Fluid dynamics from a 'least-biased' truncation of the Boltzmann equation

Chandrodoy Chattopadhyay

North Carolina State University

Emergent Topics In Relativistic Hydrodynamics, Chirality, Vorticity and Magnetic field

Toshali Sands (February 4, 2023)
Collaborators: Ulrich Heinz (OSU) and Thomas Schäfer (NCSU)

NC STATE

Introduction

- Traditional hydro: Description using macroscopic variables (T, μ, u^{μ}) and their gradients accompanied by transport coefficients (η, ζ, σ). Should be distinguished from Israel-Stewart type hydro (Jaiswal's talk yesterday).
- IS-type hydro [Muller '67, Israel, Stewart '76] is remarkably successful in describing intermediate stages of heavy-ion collisions [Heinz et al., Romatschke et al., Dusling and Teaney, Song et al., and several others].
- IS-type hydro derived from kinetic theory works even far-from-equilibrium [Heller et al., Romatschke, Strickland, Noronha, and others]. However, applicability sensitive to truncation scheme of moment-equations. How to choose an appropriate truncation procedure?

IS-type hydrodynamics from kinetic theory

- Consider a system of weakly interacting classical particles; description via kinetic theory using phase-space distribution function, $f(x, p)$.
- Evolution of $f(x, p)$ is governed by Boltzmann equation,

$$
p^{\mu} \partial_{\mu} f=C[f],
$$

where the collisional kernel $C[f]$ denotes interactions.

- Conserved curents ($T^{\mu \nu}, N^{\mu}$) appearing in hydro are moments of $f(x, p)$. For example,

$$
T^{\mu \nu}(x) \equiv \int d P p^{\mu} p^{\nu} f(x, p)=e u^{\mu} u^{\nu}-(P+\Pi) \Delta^{\mu \nu}+\pi^{\mu \nu}
$$

here $d P \equiv d^{3} p /\left[(2 \pi)^{3} E_{p}\right]$ and $\Delta^{\mu \nu}=\eta^{\mu \nu}-u^{\mu} u^{\nu}$.

- If system is in perfect local equilibrium, $f \rightarrow f_{e q}$ (with say $\left.f_{e q}=\exp (-(u \cdot p) / T)\right)$, then $T^{\mu \nu} \rightarrow T_{\text {ideal }}^{\mu \nu}, N^{\mu} \rightarrow N_{\text {ideal }}^{\mu}$.
- Off-equilibrium parts of conserved currents stem from $\delta f \equiv f-f_{\text {eq }}$.

IS-type hydrodynamics from kinetic theory

- The bulk viscous pressure and shear stress tensor are:

$$
\begin{align*}
\Pi & =-\frac{1}{3} \Delta_{\mu \nu} \int d P p^{\mu} p^{\nu} \delta f \tag{1}\\
\pi^{\mu \nu} & =\int d P p^{\langle\alpha} p^{\beta\rangle} \delta f \tag{2}
\end{align*}
$$

where $A^{\langle\mu \nu\rangle} \equiv \Delta_{\alpha \beta}^{\mu \nu} A^{\alpha \beta}$ with the double-symmetric, traceless, and orthogonal (to u^{μ}) projector defined as,

$$
\Delta_{\alpha \beta}^{\mu \nu}=\left(\Delta_{\alpha}^{\mu} \Delta_{\beta}^{\nu}+\Delta_{\beta}^{\mu} \Delta_{\alpha}^{\nu}\right) / 2-\Delta^{\mu \nu} \Delta_{\alpha \beta} / 3
$$

- Applying co-moving time derivative operator $\left(u^{\mu} \partial_{\mu}\right)$ on both sides of Eqs. $(1,2)$ and using the Boltzmann equation,

$$
p^{\mu} \partial_{\mu} f=C[f]
$$

one gets evolution equations for bulk and shear stresses.

IS-type hydrodynamics from kinetic theory

- For example, consider a massive Boltzmann gas. Also, take a simplistic collisional kernel given by the relaxation-time approximation (RTA) [Andersen \& Witting '74],

$$
C[f] \approx-\frac{u \cdot p}{\tau_{R}}\left(f-f_{e q}\right)
$$

here τ_{R} is the time scale for relaxation to local equilibrium.

