Fluid dynamics from a 'least-biased' truncation of the Boltzmann equation

Chandrodoy Chattopadhyay

North Carolina State University

Emergent Topics In Relativistic Hydrodynamics, Chirality, Vorticity and Magnetic field

Toshali Sands (February 4, 2023)

Collaborators: Ulrich Heinz (OSU) and Thomas Schäfer (NCSU)

NC STATE

Introduction

- Traditional hydro: Description using macroscopic variables (T, μ, u^{μ}) and their gradients accompanied by transport coefficients (η, ζ, σ) . Should be distinguished from Israel-Stewart type hydro (Jaiswal's talk yesterday).
- IS-type hydro [Muller '67, Israel, Stewart '76] is remarkably successful in describing intermediate stages of heavy-ion collisions [Heinz et al., Romatschke et al., Dusling and Teaney, Song et al., and several others].
- IS-type hydro derived from kinetic theory works even far-from-equilibrium [Heller et al., Romatschke, Strickland, Noronha, and others]. However, applicability sensitive to truncation scheme of moment-equations. How to choose an appropriate truncation procedure?

- Consider a system of weakly interacting classical particles; description via kinetic theory using phase-space distribution function, f(x, p).
- Evolution of f(x, p) is governed by Boltzmann equation,

$$p^{\mu}\partial_{\mu}f=C[f],$$

where the collisional kernel C[f] denotes interactions.

- Conserved currents (T^{μν}, N^μ) appearing in hydro are moments of f(x, p). For example,
 T^{μν}(x) ≡ ∫ dP p^μ p^ν f(x, p) = e u^μu^ν (P + Π) Δ^{μν} + π^{μν};
 here dP ≡ d³p/[(2π)³E_p] and Δ^{μν} = η^{μν} u^μu^ν.
 If system is in perfect local equilibrium, f → f_{eq} (with say
 - $f_{eq} = \exp(-(u \cdot p)/T))$, then $T^{\mu\nu} \to T^{\mu\nu}_{ideal}$, $N^{\mu} \to N^{\mu}_{ideal}$.

• Off-equilibrium parts of conserved currents stem from $\delta f \equiv f - f_{eq}$.

▶ The bulk viscous pressure and shear stress tensor are:

$$\Pi = -\frac{1}{3} \Delta_{\mu\nu} \int dP \, p^{\mu} \, p^{\nu} \, \delta f, \qquad (1)$$

$$\pi^{\mu\nu} = \int dP \, p^{\langle \alpha} \, p^{\beta \rangle} \, \delta f, \qquad (2)$$

where $A^{\langle\mu\nu\rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta} A^{\alpha\beta}$ with the double-symmetric, traceless, and orthogonal (to u^{μ}) projector defined as,

$$\Delta^{\mu\nu}_{\alpha\beta} = (\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta}\Delta^{\nu}_{\alpha})/2 - \Delta^{\mu\nu}\Delta_{\alpha\beta}/3$$

 Applying co-moving time derivative operator (u^μ∂_μ) on both sides of Eqs. (1, 2) and using the Boltzmann equation,

$$p^{\mu}\partial_{\mu}f=C[f],$$

one gets evolution equations for bulk and shear stresses.

 For example, consider a massive Boltzmann gas. Also, take a simplistic collisional kernel given by the relaxation-time approximation (RTA) [Andersen & Witting '74],

$$C[f] \approx -\frac{u \cdot p}{\tau_R} (f - f_{eq});$$

here τ_R is the time scale for relaxation to local equilibrium.

► One then obtains a relaxation-type evolution of Π [Denicol et al. '12]:

$$\begin{split} \dot{\Pi} + \frac{\Pi}{\tau_R} &= -\alpha_1 \,\theta + \alpha_2 \,\Pi \,\theta + \alpha_3 \,\pi^{\mu\nu} \,\sigma_{\mu\nu} + \frac{m^2}{3} \rho_{(-2)}^{\mu\nu} \,\sigma_{\mu\nu} \\ &+ \frac{m^2}{3} \nabla_{\mu} \,\rho_{(-1)}^{\mu} + \frac{m^4}{9} \rho_{(-2)} \,\theta, \end{split}$$

where $\alpha_i = \alpha_i(T, m)$.

Standard definitions: Π = u^μ∂_μΠ (time-derivative), θ = ∂_μu^μ (expansion rate), ∇^μ = Δ^{μν}∂_ν (space-like derivative), velocity stress tensor σ^{μν} = Δ^{μν}_{αβ}∇^αu^β.

