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Introduction
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(Figure by Steffen A. Bass)
Traditional hydro: Description using macroscopic variables

(T, i, u) and their gradients accompanied by transport coefficients
(n,¢,0). Should be distinguished from Israel-Stewart type hydro
(Jaiswal's talk yesterday).

IS-type hydro [Muller '67, Israel, Stewart '76] is remarkably successful in
describing intermediate stages of heavy-ion collisions [Heinz et al.,

Romatschke et al., Dusling and Teaney, Song et al., and several others].

IS-type hydro derived from kinetic theory works even
far—from—equilibrium [Heller et al., Romatschke, Strickland, Noronha, and
others|. However, applicability sensitive to truncation scheme of
moment-equations. How to choose an appropriate truncation
procedure?
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|S-type hydrodynamics from kinetic theory

» Consider a system of weakly interacting classical particles;
description via kinetic theory using phase-space distribution
function, f(x, p).

» Evolution of f(x, p) is governed by Boltzmann equation,
p"o.f = CI[f],
where the collisional kernel C[f] denotes interactions.

» Conserved curents ( T+, N*) appearing in hydro are moments of
f(x, p). For example,

TH (x) = /de“ p’ f(x,p) = eutu” — (P + M)A 4 7,
here dP = d3p/[(27)3E,] and AWV = phv — yhy¥,

> If system is in perfect local equilibrium, f — foq (with say
frg = exp(—(u- p)/T)), then TH = L, NI =5 Nis,

» Off-equilibrium parts of conserved currents stem from 6f = f — foq.

Chandrodoy Chattopadhyay ET-HCVM, 2023 3



|S-type hydrodynamics from kinetic theory

» The bulk viscous pressure and shear stress tensor are:

1 ‘
M=—30u [ dPpp"of, (1)
T = /dP p'* pf ot (2)

where A{W) = Ag; A28 with the double-symmetric, traceless, and
orthogonal (to u*) projector defined as,

ALG = (ALY + DEAL) /2 — A D)3

» Applying co-moving time derivative operator (u*d,) on both sides
of Egs. (1, 2) and using the Boltzmann equation,

p"o.f = CI[f],
one gets evolution equations for bulk and shear stresses.
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|S-type hydrodynamics from kinetic theory

» For example, consider a massive Boltzmann gas. Also, take a
simplistic collisional kernel given by the relaxation-time
approximation (RTA) [Andersen & Witting '74],

u-p
Clfl]m —— (f — foq);
TR
here 7 is the time scale for relaxation to local equilibrium.
» One then obtains a relaxation-type evolution of I [Denicol et al. '12]:
2

S v m-
|‘|+a =—a10+ a0+ azn" Uuu‘*‘?p?—z)alw
m? m*
+ ?Vﬂ pé‘;l) + ?P(—Q) 0}

where a; = «o;(T, m).

> Standard definitions: I = u#d,M (time-derivative), § = 9, u*
(expansion rate), V# = A 9, (space-like derivative), velocity
stress tensor g/ = ALYV uP.
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|S-type hydrodynamics from kinetic theory

» However, the equation,

. I v m? v
I'I—|—% = -0+ a0+ azm auy+?p(72)oﬂy
m? s m*
+ ?vu Pl(_l) + 39(72) 0,

is not closed due to couplings to p— tensors.

» The p— tensors are non-hydrodynamic moments of f. For example,
Py = Ai/dl’(u'p)f1 p of,
= [ dP(u-p)”2 pp”) §f
P—2) = P PP )

» Similar feature exists for shear stress evolution equation.

» Needs truncation, i.e., to express 6f in terms of quantities appearing
in THY.
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Standard truncation procedures

» Expanding df(x, p) = feq ¢ in powers of momenta. For example,
Grad's ‘'14-moment’ expansion [Dusling, Teaney '08],

p"p” 2
N —— s+ =MA,, |.
qﬁ(x,p) 2(e+P)T2 (71—# + 5 Iz )

» §f motivated by Chapman-Enskog (CE) like expansion of a
simplistic Boltzmann collisonal kernel [Bhalerao, Jaiswal et al. '14]:

B ( 2 2 M B pup,TH
, ~ - 3 . <N>) _Z Fr ,
(b(X P) 36” Cs(u P) +p(p)p U'p+2ﬁﬂ u-p
where p{*) = A p®. The above two 6f's are linear in viscous
stresses.

» Approximating f(x, p) by an anisotropic ansatz [Romatschke and
Strickland '03]:

1
f(x,p) =~ feq <)\ V Pu Pv EIW) , = =t + M — APV
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Why a

new truncation scheme?