- One then obtains a relaxation-type evolution of Π [Denicol et al. '12]:

$$
\begin{aligned}
\dot{\Pi}+\frac{\Pi}{\tau_{R}} & =-\alpha_{1} \theta+\alpha_{2} \Pi \theta+\alpha_{3} \pi^{\mu \nu} \sigma_{\mu \nu}+\frac{m^{2}}{3} \rho_{(-2)}^{\mu \nu} \sigma_{\mu \nu} \\
& +\frac{m^{2}}{3} \nabla_{\mu} \rho_{(-1)}^{\mu}+\frac{m^{4}}{9} \rho_{(-2)} \theta
\end{aligned}
$$

where $\alpha_{i}=\alpha_{i}(T, m)$.

- Standard definitions: $\dot{\Pi}=u^{\mu} \partial_{\mu} \Pi$ (time-derivative), $\theta=\partial_{\mu} u^{\mu}$ (expansion rate), $\nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu}$ (space-like derivative), velocity stress tensor $\sigma^{\mu \nu}=\Delta_{\alpha \beta}^{\mu \nu} \nabla^{\alpha} u^{\beta}$.

IS-type hydrodynamics from kinetic theory

- However, the equation,

$$
\begin{aligned}
\dot{\Pi}+\frac{\Pi}{\tau_{R}} & =-\alpha_{1} \theta+\alpha_{2} \Pi \theta+\alpha_{3} \pi^{\mu \nu} \sigma_{\mu \nu}+\frac{m^{2}}{3} \rho_{(-2)}^{\mu \nu} \sigma_{\mu \nu} \\
& +\frac{m^{2}}{3} \nabla_{\mu} \rho_{(-1)}^{\mu}+\frac{m^{4}}{9} \rho_{(-2)} \theta,
\end{aligned}
$$

is not closed due to couplings to $\rho-$ tensors.

- The ρ - tensors are non-hydrodynamic moments of f. For example,

$$
\begin{aligned}
& \rho_{(-1)}^{\mu} \equiv \Delta_{\alpha}^{\mu} \int d P(u \cdot p)^{-1} p^{\alpha} \delta f \\
& \rho_{(-2)}^{\mu \nu} \equiv \int d P(u \cdot p)^{-2} p^{\langle\mu} p^{\nu\rangle} \delta f
\end{aligned}
$$

- Similar feature exists for shear stress evolution equation.
- Needs truncation, i.e., to express δf in terms of quantities appearing in $T^{\mu \nu}$.

Standard truncation procedures

- Expanding $\delta f(x, p) \equiv f_{e q} \phi$ in powers of momenta. For example, Grad's '14-moment' expansion [Dusling, Teaney '08],

$$
\phi(x, p) \approx \frac{p^{\mu} p^{\nu}}{2(e+P) T^{2}}\left(\pi_{\mu \nu}+\frac{2}{5} \Pi \Delta_{\mu \nu}\right) .
$$

- δf motivated by Chapman-Enskog (CE) like expansion of a simplistic Boltzmann collisonal kernel [Bhalerao, Jaiswal et al. '14]:

$$
\phi(x, p) \approx-\frac{\beta}{3 \beta_{\Pi}}\left(3 c_{s}^{2}(u \cdot p)^{2}+p_{\langle\mu\rangle} p^{\langle\mu\rangle}\right) \frac{\Pi}{u \cdot p}+\frac{\beta}{2 \beta_{\pi}} \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{u \cdot p}
$$

where $p^{\langle\mu\rangle}=\Delta_{\alpha}^{\mu} p^{\alpha}$. The above two δf 's are linear in viscous stresses.

- Approximating $f(x, p)$ by an anisotropic ansatz [Romatschke and Strickland '03]:

$$
f(x, p) \approx f_{e q}\left(\frac{1}{\lambda} \sqrt{p_{\mu} p_{\nu} \bar{\Xi}^{\mu \nu}}\right), \Xi^{\mu \nu}=u^{\mu} u^{\nu}+\xi^{\mu \nu}-\Delta^{\mu \nu} \psi
$$

Why a new truncation scheme?

- Grad assumes δf to be quadratic in momenta (ad-hoc); Chapman-Enskog δf should not be valid far-from-equilibrium. Both become negative (unphysical) at large momenta. Resulting hydrodynamics breaks down in certain flow profiles.
- The aHydro ansatz does not become negative and can handle large shear deformations at early stages of heavy-ion collisions.
- But: its form is ad-hoc. Not possible to describe large negative bulk viscous pressures, especially, for small masses of particles.
- May not be the most suitable distribution to model arbitrary flow profiles.
- We want to implement a truncation scheme that (i) leads to a framework which may work both near and far from local equilibrium and ii) does not invoke uncontrolled assumptions about the microscopic physics.