However, the equation,

$$\begin{split} \dot{\Pi} + \frac{\Pi}{\tau_R} &= -\alpha_1 \,\theta + \alpha_2 \,\Pi \,\theta + \alpha_3 \,\pi^{\mu\nu} \,\sigma_{\mu\nu} + \frac{m^2}{3} \rho_{(-2)}^{\mu\nu} \,\sigma_{\mu\nu} \\ &+ \frac{m^2}{3} \nabla_{\mu} \,\rho_{(-1)}^{\mu} + \frac{m^4}{9} \rho_{(-2)} \,\theta, \end{split}$$

is **not closed** due to couplings to $\rho-$ tensors.

• The ρ - tensors are non-hydrodynamic moments of f. For example,

$$\begin{split} \rho^{\mu}_{(-1)} &\equiv \Delta^{\mu}_{\alpha} \int dP \left(u \cdot p \right)^{-1} \, p^{\alpha} \, \delta f, \\ \rho^{\mu\nu}_{(-2)} &\equiv \int dP \left(u \cdot p \right)^{-2} \, p^{\langle \mu} \, p^{\nu \rangle} \, \delta f, \end{split}$$

Similar feature exists for shear stress evolution equation.

▶ Needs truncation, i.e., to express δf in terms of quantities appearing in $T^{\mu\nu}$.

Standard truncation procedures

Expanding $\delta f(x, p) \equiv f_{eq} \phi$ in powers of momenta. For example, Grad's '14-moment' expansion [Dusling, Teaney '08],

$$\phi(x,p) \approx \frac{p^{\mu}p^{\nu}}{2(e+P)T^2} \left(\pi_{\mu\nu} + \frac{2}{5} \Box \Delta_{\mu\nu} \right).$$

 δf motivated by Chapman-Enskog (CE) like expansion of a simplistic Boltzmann collisonal kernel [Bhalerao, Jaiswal et al. '14]:

$$\phi(x,p) \approx -\frac{\beta}{3\beta_{\Pi}} \left(3c_s^2(u \cdot p)^2 + p_{\langle \mu \rangle} p^{\langle \mu \rangle} \right) \frac{\Pi}{u \cdot p} + \frac{\beta}{2\beta_{\pi}} \frac{p_{\mu} p_{\nu} \pi^{\mu\nu}}{u \cdot p},$$

where $p^{\langle \mu \rangle} = \Delta^{\mu}_{\alpha} p^{\alpha}$. The above two δf 's are linear in viscous stresses.

Approximating f(x, p) by an anisotropic ansatz [Romatschke and Strickland '03]:

$$f(x,p) \approx f_{eq}\left(\frac{1}{\lambda}\sqrt{p_{\mu}p_{\nu}\Xi^{\mu\nu}}\right), \ \Xi^{\mu\nu} = u^{\mu}u^{\nu} + \xi^{\mu\nu} - \Delta^{\mu\nu}\psi$$

Why a new truncation scheme?

- Grad assumes δf to be quadratic in momenta (ad-hoc); Chapman-Enskog δf should not be valid far-from-equilibrium. Both become negative (unphysical) at large momenta. Resulting hydrodynamics breaks down in certain flow profiles.
- The aHydro ansatz does not become negative and can handle large shear deformations at early stages of heavy-ion collisions.
 - But: its form is ad-hoc. Not possible to describe large negative bulk viscous pressures, especially, for small masses of particles.
 - May not be the most suitable distribution to model arbitrary flow profiles.
- We want to implement a truncation scheme that (i) leads to a framework which may work both near and far from local equilibrium and ii) does not invoke uncontrolled assumptions about the microscopic physics.