Grad assumes df to be quadratic in momenta (ad-hoc);
Chapman-Enskog df should not be valid far-from-equilibrium. Both
become negative (unphysical) at large momenta. Resulting
hydrodynamics breaks down in certain flow profiles.

The aHydro ansatz does not become negative and can handle large
shear deformations at early stages of heavy-ion collisions.

» But: its form is ad-hoc. Not possible to describe large negative
bulk viscous pressures, especially, for small masses of particles.

» May not be the most suitable distribution to model arbitrary
flow profiles.

We want to implement a truncation scheme that (i) leads to a
framework which may work both near and far from local equilibrium
and ii) does not invoke uncontrolled assumptions about the
microscopic physics.
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The ‘least-biased’ distribution [t Jaynes, Phys. Rev. 106, 620 (1957))
» We want §f to be expressed solely in terms of quantities appearing
in THY,

» The ‘least-biased’ distribution that uses all of, and only the
information provided by T#" is one that maximizes the
non-equilibrium entropy,

1+af

s[f] = —/dP (u- p) B[f], O[] = FlIn(F)— In(1+af),

(a=(-1,0,1) for FD, MB, BE statistics),

» subject to constraints,
/dP(u-p)2 f=e, —%/de<M>p<“> f=P+T1,
/dP p<“p"> f=xh",
where p{tp?) = AL p* pP.
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The idea behind ‘least-biasedness’

» Consider a system in a macrostate specified by (E, V, N). The
system can be in a variety of microstates consistent with the
macrostate.

» One may, in general, assign any probability distribution to these
microstates.

» But, the probability distribution where all such microstates are
assumed to be equally probable is the ‘least-biased’ one.

» Such a distribution also maximizes the Shannon (or information)
entropy, 5 = —>_, pi In(pi).

Chandrodoy Chattopadhyay ET-HCVM, 2023 10



Lagrange's method of undetermined multipliers

» Introduce Lagrange multipliers,
s[f]:—/dP (u-p) O[] + A {e—/dp(u.pff]
1
+ An [P+H+3Aaﬂ/de°‘pﬂf}

+7(aﬁ) |:7Taﬂ_/dpp<apﬂ>f:|~

» Functional derivative w.r.t. f: 52[:] =0.

» The solution for distribution function,
A o VB (a -1
fue(x, p) :[eXP</\(U p) = L praypl) 4 HE p’”) — a} :
u . p u . p

» Note that in absence of information about dissipative fluxes,
fME — f:eq.
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A pleasant surprise

» Expand fye around equilibrium:

PuP™ P<uPu>}
u-p

fire = fog [L (1A 7)) (u-p) +An "

» Plug dfye in definitions for shear and bulk,

R 1
Y :Aig/dea PP ofye, M= *gA;w dP p" p¥ 6 fye,

and invert.
» §fye to linear order in dissipative quantities,
B 2 2 2\ M B pupyT"”
Ofue = fuq | 52— ((1=32)(u - p)? = m?) —— + BB
ME T e [35n 3Py =m ) o Y 28, up
» Solve RTA BE: p*0,f = —(u - p)éf /7r in the small Knudsen
number approximation (Chapman-Enskog like iteration); the dfce
obtained matches exactly with §fye! Mere coincidence?
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Features of maximum-entropy distribution

» Positive-definite for all momenta.

» Non-linear dependence on (I, 7#¥); exact matching to T** for
entire range of viscous stresses allowed by kinetic theory.

» Reduces to linearized Chapman-Enskog §f of Boltzmann eq. in the
relaxation-time approximation for weak dissipative stresses.

» Can be systematically improved by adding information of
higher-order moments via other Lagrange multipliers.
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Application I: Bjorken flow (10 gjorken, PrD, 27, 140 (1983)]

» Bjorken flow is valid during the early stages of ultra-relativistic
heavy-ion collisions.

» The fluid is assumed to be homogeneous in (x — y) direction.

» The medium expands boost-invariantly along beam (z—) direction:
v¥=0, v =0, vZ =2z/t.

» Switch to Milne coordinates

(7, x1, d,ms) where 7 = +/t? — 22, and
ns = tanh ™1 (z/t). =t

z/t=const.

» Fluid appears static, u* = (1,0,0,0).
However, has finite expansion rate,
0=1/t.

