function is achieved by
fixing the temperature dependencies of zk from lattice QCD EoS
[M. Cheng et al., Phys. Rev. D 77, 014511 (2008); S. Borsanyi et al., Phys.

Lett. B 730, 99104 (2014)]

Lakshmi J. Naik (Amrita University) ET-HCVM 2023 February 05, 2023 6 / 29



Form of viscous correction

I Effect of viscosity is studied by applying small perturbation to the
equilibrium distribution

fk = f 0
k + δfk

I Relativistic Boltzmann equation quantifies the rate of change of
distribution function away from equilibrium

I Effective Boltzmann equation within the framework of EQPM
[S. Mitra and V. Chandra, PRD 97, 034032 (2018)]

p̃µk ∂µf 0
k (x , p̃k) + Fµ

k ∂
(p)
µ f 0

k = −δfk
τR
ωk ,

where τR is the relaxation time and Fµ
k = −∂ν(δωkuνuµ).
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Form of viscous correction

δf is obtained from an iterative Chapman-Enskog like solution of the
Boltzmann equation in RTA [S. Bhadury et al., JPhysG 48, 105104 (2021)]

δfq = τR

[
p̃µq∂µβ +

β p̃µq p̃νq
u ·p̃q

∂µuν − βΘ(δωq)− ββ̇
(
∂(δωq)

∂β

)]
f 0
q f̄ 0

q

with f̄ 0
q = 1− af̄ 0

q and a = ±1 for quarks/gluons.
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Hydrodynamic evolution equations

Shear stress tensor πµ and bulk viscous pressure Π are expressed in terms
of δf within EQPM as

πµν =
∑
k

gk∆µν
αβ

∫
dP̃k p̃αk p̃βk δfk

+
∑
k

gkδωk∆µν
αβ

∫
dP̃k p̃αk p̃βk

δfk
Ek

Π = −1

3

∑
k

gk∆αβ

∫
dP̃k p̃αk p̃βk δfk

−1

3

∑
k

gkδωk∆αβ

∫
dP̃k p̃αk p̃βk

δfk
Ek

dP̃k ≡ d3 ~pk
(2π)3ωk

.

[S. Mitra and V. Chandra, PRD 97, 034032 (2018)]
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Hydrodynamic evolution equations

I The evolution equations for shear stress tensor and bulk viscous
pressure are obtained as

π̇〈µν〉 +
πµν

τR
= 2βπσ

µν + 2π
〈µ
φ ω

ν〉φ − δπππµνθ

−τπππ〈µφ σ
ν〉φ + λπΠΠσµν ,

Π̇ +
Π

τR
= −βΠθ − δΠΠΠθ + λΠππ

µνσµν .

Here, ωµν = 1
2 (∇µuν −∇νuµ) denotes the vorticity tensor.

I The second order transport coefficients are obtained in terms of
different thermodynamic integrals

[S. Bhadury et al., JPhysG 48, 105104 (2021)]
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1D Boost Invariant Flow
Geometry of QGP expansion: Bjorken’s prescription to describe the
evolution of QGP: [J. D. Bjorken, PRD 27, 140-151 (1983)]

I coordinates are parameterized using proper time τ =
√

t2 − z2 and

pseudo-rapidity ηs = 1
2 ln

[
t+z
t−z

]
I in the local rest frame of the fluid, uµ = (cosh ηs , 0, 0, sinh ηs)

I Under these assumptions, hydrodynamic evolution equations become

dε

dτ
= −1

τ
(ε+ P + Π− π) ,

dπ

dτ
+
π

τπ
=

4

3

βπ
τ
−
(

1

3
τππ + δππ

)
π

τ
+

2

3
λπΠ

Π

τ
,

dΠ

dτ
+

Π

τΠ
= −βΠ

τ
− δΠΠ

Π

τ
+ λΠπ

π

τ
,

π = π00 − πzz .
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Hydrodynamic evolution for Bjorken flow

I Hydrodynamic evolution equations can be solved by specifying the
relaxations times