The 'least-biased' distribution [E. Jaynes, Phys. Rev. 106, 620 (1957)]

- We want δf to be expressed solely in terms of quantities appearing in $T^{\mu \nu}$.
- The 'least-biased' distribution that uses all of, and only the information provided by $T^{\mu \nu}$ is one that maximizes the non-equilibrium entropy,

$$
\begin{aligned}
& s[f]=-\int d P(u \cdot p) \Phi[f], \quad \Phi[f] \equiv f \ln (f)-\frac{1+a f}{a} \ln (1+a f), \\
& (a=(-1,0,1) \text { for FD, MB, BE statistics }),
\end{aligned}
$$

- subject to constraints,

$$
\begin{aligned}
\int d P(u \cdot p)^{2} f & =e,-\frac{1}{3} \int d P p_{\langle\mu\rangle} p^{\langle\mu\rangle} f=P+\Pi \\
\int d P p^{\langle\mu} p^{\nu\rangle} f & =\pi^{\mu \nu}
\end{aligned}
$$

where $p^{\langle\mu} p^{\nu\rangle}=\Delta_{\alpha \beta}^{\mu \nu} p^{\alpha} p^{\beta}$.

The idea behind 'least-biasedness'

- Consider a system in a macrostate specified by (E, V, N). The system can be in a variety of microstates consistent with the macrostate.
- One may, in general, assign any probability distribution to these microstates.
- But, the probability distribution where all such microstates are assumed to be equally probable is the 'least-biased' one.
- Such a distribution also maximizes the Shannon (or information) entropy, $S=-\sum_{i} p_{i} \ln \left(p_{i}\right)$.

Lagrange's method of undetermined multipliers

- Introduce Lagrange multipliers,

$$
\begin{aligned}
s[f]= & -\int d P(u \cdot p) \Phi[f]+\Lambda\left[e-\int d P(u \cdot p)^{2} f\right] \\
& +\lambda_{\Pi}\left[P+\Pi+\frac{1}{3} \Delta_{\alpha \beta} \int d P p^{\alpha} p^{\beta} f\right] \\
& +\gamma_{\langle\alpha \beta\rangle}\left[\pi^{\alpha \beta}-\int d P p^{\langle\alpha} p^{\beta\rangle} f\right] .
\end{aligned}
$$

- Functional derivative w.r.t. $f: \frac{\delta s[f]}{\delta f}=0$.
- The solution for distribution function,

$$
f_{\mathrm{ME}}(x, p)=\left[\exp \left(\Lambda(u \cdot p)-\frac{\lambda_{\Pi}}{u \cdot p} p_{\langle\alpha\rangle} p^{\langle\alpha\rangle}+\frac{\gamma_{\langle\alpha \beta\rangle}}{u \cdot p} p^{\langle\alpha} p^{\beta\rangle}\right)-a\right]^{-1},
$$

- Note that in absence of information about dissipative fluxes, $f_{\mathrm{ME}} \rightarrow f_{\text {eq }}$.

A pleasant surprise

- Expand $f_{M E}$ around equilibrium:

$$
f_{M E} \approx f_{e q}\left[1-\left(c_{\lambda} \lambda_{\Pi}+c_{\mu \nu} \gamma^{\langle\mu \nu\rangle}\right)(u \cdot p)+\lambda_{\Pi} \frac{p_{\langle\mu\rangle} p^{\langle\mu\rangle}}{u \cdot p}-\gamma^{\langle\mu \nu\rangle} \frac{p_{\langle\mu} p_{\nu\rangle}}{u \cdot p}\right] .
$$

- Plug $\delta f_{M E}$ in definitions for shear and bulk,

$$
\pi^{\mu \nu}=\Delta_{\alpha \beta}^{\mu \nu} \int d P p^{\alpha} p^{\beta} \delta f_{M E}, \quad \Pi=-\frac{1}{3} \Delta_{\mu \nu} \int d P p^{\mu} p^{\nu} \delta f_{M E},
$$

and invert.