・ 戸 ト ・ ヨ ト ・ ヨ ト

The 'least-biased' distribution [E. Jaynes, Phys. Rev. 106, 620 (1957)]

- We want δf to be expressed solely in terms of quantities appearing in $T^{\mu\nu}$.
- The 'least-biased' distribution that uses all of, and only the information provided by T^{μν} is one that <u>maximizes</u> the non-equilibrium entropy,

$$s[f] = -\int dP (u \cdot p) \Phi[f], \quad \Phi[f] \equiv f \ln(f) - \frac{1+af}{a} \ln(1+af),$$

(a = (-1, 0, 1) for FD, MB, BE statistics),

subject to <u>constraints</u>,

$$\int dP (u \cdot p)^2 f = e, \ -\frac{1}{3} \int dP \, p_{\langle \mu \rangle} p^{\langle \mu \rangle} f = P + \Pi,$$
$$\int dP \, p^{\langle \mu} p^{\nu \rangle} f = \pi^{\mu \nu},$$

where $p^{\langle \mu} p^{
u
angle} = \Delta^{\mu
u}_{lpha eta} \, p^{lpha} \, p^{eta}.$

- Consider a system in a macrostate specified by (E, V, N). The system can be in a variety of microstates consistent with the macrostate.
- One may, in general, assign any probability distribution to these microstates.
- But, the probability distribution where all such microstates are assumed to be equally probable is the 'least-biased' one.
- Such a distribution also maximizes the Shannon (or information) entropy, $S = -\sum_{i} p_{i} \ln(p_{i})$.

(4月) (3日) (3日) 日

Lagrange's method of undetermined multipliers

Introduce Lagrange multipliers,

$$s[f] = -\int dP (u \cdot p) \Phi[f] + \Lambda \left[e - \int dP (u \cdot p)^2 f \right] \\ + \lambda_{\Pi} \left[P + \Pi + \frac{1}{3} \Delta_{\alpha\beta} \int dP \, p^{\alpha} \, p^{\beta} \, f \right] \\ + \gamma_{\langle \alpha\beta \rangle} \left[\pi^{\alpha\beta} - \int dP \, p^{\langle \alpha} p^{\beta \rangle} f \right].$$

• Functional derivative w.r.t. $f: \frac{\delta s[f]}{\delta f} = 0.$

The solution for distribution function,

$$f_{\rm ME}(x,p) = \left[\exp \left(\Lambda (u \cdot p) - \frac{\lambda_{\Pi}}{u \cdot p} p_{\langle \alpha \rangle} p^{\langle \alpha \rangle} + \frac{\gamma_{\langle \alpha \beta \rangle}}{u \cdot p} p^{\langle \alpha} p^{\beta \rangle} \right) - a \right]^{-1},$$

▶ Note that in absence of information about dissipative fluxes, $f_{\rm ME} \rightarrow f_{eq}$.

A pleasant surprise

Expand *f_{ME}* around equilibrium:

$$f_{ME} \approx f_{eq} \Big[1 - \big(c_{\lambda} \lambda_{\Pi} + c_{\mu\nu} \gamma^{\langle \mu\nu \rangle} \big) (u \cdot p) + \lambda_{\Pi} \frac{p_{\langle \mu \rangle} p^{\langle \mu \rangle}}{u \cdot p} - \gamma^{\langle \mu\nu \rangle} \frac{p_{\langle \mu} p_{\nu \rangle}}{u \cdot p} \Big]$$

• Plug δf_{ME} in definitions for shear and bulk,

$$\pi^{\mu
u} = \Delta^{\mu
u}_{lphaeta} \int dP \, p^lpha \, p^eta \, \delta f_{ME}, \ \ \Pi = -rac{1}{3} \Delta_{\mu
u} \int dP \, p^\mu \, p^
u \, \delta f_{ME},$$

and invert.

• δf_{ME} to linear order in dissipative quantities,

$$\delta f_{ME} = f_{eq} \left[\frac{\beta}{3\beta_{\Pi}} \left((1 - 3c_s^2)(u \cdot p)^2 - m^2 \right) \frac{\Pi}{u \cdot p} + \frac{\beta}{2\beta_{\pi}} \frac{p_{\mu}p_{\nu}\pi^{\mu\nu}}{u \cdot p} \right]$$

Solve RTA BE: p^μ∂_μf = −(u · p)δf/τ_R in the small Knudsen number approximation (Chapman-Enskog like iteration); the δf_{CE} obtained matches exactly with δf_{ME}! Mere coincidence?

▶ ★ 문 ► ★ 문 ► _ 문

Features of maximum-entropy distribution

Positive-definite for all momenta.

- Non-linear dependence on $(\Pi, \pi^{\mu\nu})$; exact matching to $T^{\mu\nu}$ for entire range of viscous stresses allowed by kinetic theory.
- Reduces to linearized Chapman-Enskog δf of Boltzmann eq. in the relaxation-time approximation for weak dissipative stresses.
- Can be systematically improved by adding information of higher-order moments via other Lagrange multipliers.

