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Introduction
Hydrodynamics from the Dirac equartion



Dirac equation and Hydrodynamics of ”micro-variables”

It is known that the Dirac equation can be expressed in terms of the
covariant bilinear ”classical” variables (Takabayasi,1957). Casting the
Dirac equation into fluid form can provide us, I believe good insight
into incorporating spin spin into a hydrodynamic description. Here is
the outline:
• Dirac equation:

iγµ∂µψ − eγµAµψ −mψ = 0, (1)
i∂µψ̄γµ + eψ̄γµAµ −mψ̄ = 0, (2)

where, ψ̄ = ψ†γ0.
• Let γA be any one of the following 16-combinations

1̂, γ5, γµ, γµγ5&σµν = −1/2 [γµ, γν ]

• Define bilinear variables: Scalar Ω = ψ̄1̂ψ, pseudo-scalar
Ω̄ = iψ̄γ5ψ, vector S̄µ = ψ̄γ5γµψ, tensor Mµν = ψ̄σµνψ and
pseudo-tensor M̄µν = iψ̄γ5σµνψ. 1



Fluidization of the Dirac equation ....

Couple of things: a) For dynamics of the new variables: Multiply Eq.(1)
by ψ̄γA from left & Eq.(2) by γAψ from right and subtract. b) Step a)
gives new higher rank tensors up to rank-3 .
• New variables:
Jµ = 1

2mδ
∗
µΩ, J̄µ = 1

2mδ
∗
µΩ̄, Tµν = 1

2mδ
∗
νSµ, T̄µν = 1

2mδ
∗
ν S̄µ and

Nµν
α = 1

2mδ
∗
αMµν & N̄µν

α = 1
2mδ

∗
αM̄µν , where,

δ∗µ = i(ψ̄γa∂µψ − ∂µψ̄γ
Aψ − eAµψ̄γAψ). (3)

Tµν and T̄µν satisfy

Tµν − Tνµ =
1
2mϵ

µναβ∂αS̄β

ϵµναβ T̄αβ = Mµν − 1
2m (∂µSν − ∂νSµ)

• Next, we introduce ”fluid” like micro-variables: fluid-velocity
vµ = 1

ρSµ, spin wµ = 1
ρ S̄µ & fluid-momentum defined below:

kµ = 1
ρ2

(
ΩJµ + Ω̄J̄ν

)
2



Momentum kµ satisfies :

∂µkν − ∂νkµ = − i
2mϵ

αβγδvαWβ(∂µvγ∂νvδ − ∂µwγ∂νwδ)−
e
mFµν (4)

• further we have introduce total density ρ

ρ =
√
Ω2 + Ω̄2 (5)

and the pseudo-scalar parameter θ = tan−1
(

Ω̄
Ω

)
.

• Non-relativistic limit: vµ does not reproduce non-relativistic
limit, but kµ does. For the Dirac Hamiltonian α matrix represent
the ”velocity” which has eigen-values ±1. This could be related
with particle & anti-particle mixing.

• To get the macroscopic description one need to express N-body
wave function Ψ(r1, r2...rN) as 4N × 4N of Slater determinant of N
one-particle state and it can be written as 4N × 4N of Slater
determinant of N one-particle states,
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Ψ(r1, r2, ..., rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
ψa1(r1) ψa1(r2) ... ψa1(rN)
ψa2(r1) ψa2(r2) ... ψa2(rN)
...

... . . . ...
ψaN( r1) ψaN(r2) ... ψaN(rN)

∣∣∣∣∣∣∣∣∣∣
It is to be noted that the wave function Ψ(r1, r2...rN) satisfy the
generalized Dirac equation and the N-body spinor requires the Dirac
matrices generalization to the suitable dimensions (e.g. P. Strange,
Rel. Q.M., CUP, 1998).
The fluid equations are obtained by averaging over these N-particle
states(Asenjo et,al 2011, also Marklund & Brodin, 2007). If pα is the
probability of finding particle in the state α, then the fluid density n
in the rest frame n = Σα pαρα
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Spin Hydrodynamics

Average of quantity xµα one may write Xµ = ⟨xµα⟩ = 1
nΣαpαραxµα

Thus we write the fluid velocity Uµ = ⟨vµ⟩ and the spin Wµ = ⟨wµ
α⟩.

∂µ (nUµ) = 0 (6)
∂µ (nWµ) = −2mn⟨sin θ⟩ (7)
uν∂νWν = Wν (∂

νUµ − ∂µUν) + igµβϵβνκλUνWκ⟨∂λθ⟩
− ⟨vν∂νsµ⟩+ ⟨wν (∂

νzµ − ∂µzν)⟩
+ igµβϵβνκλ

(
⟨vνsκ∂λθ⟩+ ⟨zν∂λθ⟩Wκ

)
(8)

⟨cos θ⟩Uµ∂µWν =
e
mWµFνµ −

〈
i

2mρg
νλϵλαβγ∂µ

(
ρvαwβ∂µwγ

)〉
+

〈
1

2mρ∂µ (ρ∂
µθvν + ρwν∂αθ (vαwµ − vµwα))

〉
+
〈
∂µ

(
iwνϵµακλ∂α (ρvκwλ)

)〉
− ⟨cos θzµ∂µwν⟩

− Uµ⟨cos θ∂µsν⟩+ ⟨sin θwνvµ∂µθ⟩ (9)
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Spin Hydrodynamics