- $\delta f_{M E}$ to linear order in dissipative quantities,

$$
\delta f_{M E}=f_{e q}\left[\frac{\beta}{3 \beta_{\Pi}}\left(\left(1-3 c_{s}^{2}\right)(u \cdot p)^{2}-m^{2}\right) \frac{\Pi}{u \cdot p}+\frac{\beta}{2 \beta_{\pi}} \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{u \cdot p}\right] .
$$

- Solve RTA BE: $p^{\mu} \partial_{\mu} f=-(u \cdot p) \delta f / \tau_{R}$ in the small Knudsen number approximation (Chapman-Enskog like iteration); the $\delta f_{C E}$ obtained matches exactly with $\delta f_{M E}$! Mere coincidence?

Features of maximum-entropy distribution

- Positive-definite for all momenta.
- Non-linear dependence on ($\Pi, \pi^{\mu \nu}$); exact matching to $T^{\mu \nu}$ for entire range of viscous stresses allowed by kinetic theory.
- Reduces to linearized Chapman-Enskog δf of Boltzmann eq. in the relaxation-time approximation for weak dissipative stresses.
- Can be systematically improved by adding information of higher-order moments via other Lagrange multipliers.

Application I: Bjorken flow [J.D. Bjorken, PRD, 27, 140 (1983)]

- Bjorken flow is valid during the early stages of ultra-relativistic heavy-ion collisions.
- The fluid is assumed to be homogeneous in $(x-y)$ direction.
- The medium expands boost-invariantly along beam ($z-$) direction:

$$
v^{x}=0, v^{y}=0, v^{z}=z / t
$$

- Switch to Milne coordinates $\left(\tau, x_{\perp}, \phi, \eta_{s}\right)$ where $\tau \equiv \sqrt{t^{2}-z^{2}}$, and $\eta_{s} \equiv \tanh ^{-1}(z / t)$.
- Fluid appears static, $u^{\mu}=(1,0,0,0)$. However, has finite expansion rate, $\theta=1 / \tau$.

Consequences of Bjorken symmetries

- $T^{\mu \nu}=\operatorname{diag}\left(e, P_{T}, P_{T}, P_{L}\right)$, has 3 independent variables where $P_{T}=P+\Pi+\pi / 2, P_{L}=P+\Pi-\pi$. All functions depend only on proper time τ.
- Bjorken symmetries constrain phase-space dependence of distribution: $f(x, p)=f\left(\tau ; p_{T}, p_{\eta}\right)$ [Baym '84, Florkowski, Strickland et al. '13, '14].
- The maximum-entropy distribution has 3 Lagrange parameters:

$$
f_{\mathrm{ME}}=\exp \left(-\Lambda p^{\tau}-\frac{\lambda_{\Pi}}{p^{\tau}}\left(p_{T}^{2}+p_{\eta}^{2}\right)-\frac{\gamma\left(p_{T}^{2} / 2-p_{\eta}^{2}\right)}{p^{\tau}}\right)
$$

where $p^{\tau}=\sqrt{p_{T}^{2}+p_{\eta}^{2}+m^{2}}$.

Bjorken flow: evolution equations

- As before, consider a simplified RTA Boltzmann collisional kernel,

$$
\frac{\partial f}{\partial \tau}=-\frac{1}{\tau_{R}}\left(f-f_{e q}\right)
$$

and use it to obtain the evolution of energy and effective pressures:

$$
\begin{aligned}
\frac{d e}{d \tau} & =-\frac{e+P_{L}}{\tau}, \quad \text { where } e=\int d P\left(p^{\tau}\right)^{2} f, \\
\frac{d P_{L}}{d \tau} & =-\frac{P_{L}-P}{\tau_{R}}+\frac{\bar{\zeta}_{z}^{L}}{\tau}, \quad \frac{d P_{T}}{d \tau}=-\frac{P_{T}-P}{\tau_{R}}+\frac{\bar{\zeta}_{z}^{\perp}}{\tau}
\end{aligned}
$$

- The couplings $\bar{\zeta}_{z}^{L}$ and $\bar{\zeta}_{z}^{\perp}$ involve non-hydro moments:

$$
\bar{\zeta}_{z}^{L}=-3 P_{L}+\int d P\left(p^{\tau}\right)^{-2} p_{\eta}^{4} f, \quad \bar{\zeta}_{z}^{\perp}=-P_{T}+\frac{1}{2} \int d P\left(p^{\tau}\right)^{-2} p_{\eta}^{2} p_{T}^{2} f,
$$

- To truncate, we replace $f \rightarrow f_{\text {ME }}$. This makes $\bar{\zeta}_{z}^{L}$ and $\bar{\zeta}_{z}^{\perp}$ functions of (e, P_{L}, P_{T}). Now, solve 3 equations; same complexity as hydro.