Application I: Bjorken flow [J.D. Bjorken, PRD, 27, 140 (1983)]

- Bjorken flow is valid during the early stages of ultra-relativistic heavy-ion collisions.
- The fluid is assumed to be homogeneous in (x y) direction.
- ► The medium expands boost-invariantly along beam (z−) direction:
 v^x = 0, v^y = 0, v^z = z/t.
- Switch to Milne coordinates $(\tau, x_{\perp}, \phi, \eta_s)$ where $\tau \equiv \sqrt{t^2 - z^2}$, and $\eta_s \equiv \tanh^{-1}(z/t)$.

 Fluid appears static, u^μ = (1,0,0,0). However, has finite expansion rate, θ = 1/τ.

Consequences of Bjorken symmetries

- $T^{\mu\nu} = \text{diag}(e, P_T, P_T, P_L)$, has 3 independent variables where $P_T = P + \prod + \frac{\pi}{2}$, $P_L = P + \prod \pi$. All functions depend only on proper time τ .
- Bjorken symmetries constrain phase-space dependence of distribution: f(x, p) = f(τ; p_T, p_η) [Baym '84, Florkowski, Strickland et al. '13, '14].

The maximum-entropy distribution has 3 Lagrange parameters:

$$\begin{split} f_{\rm ME} &= \exp\Bigl(-\Lambda p^\tau - \frac{\lambda_{\Pi}}{p^\tau} \left(p_T^2 + p_\eta^2\right) - \frac{\gamma \left(p_T^2/2 - p_\eta^2\right)}{p^\tau}\Bigr), \end{split}$$
 where $p^\tau &= \sqrt{p_T^2 + p_\eta^2 + m^2}.$

Bjorken flow: evolution equations

> As before, consider a simplified RTA Boltzmann collisional kernel,

$$\frac{\partial f}{\partial au} = -\frac{1}{ au_R} \left(f - f_{eq}
ight),$$

and use it to obtain the evolution of energy and effective pressures:

$$\frac{de}{d\tau} = -\frac{e+P_L}{\tau}, \text{ where } e = \int dP (p^{\tau})^2 f,$$
$$\frac{dP_L}{d\tau} = -\frac{P_L - P}{\tau_R} + \frac{\bar{\zeta}_z^L}{\tau}, \quad \frac{dP_T}{d\tau} = -\frac{P_T - P}{\tau_R} + \frac{\bar{\zeta}_z^\perp}{\tau}$$

• The couplings $\bar{\zeta}_z^L$ and $\bar{\zeta}_z^{\perp}$ involve non-hydro moments:

$$ar{\zeta}^L_z = -3P_L + \int dP \, (p^ au)^{-2} \, p^4_\eta \, f, \quad ar{\zeta}^\perp_z = -P_T + rac{1}{2} \int dP \, (p^ au)^{-2} \, p^2_\eta \, p^2_T \, f,$$

▶ To truncate, we replace $f \to f_{ME}$. This makes $\bar{\zeta}_z^L$ and $\bar{\zeta}_z^{\perp}$ functions of (e, P_L, P_T) . Now, solve 3 equations; same complexity as hydro.

Case I: conformal dynamics (manuscript in preparation)

• In conformal case, e = 3P, $\Pi = 0$, and $\tau_R = 5(\eta/s)/T$.

- Good agreement between Max-Ent truncated BE and exact solution of BE even far-off-equilibrium.
- At late times, slope(Λ) ≈ slope(1/T), and anisotropy γ → 0.

Case IIa: non-conformal CE hydro [S. Jaiswal, C.C., et al. '22]

 CE hydrodynamics not in good agreement for shear and bulk inverse Reynolds numbers far-off-equilibrium. Can generate dissipative stresses outside the domain allowed by KT:

Chandrodoy Chattopadhyay

ET-HCVM, 2023

Case IIb: Max-Ent truncated kinetic theory (in preparation)

 Max-Ent truncated kinetic theory provides good agreement for shear and bulk inverse Reynolds numbers throughout evolution. Generates dissipative stresses within domain

Chandrodoy Chattopadhyay

ET-HCVM, 2023

Evolution of Lagrange parameters (in preparation)

- In far-offequilibrium regimes, Λ < 0!
- Should not be identified with
 inverse temperature at early times.

• At late times, $\Lambda > 0$ and $(\lambda_{\Pi}, \gamma) \rightarrow 0.$

• The quantity $\sigma \equiv \Lambda + \lambda_{\Pi} - |\min(\gamma/2, -\gamma)|$ is positive definite.