............................................................
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Consequences of Bjorken symmetries

» T+ = diag(e, Pt, Pt, P.), has 3 independent variables where
Pr=P+TM+7/2, P.=P+T1—mx. All functions depend only on
proper time T.

» Bjorken symmetries constrain phase-space dependence of
distribution: f(X,p) = f(T; PT, pn) [Baym '84, Florkowski, Strickland et
al. '13, '14].

» The maximum-entropy distribution has 3 Lagrange parameters:

A 2 2 _ 2
fME = exp(f/\pT - p—z (p2T +p$’) — W)’

where p™ = /pF + p2 4+ m?2.
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Bjorken flow: evolution equations

» As before, consider a simplified RTA Boltzmann collisional kernel,

of 1
=T (f - feq)a

or 1R

and use it to obtain the evolution of energy and effective pressures:

P
de _et L, Wheree:/dP(pT)zf7

o,
dP, P —P (L dP Pr—pP (L
L _ L +C72) T:_ T _i_CL

dr TR T

dr TR T
» The couplings ¢t and ' involve non-hydro moments:

_ . 1
G&=3p+ [P () 2phf, G =—Prt s [dPGT) 2R AT,

> To truncate, we replace f — fyrg. This makes ¢t and (} functions
of (e, Pr, Pt). Now, solve 3 equations; same complexity as hydro.
16
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Case |: conformal dynamics (manuscript in preparation)

» In conformal case, e =3P, 1 =0, and 7r = 5(n/s)/T.

» Evolution of Lagrange parameters:

T ‘\T
N 4 o T T
021 ] blue solid: 1T (fm)
3 |-
E‘A,. or conformal ] E oL
B —— RTA Boltzmann <
-02 1 — = Navier-Stokes B
1k
dashed: Max-Ent
-041 ] i Ll Ll Lo
L L 0.1 1 10 100
0.1 1 10 T [fm]
Uty
05F
> Good agreement between Max-Ent
truncated BE and exact solution of BE or
even far-off-equilibrium. $05F
-1F \\ 7
> At late times, slope(A) ~ slope(1/T), ask E
and anisotropy v = 0. 2 m(‘)xl L Hmuxl L Huuixo L Hulu(]o
 [fm]
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Case lla: non-conformal CE hydro (s ssiswal c.ceral 22

» Can generate dissipative stresses outside the

T T
domain allowed by KT:
T T
ok J
o2k dashed: CE-hydro & sl ]
solid: RTA Boltzmann =
-0.25 LLLLL—"—L' ‘\% -+
b
02k (b) {
= -1
Eoil ]
2
< ]
g oL 3 — -
0 14F 7% E
o1k 1 12F solid: RTA E
s
black dashed: CE hydro
0.1 1 10 08E
T/,
= 06F
0.4F
» CE hydrodynamics not in good 0‘(2)7
agreement for shear and bulk inverse 0.2 0

Uty
does not describe early-time universality in P, /P.

Reynolds numbers far-off-equilibrium.
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Case lIb: Max-Ent truncated kinetic theory (in preparation)

» Generates dissipative stresses within domain

or SRR 1 allowed by KT.
-0.05 |- 4 y
& or
é 0.1\ B
Fo0a5F solid: RTA Boltzmann
0oL dashed: Max-Ent ] o [
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L
® oL
14F
0.1F 4 12F
1 n Lol n Lo 1F
1 10 08
T/t °F
b = 06F
04F
> Max-Ent truncated kinetic theory 02
oF
provides good agreement for shear and 02
bulk inverse Reynolds numbers . Tty . L
Accurately describes early-time universality in

throughout evolution.
P./P.
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Evolution of Lagrange parameters (i preparation)

» |n far-off-
equilibrium
regimes, A < 0!

A [fm]

» Should not be
identified with
~ inverse
temperature at
early times.

> At late times,
A >0 and
(Al_h’}/) — 0.

¥ [fm]

! 05 L L |

T [fm] T [fm]
» The quantity 0 = A+ An — |min(y/2, —7)| is positive definite.

» Ensures fye(p) — 0 at large momenta.
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Large negative bulk pressure and A < 0

» The total isotropic pressure P, is,

P+I'I:%/dPﬁzf

» 1~ —P can be attained by populating low momentum states with
large number of particles, f ~ Ad(|p])/p>%.

» At low momenta fyig =~ exp(—A m). Enhancement of occupation in
low momentum modes is facilitated by A < 0.