Case I: conformal dynamics (manuscript in preparation)

- In conformal case, $e=3 P, \Pi=0$, and $\tau_{R}=5(\eta / s) / T$.

- Good agreement between Max-Ent truncated BE and exact solution of BE even far-off-equilibrium.
- At late times, $\operatorname{slope}(\Lambda) \approx \operatorname{slope}(1 / T)$, and anisotropy $\gamma \rightarrow 0$.
- Evolution of Lagrange parameters:

Case Ila: non-conformal CE hydro [s. Jaiswal, c.c., et al. '22]

- CE hydrodynamics not in good agreement for shear and bulk inverse Reynolds numbers far-off-equilibrium.
- Can generate dissipative stresses outside the domain allowed by KT :

does not describe early-time universality in P_{L} / P.

Case IIb: Max-Ent truncated kinetic theory (in preparation)

- Max-Ent truncated kinetic theory provides good agreement for shear and bulk inverse Reynolds numbers throughout evolution.
- Generates dissipative stresses within domain allowed by KT .

Accurately describes early-time universality in P_{L} / P.

Evolution of Lagrange parameters (in preparation)

- In far-offequilibrium regimes, $\Lambda<0$!
- Should not be identified with
\sim inverse temperature at early times.
- At late times, $\Lambda>0$ and $\left(\lambda_{\Pi}, \gamma\right) \rightarrow 0$.

- The quantity $\sigma \equiv \Lambda+\lambda_{\Pi}-|\min (\gamma / 2,-\gamma)|$ is positive definite.
- Ensures $f_{M E}(\vec{p}) \rightarrow 0$ at large momenta.

Large negative bulk pressure and $\Lambda<0$

- The total isotropic pressure P_{r} is,

$$
P+\Pi=\frac{1}{3} \int d P \vec{p}^{2} f
$$

- $\Pi \sim-P$ can be attained by populating low momentum states with large number of particles, $f \sim A \delta(|\vec{p}|) / \vec{p}^{2}$.
- At low momenta $f_{\mathrm{ME}} \approx \exp (-\wedge m)$. Enhancement of occupation in low momentum modes is facilitated by $\Lambda<0$.
- The aHydro ansatz, $f_{a}=\exp \left(-\sqrt{p_{T}^{2} / \alpha_{T}^{2}+p_{\eta}^{2} / \alpha_{L}^{2}+m^{2}} / \lambda\right)$, cannot generate $\Pi \sim-P$ for $m / T \lesssim 1$; requires the introduction of a fugacity factor [C.C., S. Jaiswal et al, PLB 2020].

Application II: Gubser Flow [s.S. Gubser, PRD, 82, 085027 (2010)]

- Gubser flow is longitudinally boost-invariant: $v^{z}=z / t$, and has $u^{\phi}=0$. But it has transverse dynamics: $u^{r}(x) \neq 0$.
- Re-scale metric, $d s^{2} \rightarrow d \hat{s}^{2}=d s^{2} / \tau^{2}$, followed by coordinate transform: $(\tau, r, \phi, \eta) \rightarrow(\rho, \theta, \phi, \eta)$,

$$
\rho=-\sinh ^{-1}\left(\frac{1-q^{2} \tau^{2}+q^{2} r^{2}}{2 q \tau}\right), \theta=\tan ^{-1}\left(\frac{2 q r}{1+q^{2} \tau^{2}-q^{2} r^{2}}\right),
$$

such that $\hat{u}^{\mu}=(1,0,0,0)$.
Weyl rescaled unitless quantities,

$$
\begin{aligned}
e(\tau, r) & =\frac{\hat{e}(\rho)}{\tau^{4}}, \\
\pi_{\mu \nu}(\tau, r) & =\frac{1}{\tau^{2}} \frac{\partial \hat{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial \hat{x}^{\beta}}{\partial x^{\nu}} \hat{\pi}_{\alpha \beta}(\rho) .
\end{aligned}
$$

Du et al. [2019]

Evolution equations: Gubser flow

- The evolution of two independent components (\hat{e}, \hat{P}_{T}) are given by:

$$
\begin{aligned}
\frac{d \hat{e}}{d \rho} & =-2 \tanh \rho\left(\hat{e}+\hat{P}_{T}\right) \\
\frac{d \hat{P}_{T}}{d \rho} & =-\frac{1}{\hat{\tau}_{R}}\left(\hat{P}_{T}-\hat{P}\right)-2 \tanh \rho \hat{\zeta}^{\perp}, \text { where } \hat{\tau}_{R}=\frac{5(\eta / s)}{\hat{T}}
\end{aligned}
$$