• Ensures $f_{ME}(\vec{p}) \rightarrow 0$ at large momenta.

Large negative bulk pressure and $\Lambda < 0$

• The total isotropic pressure P_r is,

$$P+\Pi=rac{1}{3}\int dP\, ec{p}^2\, f$$

- ► $\Pi \sim -P$ can be attained by populating low momentum states with large number of particles, $f \sim A \,\delta(|\vec{p}|)/\vec{p}^2$.
- At low momenta f_{ME} ≈ exp(-Λ m). Enhancement of occupation in low momentum modes is facilitated by Λ < 0.</p>
- The aHydro ansatz, f_a = exp(-√p_T²/α_T² + p_η²/α_L² + m²/λ), cannot generate Π ~ −P for m/T ≤ 1; requires the introduction of a fugacity factor [C.C., S. Jaiswal et al, PLB 2020].

Application II: Gubser Flow [S.S. Gubser, PRD, 82, 085027 (2010)]

- Gubser flow is longitudinally boost-invariant: $v^z = z/t$, and has $u^{\phi} = 0$. But it has transverse dynamics: $u^r(x) \neq 0$.
- ▶ Re-scale metric, $ds^2 \rightarrow d\hat{s}^2 = ds^2/\tau^2$, followed by coordinate transform: $(\tau, r, \phi, \eta) \rightarrow (\rho, \theta, \phi, \eta)$,

$$\rho = -\sinh^{-1}\left(\frac{1-q^2\tau^2+q^2r^2}{2q\tau}\right), \ \theta = \tan^{-1}\left(\frac{2qr}{1+q^2\tau^2-q^2r^2}\right),$$

such that
$$\hat{u}^{\mu} = (1, 0, 0, 0).$$

Weyl rescaled unitless quantities,

$$egin{aligned} e(au,r) &= rac{\hat{e}(
ho)}{ au^4}, \ \pi_{\mu
u}(au,r) &= rac{1}{ au^2}rac{\partial\hat{x}^lpha}{\partial x^\mu}rac{\partial\hat{x}^eta}{\partial x^
u}\hat{\pi}_{lphaeta}(
ho). \end{aligned}$$

Evolution equations: Gubser flow

▶ The evolution of two independent components (\hat{e}, \hat{P}_T) are given by:

$$\begin{split} & \frac{d\hat{e}}{d\rho} = -2 \tanh \rho \left(\hat{e} + \hat{P}_T \right), \\ & \frac{d\hat{P}_T}{d\rho} = -\frac{1}{\hat{\tau}_R} \left(\hat{P}_T - \hat{P} \right) - 2 \tanh \rho \, \hat{\zeta}^{\perp}, \, \text{where} \, \hat{\tau}_R = \frac{5(\eta/s)}{\hat{T}}. \end{split}$$

Similar to the Bjorken case, the equations are not closed:

$$\hat{\zeta}^{\perp} = 2\,\hat{P}_{\mathcal{T}} - \frac{1}{4}\int d\hat{P}\,(\hat{p}^{\rho})^{-2}\,\left(\frac{\hat{p}_{\Omega}}{\cosh\rho}\right)^{4}\,f;$$

here $\hat{p}_{\Omega} = \sqrt{\hat{p}_{\theta}^2 + \hat{p}_{\phi}^2 / \sin^2 \theta}$ and $\hat{p}^{\rho} = \sqrt{\hat{p}_{\Omega}^2 / \cosh^2 \rho} + \hat{p}_{\eta}^2$. As before, we truncate by replacing $f \to f_{\rm ME}$:

$$f_{\rm ME} = \exp\left(-\hat{\Lambda}\,\hat{p}^{\rho} - \frac{\hat{\gamma}}{\hat{p}^{\rho}}\left(\frac{\hat{p}_{\Omega}^2}{\cosh^2\rho} - \hat{p}_{\eta}^2\right)\right)$$

Results: Breakdown of CE hydrodynamics I

Evolution of normalised shear and pressure anisotropy using second-order CE hydro (identical to Denicol et al. or DNMR):

Rapid transverse expansion in Gubser flow at late times prevents system from thermalizing; fluid approaches transverse free-streaming : P̂_T → 0; not described by CE hydro.

Second-order CE and DNMR yield negative \hat{P}_L and \hat{P}_T .