» The aHydro ansatz, f, = exp(—\/pzT/a% + p2/ai + m?/)), cannot
generate 1 ~ —P for m/T < 1; requires the introduction of a
fugacity factor [C.C., S. Jaiswal et al, PLB 2020].
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Application Il: Gubser Flow (s s cubser, PrD, 82, 085027 (2010

» Gubser flow is longitudinally boost-invariant: v? = z/t, and has
u? = 0. But it has transverse dynamics: u"(x) # 0.

> Re-scale metric, ds> — d5? = ds?/72, followed by coordinate

1— a?72 + o212
p= —sinh*! <++qr>7 0 = tan
T

such that * = (1,0,0,0).

Weyl rescaled unitless
quantities,
_ &p)
e(r,r) = et
1 08> 0%° |
T (T, 1) = 5 5 g Tas(p)-

Du et al. [2019]
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Evolution equations: Gubser flow

» The evolution of two independent components (&, If’T) are given by:

dé N

€ _ otanhp (é+ PT) :

dp
dP 1 /s & R
I __ (PT — P) — 2tanh p(*, where?g = S(UA/S),
dp TR T

» Similar to the Bjorken case, the equations are not closed:

N 4
éLZQﬁ)T_i/dﬁ)(ﬁp)—Z( Pa ) .

cosh p

here po = /P2 +ﬁi/sin29 and p* = 1/,6%/cosh2p—|—ﬁ,27.

» As before, we truncate by replacing f — fyg:

A A2
A Y Pq A2
— —Apr — L -
fME = exp < Ap B0 (cosh2p pn>)
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Results: Breakdown of CE hydrodynamics |

» Evolution of normalised shear and pressure anisotropy using
second-order CE hydro (identical to Denicol et al. or DNMR):

N

b 1o Loy 1oy

§ green: RTA Boltzmann
i red: CE-hydro (2nd-order)

D
Amn/s = 10
- 4nmfs=3
s 4nms=1

I B B : : !
-10 -5 0 5 10 -10 -5 0 5
p P

» Rapid transverse expansion in Gubser flow at late times prevents
system from thermalizing; fluid approaches transverse
free-streaming : Pt — 0; not described by CE hydro.

» Second-order CE and DNMR yield negative P, and Pr.
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Results: Breakdown of CE hydrodynamics Il

» Evolution of normalised shear and pressure anisotropy using
third-order CE hydro [C.C., Heinz, et al. '18]:

green: RTA Boltzmann
red: CE-hydro (3rd order)

~ 0 ]
)= ] ]
<B ] u
02k ; 4nn/s =10 | E

F --- 4nnls=3 B 3

[ = dmm/s=1 1 ]
04/ E

L Wb M

-10 -5 0 5 10 -10 -5 0 5 10

4 P

» Third-order CE yields incorrect asymptotic value of #/(4P) ~ —0.4.

> For initialisations 7 /(4P) < —0.4, third-order CE equations become
numerically unstable.
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Results: Max-Ent truncated BE (in preparation)

» Evolution of shear inverse Reynolds number and pressure anisotropy
using Max-Ent truncated kinetic theory:

o L s s e B B Fr— T T T T
: 1 10’
0.2 [ ] E green: RTA Boltzmann
[ ] 10" L blue: Max-Ent -
<§ Oj ] o %
R0 1 & h
02k — 4nn/is=10 o<~ E
+ -—- 4nnis=3 1 E
Ffo— dnmis=1 b . ]
i il ] 10" .
041/ - El
A A I R 107 A R R
-10 -5 0 5 10 -10 -5 0 5 10
p P

» Max-Ent truncated BE correctly describes both longitudinal
(7 =~ 0.25) and transverse free-streaming (7 ~ —0.5) domains.
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Conclusions

» In order to derive macroscopic evolution equations from a
Boltzmann equation, we propose a ‘least-biased’ distribution
function to truncate the infinite tower of moment equations.

» This scheme does not introduce ad-hoc assumptions about the
microscopic physics or the flow profile being modeled; uses
information contained only within the hydrodynamic moments of
the distribution function.

» Relaxation-type dynamics obtained with this procedure was shown
to accurately predict the kinetic theory evolution of TH#" in both
free-streaming and hydrodynamic regimes for certain flow profiles.

» The description of TH" within this approach for flow profiles with
less restricted symmetries remains to be seen.
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Backup Slide 1: Applicability of classical kinetic theory [ion

and Heinz, arXiv:1503.03931 (2015)]

» Hydro formulated as a series in velocity gradients:
m ~nd'v, M~ —(0-v.

» Three scales: Two microscopic: Img ~ 1/(o vn), thermal
wavelength /i, ~ 1/ T, one macroscopic 1/L ~ 0 - u.

