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Motivation



Hydrodynamics and spectra

• Landau first formulated ideal hydrodynamics in a non-boost in-

variant framework. Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)

• C.YWong modified the Landau solution introducing beam-rapidity.

PRC 78, 054902 (2008)

• s/n conserved for an ideal evolution and rapidity spectra dN/dy

is proportional to entropy production.

• These formulations have been performed with an equation of state

in the conformal limit P = ϵ/3.
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Spectra?

• The proposed rapidity spectra

dN/dy has qualitative agreement

with data.

• In the SPS energy range the

rapidity spectra look like a gaussian

but can not be explained suitably

with the available solutions.

• Realistic scenario demands

consideration of dissipation and a

general equation of state.
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Framework of Hydrodynamics



Coarse gaining with Hydrodynamics

• Hydrodynamics is an effective theory to describe the evolution of

the medium with macroscopic quantities like ϵ,P, nB , etc.

• Microscopic interactions → Equation of state.

• The evolution is derived from the conservation of energy momen-

tum and number density.

∂µT
µν = 0 ; ∂µn

µ = 0
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Solving for evolution

• Energy-momentum tensor in Landau frame,

Tµν = ϵ uµuν − (P − ζθ)∆µν + 2ησµν and P = c2Sϵ

• uµ is the fluid four-velocity and η and ζ are the coefficient of shear

and bulk viscosity.

• Shear tensor, σµν ≡ 1
2 (∇

µuν +∇νuµ)− 1
3∆

µν∇αu
α

• Projection operator ∆µν ≡ gµν − uµuν and derivative operator

∇µ ≡ ∆µν∂ν , are orthogonal to uµ

• Space-time evolution is described by solving conservation equa-

tions with an equation of state.
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Solving viscous Landau

Hydrodynamics



construction of equations

• In Landau prescription, rapid longitudinal expansion is followed by

slower transverse expansion. We can treat them independently.

• For longitudinal part, we have solved ∂µT
µν = 0 for only (t, z)

with velocity profile (u0, u1, u2, u3) = (cosh y , 0, 0, sinh y).

• y is the longitudinal rapidity.

• We shall solve these equations,

∂T 00

∂t
+

∂T 03

∂z
= 0,

∂T 30

∂t
+

∂T 33

∂z
= 0
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Light cone co-ordinates

T 00 = ϵ(u0)2 + c2s ϵ(u
3)2 − (ζ + 4η/3)(u3)2∇u

T 33 = ϵ(u3)2 + c2s ϵ(u
0)2 − (ζ + 4η/3)(u0)2∇u

T 03 = T 30 = ϵu0u3(1 + c2s )− (ζ + 4η/3)(u0)2∇u

• In terms of the light-cone variables, t± ≡ t ± z ,

∂

∂t+
[c+ϵ− ξ∇u] e2y +

∂

∂t−
[c−ϵ+ ξ∇u] = 0

∂

∂t+
[c−ϵ+ ξ∇u] +

∂

∂t−
[c+ϵ− ξ∇u] e−2y = 0

• Here we have shortened the notations, using c± ≡ 1 ± c2s , and

ξ ≡ ζ + 4η/3
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Solving equations

• We have introduced another set of variables, y± ≡ ln (t±/∆),

here ∆ = 2R/γ is longitudinally Lorentz contracted diameter of

each colliding nuclei.

• The Landau flow relates fluid rapidity in terms of the space-time

rapidity as,

e2y = f e2ηs = f
t+
t−

= fey+−y− f = 1 for boost invariant flow

• Landau solved the flow profile for ideal Hydrodynamics,

f =
√

y+/y−.

• We shall assume the flow profile to be the same as ideal and f to

be a slow-varying function.

9



Inputs for solving

• We have used the newly defined coordinates y± and simplified the

two evolution equations by addition/subtraction.

• Under these co-ordinates the velocity gradient becomes,

∇u = 1
∆e−(y−+y+)/2

• Considering the symmetry of the colliding system, we solve the

equation which remains invariant under the interchange of y±.

f
∂ϵ

∂y+
+

∂ϵ

∂y−
+

1 + f

2

[
c+ϵ−

ξ

∆
e−(y++y−)/2

]
= 0

• For a constant ξ/s, ξ = α ϵ1/(1+c2s ) = α ϵ1/c+ , α is constant.

f
∂ϵ

∂y+
+

∂ϵ

∂y−
=

1 + f

2

[
α

∆
ϵ

1
c+ e−

1
2
(y++y−) − c+ϵ

]
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Solution for ideal Landau

• Before proceeding to the total solution, we have solved a simpler

equation for α = 0 for comparison.