Results: Breakdown of CE hydrodynamics II

Evolution of normalised shear and pressure anisotropy using third-order CE hydro [C.C., Heinz, et al. '18]:

• Third-order CE yields incorrect asymptotic value of $\hat{\pi}/(4\hat{P}) \approx -0.4$.

► For initialisations $\hat{\pi}/(4\hat{P}) \lesssim -0.4$, third-order CE equations become numerically unstable.

Results: Max-Ent truncated BE (in preparation)

Evolution of shear inverse Reynolds number and pressure anisotropy using Max-Ent truncated kinetic theory:

Max-Ent truncated BE correctly describes both longitudinal $(\hat{\pi} \approx 0.25)$ and transverse free-streaming $(\hat{\pi} \approx -0.5)$ domains.

Conclusions

- In order to derive macroscopic evolution equations from a Boltzmann equation, we propose a 'least-biased' distribution function to truncate the infinite tower of moment equations.
- This scheme <u>does not</u> introduce <u>ad-hoc</u> assumptions about the microscopic physics or the flow profile being modeled; uses information contained only within the hydrodynamic moments of the distribution function.
- Relaxation-type dynamics obtained with this procedure was shown to accurately predict the kinetic theory evolution of T^{μν} in both free-streaming and hydrodynamic regimes for certain flow profiles.
- The description of $T^{\mu\nu}$ within this approach for flow profiles with less restricted symmetries remains to be seen.

Backup Slide 1: Applicability of classical kinetic theory [Jeon

and Heinz, arXiv:1503.03931 (2015)]

- Hydro formulated as a series in velocity gradients: $\pi^{ij} \sim \eta \partial^i v^j$, $\Pi \sim -\zeta \partial \cdot v$.
- Three scales: Two microscopic: I_{mfp} ~ 1/(σ vn), thermal wavelength I_{th} ~ 1/T, one macroscopic 1/L ~ ∂ · u.

$$\blacktriangleright I_{mfp}/I_{th} \sim \eta/s, \, \zeta/s, \, T\kappa/s$$

- ► Hydro applicable whenever microscopic and macroscopic scales are well-separated: I_{mfp} ∂ · u ≡ Kn < 1</p>
 - ► Dilute gas regime: $I_{mfp}/I_{th} \sim \eta/s \gg 1$; Weakly coupled regime, Boltzmann equation applicable (on-shell particles).
 - Dense gas regime: n/s ~ 1; quasi-particle description in terms of Wigner functions.
 - ► Liquid regime: η/s ≪ 1; strong-coupling regime, no valid kinetic description.

Backup slide 2: Lagrange multipliers of ME distribution

- ► 7 Lagrange parameters (Λ, λ_Π, γ_{⟨μν⟩}) ⇒ 7-d inversion problem; numerically expensive.
- However, matching condition implies that shear matrix π ≡ π^{ij}_{LRF} is a power-series in γ ≡ γ^{ij}_{LRF} ⇒ [π, γ] = 0; simultaneously diagonalizable by spatial rotation.
- 3 of 5 d.o.f's of γ^{ij} fixed using common eigenvectors of π^{ij}; 4-d inversion problem.

Backup 3: Simplifying the non-linear problem

- The full (non-linear) problem requires an inversion for 7 parameters (Λ, λ, γ_{αβ}): numerically intractable.
- To match shear stress tensor,

$$\pi^{ij} = \Delta^{ij}_{kl} \int dP p^k p^l \exp\left(-\Lambda E_p - \frac{\lambda_0}{E_p} p^2\right) \exp\left(-\frac{\gamma_{rs} p^r p^s}{E_p}\right)$$

We show,

$$\pi = \Gamma - \frac{1}{3} I \operatorname{tr}(\Gamma),$$

$$ilde{c}_1\,\gamma- ilde{c}_2\,\gamma^2+ ilde{c}_3\,\gamma^3- ilde{c}_4\,\gamma^4+\cdots\equiv\Gamma,$$

The shear tensor and γ^{ij} commute, [π, γ] = 0; Simultaneously diagonalizable.

Backup 4: Simplifying the non-linear problem

- π^{ij} is symmetric; has real eigenvalues and admits orthogonal eigenvectors (can be diagonalised by spatial rotation, $\pi_D = R^T \pi R$).
- Diagonalise π ; This diagonalises γ as well.
- Essentially, 3 of 5 independent degrees of freedom in the matrix γ can be fixed using the (common) eigenvectors of π^{ij}.
- Only two-dimensional root finding required to obtain $\gamma_D = \text{diag}(\gamma_1, \gamma_2, -(\gamma_1 + \gamma_2))$ in terms of eigenvalues of π^{ij} .