The force equation:

⟨cos θ⟩Uν∂νUµ = − e
mFµνU

ν +
1
2m ⟨vν∂ν (∂αθ (vαwµ − vµwα))⟩

+

〈
1
mρ∂

ν
(
ρ∂µθwν − iρϵναβλvαwβ∂µvλ

)〉
+

i
2m

〈
vν∂ν

(
1
ρ
gµβϵβακλ

)〉
− ⟨cos θzν∂νvµ⟩

− Uν⟨cos θ∂νzµ⟩+ ⟨sin θvµvν∂νθ⟩ (10)

& A constraint:

ϵκλµν⟨vκwλ∂µkν⟩ = − i
4mϵκλµνϵ

αβγδ⟨vκwλvαwβ (∂
µvγ∂ν − ∂µwγ∂

νwδ)⟩

− e
2mϵκλµν⟨v

κwλ⟩Fµν (11)

• Label α on the variable inside the angular bracket has been
dropped for the simplicity
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• Nonlinear and quantities like ⟨X⟩ make it more difficult to solve.
• These equations applied to study relativistic electromagnetic
plasmas (Asenjo et.al 2011), in studying neutrino-induced
vorticity and magnetization in astrophysical scenario (Bhattt &
George (2017))
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A Linear Mode Analysis

Assumptions: Initial state have no flow-velocity & spin-polarization
i.e. Uµ

o =
(
U0o, 0, 0, 0

)
and Wµ

o = (0, 0, 0, 0), subscript o denote
background quantities & they are constants in space and time.
• Eq.(7): −2mno⟨sin θo⟩ =⇒ ⟨sin θo⟩ = 0 & thus cos⟨cos θo⟩ = 1.
• Perturbed quantities are functions of x & t . These include
macro or fluid variables: δUµ =

(
0,U0oδvi

)
, δWµ, δn and

micro-variables δzµ, δsµ& δθ whose average yet to be found.
• zµ is velocity in the fluid rest-frame and it is related with thermal
speed of fluid particles. Spatial components of Eq.(10) shown to
contain a term ∂j⟨cos θzizj⟩ which is equivalent to the pressure
gradient term in the Euler equation (for a normal fluid cos θ = 1).
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A Linear Mode Analysis

• Average value of δµs one can estimate using Li, Stephanov & Yee,
PRL127(2021) , which gives the expression for the spatial
components δsi = 1

12β2 ϵ
ijkδωjk, here, ωij is vorticity and β = 1/T.

δs0 can be constructed by taking a scalar product of velocity to
get sµ =

(
0, δsi

)
.

• Further assumptions are necessary to evaluate the statistical
averages in the equations of spin-hydrodynamics. We assume
that zµ, sµ θ are not correlated (this can be questioned, but it is
assumed for simplicity) and ⟨δsµsνo⟩ = 0& ⟨δ(zµsν)⟩ = 0.

• Under these assumptions, all the terms with ϵαβ,γλ in Eq.(8)
(spin dynamics) are zero and one gets δWi = − 1

12β20
ϵijkδωjk and

δW0 = 0. Exactly the same relation for δWi from Eq.(9).
• From ”spin-current” (Eq.(7)) one gets ⟨δθ⟩ = 0 as ∂ iϵijkδωjk = 0.
•

9



Linear Mode Analysis ...

• Finally setting θo = 0&δθ = 0 in the ”Euler” equation, we get the
following set of equations from the original spin hydrodynamics:

δWi = − 1
12β20

ϵijkδωjk, (12)

∂0δn = −n0∂iδVi, (13)

∂0δVi = − 1
ϵo + po

∇iδp (14)

• If one takes time derivative of Eq.(13) and substitute for ∂0δVi, we
get equation for sound-waves which is similar to reported by us
in G. Sarwar et.all [arXiv:2209.08652]

• If the fluid-velocity perturbation has non-zero vorticity, then it
can drive spin-polarization δWi ̸= 0 (Eq.(12)).

10



Conclusions

• We have outlined the procedure of obtaining fluid description
from the Dirac equation. The equations of spin-hydrodynamics
seems to have very different structure from the other models
used in QGP.

• Normal mode analysis: Using some simplifying assumptions it is
shown that the spin-hydrodynamic model support sound waves
and perturbations remain stable. The model presented here
does not contain the effect of dissipation.

• It would be interesting investigate this model in the presence of
finite vorticity and magnetic field in the initial state.
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THANK YOU
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∂µ (ρvµ) = 0,
∂µ (ρwµ) = −2mρsinθ,
vν∂νwµ = wν (∂

νvµ − ∂µvν) + igµβϵβνκλvνwκ∂λθ,

∂µ (ρkµwν) = − e
mρwµFµν +

1
2m∂µ(ρ∂

µθvν)

− i
2mg

νλϵλαβγ∂µ
(
ρvαwβ∂νwλ

)
ρvν∂νkµ = −eρm Fµνvν +

1
2∂

ν
(
ρ∂µθwν − iρϵναβλvαwβ∂µvλ

)
ϵβνκλvνwκ∂λθ

ρvν∂νkµ = −eρm Fµνvν +
1
2m∂

ν
(
ρ∂µθwν − iϵναβλvαwβ∂µvλ

)
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