I Initial conditions relevant for RHIC energies: τ0 = 0.5 fm/c and
T0 = 0.31 GeV

I As a result of RTA, we obtain a single relaxation time-scale for both
shear and bulk, τπ = τΠ = τR

I We choose different temperature dependent forms of τR

τR = 2(η/s)/T , 1.5(η/s)/T , (η/s)/T

I We use the lower bound of shear viscosity to entropy ratio:
η/s = 1/4π
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Evolution: Shear

τR = 0.15 fm / c

τR = 2 (η / s )/ T

τR = 1.5 (η / s )/ T

τR = (η / s )/ T

1 2 3 4 5
0.000

0.001

0.002

0.003

0.004

0.005

τ (fm / c )

π
(G

eV
4
)

Figure: Proper time evolution of shear stress tensor for different temperature
dependent forms of τR .
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Evolution: Bulk

τR = 0.15 fm / c

τR = 2 (η / s )/ T

τR = 1.5 (η / s )/ T

τR = (η / s )/ T

1 2 3 4 5
0.000

0.002
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-
Π
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eV

4
)

Figure: Proper time evolution of bulk viscous pressure for different temperature
dependent forms of τR .
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Evolution: Pressure anisotropy

τR = 3 (η / s )/ T

τR = 2 (η / s )/ T

τR = 1.5 (η / s )/ T

τR = (η / s )/ T

τR = 0.15 fm / c

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

τ (fm / c )

P
L
/P

T

Figure: Proper time evolution of pressure anisotropy PL/PT with various
temperature dependent relaxation times.
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Comparison with a standard formulation

We take the second order hydrodynamics described in :
[A. Muronga, Phys. Rev. C 69, 034903 (2004)]

dπ

dτ
= − π

τπ
− π

2

(
1

τ
+

1

β2
T

d

dτ

(
β2

T

))
+

2

3

1

β2

1

τ
,

dΠ

dτ
= − Π

τΠ
− 1

2

Π

β0

(
β0

τ
+ T

d

dτ

(
β0

T

))
1

β0

1

τ
,

where β0 and β2 are related to the relaxation times as τΠ = ζβ0 and
τπ = 2ηβ2.
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Comparison with a standard formulation

π ( Std Hydro )

π (EQPM )

Π ( Std Hydro )

Π (EQPM )

1 2 3 4 5

0.000

0.005

0.010

τ (fm / c )

(G
eV

4
)

Figure: Comparison of evolution of shear and bulk viscous pressures obtained
within EQPM with that obtained using the standard hydrodynamics.
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Thermal Dileptons in QGP

I We intend to study the thermal dileptons from expanding QGP by
employing this second order hydrodynamics.

I Thermal photons/dileptons can be used as a tool to measure the
shear viscosity [J. Bhatt and V. Sreekanth IJMPE 19, 299306 (2010), K

Dusling NPA 839, 7077 (2010)], bulk viscosity [J. Bhatt, H. Mishra and V.

Sreekanth JHEP 11 106 (2010); NPA 875 181-196 (2012)] of the strongly
interacting matter produced in the collisions

I In QGP the dominant mechanism for the production of thermal
dileptons is qq̄ → γ∗ → l+l−.
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Thermal dilepton production rate

I Viscosity affects the thermal particle production via T and viscous
corrections entering through rate calculations

I From kinetic theory, rate of dilepton production for qq̄ annihilation
process is given by

dN

d4xd4p
=

∫∫
d3~p1

(2π)3

d3~p2

(2π)3

M2
eff g 2 σ(M2

eff)

2ω1ω2
f (~p1)f (~p2)δ4(p̃− p̃1− p̃2).