• The ideal solution is,

ϵid = ϵ0 exp

[
−

c2+
1 + c2s

(y+ + y−) +
c+c−
2c2s

√
y+y−

]

• This solution matches with the conformal solution c2S = 1/3.

PRC 78, 054902 (2008)

• The normalization factor ϵ0 is related to the intial energy density.

11



Analytical solution

• We have solved the dissipative equation analytically to obtain the

final form of ϵ,

ϵ =

[
g(α) ϵ

c2s /c+
id − c2s α

c+c−∆
e−(y++y−)/2

] c+

c2s

where g(α) is an arbitrary function of α such that g(0) = 1.

• We have used the non-conformal solution of Bjorken Hydrody-

namics to find the form of g(α).

• Matching with the solution from Bjorken hydrodynamics, we get

g(α) = 1 +
αc2s

c−c+τ0ϵ
c+/c2s
0

• At α = 0 limit, we recover the ideal solution and it matches with

the conformal solution for c2S = 1/3.
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Definition of freeze-out

• In hydrodynamics, Freeze out is defined as the point onwards which

fluid description is not applicable.

• Within the approximation of a slower transverse expansion with

constant acceleration, the freeze-out time does not get any correc-

tion due to dissipation.

• Although the non-conformal E.O.S changes the freeze-out time

to,

tFO = 2R

√
1 + c2S
c2S

cosh y .

• At the freeze-out hypersurface, y± = y ′b ± y ,

Here y ′b ≡ 1
2 ln[c+/(4c

2
S)] + yb and yb ≡ ln(

√
sNN/mp) is the beam

rapidity.
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Energy density to rapidity spectra

• The exponent term in the ϵ simplifies as, e−(y++y−)/2 = ∆
τ .

• At freeze-out this term is negligible as the τFO is larger.

• The only contribution to the energy density solution comes from

the overall normalization factor g(α).

• The entropy density does not get any direct correction from the

dissipative term in the relativistic Navier-Stokes equation, so s ∼
ϵ1/c+
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Final rapidity spectra

• The s/n is approximately conserved here, n can be related to the

entropy density.

• With these assumptions, one can evaluate the rapidity spectra at

freeze-out.
dN

dy
∼ exp

(
c−
2c2s

√
y ′b

2 − y2
)
.

• This solution shows a better agreement with the data.

• The above solution can be simplified to a Gaussian form to match

the form of Landau result of Gaussian rapidity.

dN

dy
∼ exp

(
− c−
4c2s y

′
b

y2
)
.

• We have fitted rapidity data of pions at PHENIX, SPS, and AGS

to find out the value of the speed of sound (c2S). 15



Results
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• The extracted value of c2S is seen

to increase with energy.

• Gazdzicki et.al proposed a

minimum in this variation. Acta Phys.

Polon. B 42, 307 (2011)

• We have not obtained a signature

for minima, this difference

originates from the definition of y ′b.

• We have used a constant velocity

of sound to derive the analytical

expression, hence the extracted c2S
is an approximate time-averaged

value for that particular
√
sNN .
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Spectra dN/dy

• Non-conformal solution has a better agreement with the spectra,

especially for lower AGS and SPS.

 0

 50

 100

 150

 200

 250

 300

 350

-4 -2  0  2  4

√s
NN

=200 GeV

√s
NN

=17.3 GeV

√s
NN

=4.29 GeV

d
N

/d
y

y

Data

Conformal

Nonconformal

Nonconf. Gaussian

17



Summary



Summary

• We have found the exact analytical solution for viscous landau

hydrodynamics in the non-conformal limit.

• In the constant time freeze-out prescription, correction from the

shear and bulk viscosity in the spectra is negligible.

• Predicted rapidity spectra show better agreement with data.

• Extracted speed of sound at PHENIX has good agreement with

the conformal limit of 1/3 and decreases with
√
sNN .

• This result can be helpful to determine the c2s of QCD matter

at finite density and lower T , especially for the upcoming FAIR

experiment.
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