> /mfp/lth ~ 77/57 C/S> TH/S

» Hydro applicable whenever microscopic and macroscopic
scales are well-separated: /ng0-u=Kn <1

» Dilute gas regime: Ins/len ~ 1n/s > 1; Weakly coupled regime,
Boltzmann equation applicable (on-shell particles).

» Dense gas regime: 7/s ~ 1; quasi-particle description in terms
of Wigner functions.

> Liquid regime: n/s < 1; strong-coupling regime, no valid
kinetic description.
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Backup slide 2: Lagrange multipliers of ME distribution

» 7 Lagrange parameters (A, An,Y(y) = 7-d inversion problem;
numerically expensive.

» However, matching condition implies that shear matrix w = WERF is
a power-series in v = y/rp = [m,v] = 0; simultaneously
diagonalizable by spatial rotation.

» 3 of 5d.o.f's of v/ fixed using common eigenvectors of 7¥; 4-d
inversion problem.
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Backup 3: Simplifying the non-linear problem

» The full (non-linear) problem requires an inversion for 7
parameters (A, X, 7,3): numerically intractable.

» To match shear stress tensor,

A rs "p®
=AY /de p' exp —NE, — —0p2> exp(—u>

Ep Ep
» We show, )
=T — Z1tx(T
™ 3 I.( )7
Qv—&V+&Y &+ =T,

» The shear tensor and v/ commute, [r,~] = 0; Simultaneously
diagonalizable.
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Backup 4: Simplifying the non-linear problem

» 70 is symmetric; has real eigenvalues and admits orthogonal
eigenvectors (can be diagonalised by spatial rotation,
mp=RT TR).

» Diagonalise m; This diagonalises v as well.

» Essentially, 3 of 5 independent degrees of freedom in the
matrix 7 can be fixed using the (common) eigenvectors of 7¥.

» Only two-dimensional root finding required to obtain
vp = diag(y1, 72, — (71 + 72)) in terms of eigenvalues of 7¥.

» This property greatly simplifies the problem numerically.
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Backup 4: Non-equilibrium entropy

» The canonical entropy S = — 3", p; In(p;) for a continuous

distribution:
d3Nx d3Np
S= —/TP In(p),

where,

exp(iﬂHN(Xla cr XN, Pyt 7PN))
Z(T,V,N)

p(X17"' s XN, P1y apN):

» Due to weak interaction,

Hy =Y Hi, Z(T,V,N)=2Z(T,V, )" =Vv"a"/NI,

where n is number density. Thus,

A%

3= ZTV A

[ o H(p) expl~5H(p)) ~ IW(Z(T. V. )
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Backup 5: Non-equilibrium entropy

» For large N, In(Z(T,V,N)) =~ N. Thus,

S=V /d3P (BH(p) feq + feq) »

and the entropy density:

s=— [ iy (i) - 1).

» Out of equilibrium, replace f.q — f. Relativistic version,

s:—/dP (u-p) f (In(f)—1).
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Backup 6: Conformal Hydrodynamics [ 1oganayazam,

arXiv:0801.3701 (2008) ]

» Equations of hydro are Lorentz covariant: admits rotationally
and boost-invariant solutions.

» Hydro equations also have conformal invariance: should admit
conformally invariant solutions.

» Under a conformal transformation g, — 8., = e*2¢gw,

» Weyl covariant derivative D, TH — e_W(f’f)u THv if
Thw s o Fuw

» Using definition of D one can show
DT = d, T + AT
where A# = g — (0/3)u*
> Hydro equations are conformal if T/ = m? [ dP f = 0.
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Backup 7: Gubser symmetries ss Gubser. PRD, 52, 085027 (2010) |

> Instead of translational invariance (whose generators are &; = %),
Gubser uses invariance under the group SO(3), whose generators
are 9/0¢, 0/0n, and

- a 2 ) a m a .
{,-_axi—kq 2x'x o~ X gl (i=1,2)

1/q = transverse size
» These generators are easy to understand in dS3 x R
22 97 12 cosh? p (467 + sin? 0de?) — dip?
—5 = dp® —cos p (d6? + sin® 0d¢®) — dn?,

where they correspond to rotations in (6, ¢):
1— 2.2 2,2 2
p = —sinh~? -9 g =tant(—T ).
2q1 1+ g272 — ¢2r?

» The only time-like four vector invariant under these transformations
[£,0] =0is a* = (1,0,0,0).
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