I M2
eff = (ω1 + ω2)2 − (~p1 + ~p2)2 represents the modified effective mass

of the virtual photon in the interacting QCD medium.
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Distribution function

I Viscous modified momentum distribution functions :
f (~p) ≡ f 0

q + f 0
q f̄ 0

q δfq, where

δf = δfπ + δfΠ

=
β

2βπ(u · p̃)
p̃µp̃νπµν +

βΠ

βΠ

[
ξ1 − ξ2(u · p̃)

]
,

where

ξ1 = βc2
s

∂δωq

∂β
+ δωq,

ξ2 =

(
c2
s −

1

3

)
+

δωq

3(u · p̃)2
[2(u · p̃)− δωq] .
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Thermal dilepton production rate

Contribution due to shear and bulk viscosities:

dN(π)

d4xd4p
=

dN(0)

d4xd4p

{
β

βπ

1

2|~p|5

[
(u · p̃)|~p|

2

(
2|~p|2 − 3M2

eff

)
+

3

4
M4

eff ln

(
(u · p̃) + |~p|
(u · p̃)− |~p|

)]
p̃µp̃νπµν

}
,

dN(Π)

d4xd4p
=

dN(0)

d4xd4p

2βΠ

βΠ

{
βc2

s

∂δωq

∂β
− 2

3
δωq −

(
c2
s −

1

3

)
(u · p̃)

2

+
δω2

q

3

1

2|~p|5

[
(u · p̃)|~p|

2

(
2|~p|2 − 3M2

eff

)
+

3

4
M4

eff ln

(
(u · p̃) + |~p|
(u · p̃)− |~p|

)]}
.
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Thermal dilepton yield

I Dilepton yield within Bjorken expansion is calculated as

dN

dM2d2pTdy
= A⊥

∫ τf

τ0

dτ τ

∫ ∞
−∞

dηs χ(T , ηs)

(
1

2

dN

d4xd4p

)
,

where χ(T , ηs) =
[
1 + 2

mT
cosh(y − ηs)δωq

]
.

I Total dilepton yield,

dN

dM2d2pTdy
=

dN(0)

dM2d2pTdy
+

dN(π)

dM2d2pTdy
+

dN(Π)

dM2d2pTdy
.
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Dilepton Spectra

Ideal

δf = δfπ

δf = δf Π

δf = δfπ + δf Π

0.5 1.0 1.5 2.0 2.5

10 -8

10 -7

10 -6

10 -5

p T (GeV )

dN
/

dM
2

d
2

p
T

dy
(G

eV
-

4
)

Dileptons
M = 1 GeV
τ R = 0.15 fm / c

Figure: Thermal dilepton yields in the presence of viscous corrections
corresponding to τR = 0.15 fm/c and for M = 1 GeV.
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Dilepton Spectra

Ideal

τ R = (η / s ) / T

τ R = 2 (η / s ) / T
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Figure: Dilepton spectra in the presence of viscous corrections by varying τR for
M = 0.5 GeV
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Figure: Comparison of dilepton spectra for different M values with τR = 0.15
fm/c. The solid lines represent the total yields and dashed lines correspond to
δf = 0 case.
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Conclusions

I Studied the thermal particle production from relativistic heavy ion
collisions in presence of viscosities by employing the recently
developed second order dissipative hydrodynamic formulation
estimated within a quasiparticle description of thermal QCD

I The sensitivity of shear and bulk viscous pressures to the temperature
dependence of relaxation time is analyzed within one dimensional
boost invariant expansion of QGP

I Thermal particle production rate for QGP is calculated using viscous
modified distribution functions

I Particle emission yields are quantified for the longitudinal expansion
of QGP with different temperature dependent relaxation times.
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Conclusion

I Analysis indicates that the particle spectra is well behaved and
sensitive to relaxation time.

I Dilepton production within this second order hydrodynamic
framework need to be studied by considering the tranverse dynamics
of QGP expansion
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Thank You
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Back up

I Relaxation times : τπ = b1(η/s)/T and τΠ = b2(ζ/s)/T .

I η/s = 1/4π and ζ/s as
[I. Kanitscheider and K. Skenderis, JHEP 04, 062 (2009)]

ζ

s
= 2

η

s

(
1

3
− c2

s

)
≡ κ(T )

η

s
. (1)

I RTA demands τπ = τΠ = τR .
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