This property greatly simplifies the problem numerically.

Backup 4: Non-equilibrium entropy

► The canonical entropy S = -∑_i p_i ln(p_i) for a continuous distribution:

$$S = -\int \frac{d^{3N}x \, d^{3N}p}{N!} \, \rho \, \ln(\rho),$$

where,

$$\rho(x_1,\cdots,x_N,p_1,\cdots,p_N)=\frac{\exp(-\beta H_N(x_1,\cdots,x_N,p_1,\cdots,p_N))}{Z(T,V,N)}$$

Due to weak interaction,

$$H_N = \sum_i H_i, \quad Z(T, V, N) = Z(T, V, 1)^N = V^N n^N / N!,$$

where *n* is number density. Thus,

$$S = -\frac{\beta V^N}{Z(T,V,1)^N} \int d^{3N} p H(p) \exp(-\beta H(p)) - \ln(Z(T,V,N))$$

Backup 5: Non-equilibrium entropy

For large N, $\ln(Z(T, V, N)) \approx N$. Thus,

$$S = V \int d^3 p \left(\beta H(p) f_{eq} + f_{eq}\right),$$

and the entropy density:

$$s=-\int d^3p\,f_{eq}\,\left(\ln(f_{eq})-1
ight).$$

• Out of equilibrium, replace $f_{eq} \rightarrow f$. Relativistic version,

$$s = -\int dP (u \cdot p) f (\ln(f) - 1).$$

イロト 不得 トイヨト イヨト 三日

Backup 6: Conformal Hydrodynamics [R. Loganayagam,

arXiv:0801.3701 (2008)]

- Equations of hydro are Lorentz covariant: admits rotationally and boost-invariant solutions.
- Hydro equations also have conformal invariance: should admit conformally invariant solutions.
- Under a conformal transformation $g_{\mu\nu} o \widetilde{g}_{\mu\nu} = e^{-2\phi}g_{\mu\nu}$
- Weyl covariant derivative $\mathcal{D}_{\mu}T^{\mu\nu} \rightarrow e^{-w\phi}\tilde{\mathcal{D}}_{\mu}\tilde{T}^{\mu\nu}$ if $T^{\mu\nu} \rightarrow e^{-w\phi}\tilde{T}^{\mu\nu}$
- \blacktriangleright Using definition of ${\cal D}$ one can show

$$\mathcal{D}_\mu T^{\mu
u} = d_\mu T^{\mu
u} + A^
u T^\mu_\mu$$

where $A^{\mu} = \dot{u}^{\mu} - (heta/3)u^{\mu}$

• Hydro equations are conformal if $T^{\mu}_{\mu} = m^2 \int dP f = 0$.

▲御▶▲≡▶▲≡▶ ≡ ∽��や

Backup 7: Gubser symmetries [S.S. Gubser, PRD, 82, 085027 (2010)]

Instead of translational invariance (whose generators are ξ_i = ∂/∂xⁱ), Gubser uses invariance under the group SO(3)_q whose generators are ∂/∂φ, ∂/∂η, and

$$\xi_{i} = \frac{\partial}{\partial x^{i}} + q^{2} \left[2x^{i} x^{\mu} \frac{\partial}{\partial x^{\mu}} - x^{\mu} x_{\mu} \frac{\partial}{\partial x^{i}} \right], \quad (i = 1, 2)$$

1/q pprox transverse size

• These generators are easy to understand in $dS_3 \times R$

$$d\hat{s}^2\equiv rac{ds^2}{ au^2}=d
ho^2-\cosh^2
ho\left(d heta^2+\sin^2 heta d\phi^2
ight)-d\eta^2,$$

where they correspond to rotations in (θ, ϕ) :

$$\rho = -\sinh^{-1}\left(\frac{1 - q^2\tau^2 + q^2r^2}{2q\tau}\right), \ \theta = \tan^{-1}\left(\frac{2qr}{1 + q^2\tau^2 - q^2r^2}\right),$$

The only time-like four vector invariant under these transformations $[\xi, \hat{u}] = 0$ is $\hat{u}^{\mu} = (1, 0, 0, 0)$.