- Similar to the Bjorken case, the equations are not closed:

$$
\hat{\zeta}^{\perp}=2 \hat{P}_{T}-\frac{1}{4} \int d \hat{P}\left(\hat{p}^{\rho}\right)^{-2}\left(\frac{\hat{p}_{\Omega}}{\cosh \rho}\right)^{4} f
$$

here $\hat{p}_{\Omega}=\sqrt{\hat{p}_{\theta}^{2}+\hat{p}_{\phi}^{2} / \sin ^{2} \theta}$ and $\hat{p}^{\rho}=\sqrt{\hat{p}_{\Omega}^{2} / \cosh ^{2} \rho+\hat{p}_{\eta}^{2}}$.

- As before, we truncate by replacing $f \rightarrow f_{\mathrm{ME}}$:

$$
f_{\mathrm{ME}}=\exp \left(-\hat{\Lambda} \hat{p}^{\rho}-\frac{\hat{\gamma}}{\hat{p}^{\rho}}\left(\frac{\hat{p}_{\Omega}^{2}}{\cosh ^{2} \rho}-\hat{p}_{\eta}^{2}\right)\right)
$$

Results: Breakdown of CE hydrodynamics I

- Evolution of normalised shear and pressure anisotropy using second-order CE hydro (identical to Denicol et al. or DNMR):

- Rapid transverse expansion in Gubser flow at late times prevents system from thermalizing; fluid approaches transverse free-streaming: $\hat{P}_{T} \rightarrow 0$; not described by CE hydro.
- Second-order CE and DNMR yield negative \hat{P}_{L} and \hat{P}_{T}.

Results: Breakdown of CE hydrodynamics II

- Evolution of normalised shear and pressure anisotropy using third-order CE hydro [C.C., Heinz, et al. '18]:

- Third-order CE yields incorrect asymptotic value of $\hat{\pi} /(4 \hat{P}) \approx-0.4$.
- For initialisations $\hat{\pi} /(4 \hat{P}) \lesssim-0.4$, third-order CE equations become numerically unstable.

Results: Max-Ent truncated BE (in preparation)

- Evolution of shear inverse Reynolds number and pressure anisotropy using Max-Ent truncated kinetic theory:

- Max-Ent truncated BE correctly describes both longitudinal ($\hat{\bar{\pi}} \approx 0.25$) and transverse free-streaming ($\hat{\bar{\pi}} \approx-0.5$) domains.

Conclusions

- In order to derive macroscopic evolution equations from a Boltzmann equation, we propose a 'least-biased' distribution function to truncate the infinite tower of moment equations.
- This scheme does not introduce ad-hoc assumptions about the microscopic physics or the flow profile being modeled; uses information contained only within the hydrodynamic moments of the distribution function.
- Relaxation-type dynamics obtained with this procedure was shown to accurately predict the kinetic theory evolution of $T^{\mu \nu}$ in both free-streaming and hydrodynamic regimes for certain flow profiles.
- The description of $T^{\mu \nu}$ within this approach for flow profiles with less restricted symmetries remains to be seen.

Backup Slide 1: Applicability of classical kinetic theory [Jeon

and Heinz, arXiv:1503.03931 (2015)]

- Hydro formulated as a series in velocity gradients: $\pi^{i j} \sim \eta \partial^{i} v^{j}, \Pi \sim-\zeta \partial \cdot v$.
- Three scales: Two microscopic: $I_{m f p} \sim 1 /(\sigma v n)$, thermal wavelength $I_{\text {th }} \sim 1 / T$, one macroscopic $1 / L \sim \partial \cdot u$.
- $I_{m f p} / I_{t h} \sim \eta / s, \zeta / s, T \kappa / s$
- Hydro applicable whenever microscopic and macroscopic scales are well-separated: $I_{m f p} \partial \cdot u \equiv K n<1$
- Dilute gas regime: $I_{m f p} / I_{t h} \sim \eta / s \gg 1$; Weakly coupled regime, Boltzmann equation applicable (on-shell particles).
- Dense gas regime: $\eta / s \sim 1$; quasi-particle description in terms of Wigner functions.
- Liquid regime: $\eta / s \ll 1$; strong-coupling regime, no valid kinetic description.

Backup slide 2: Lagrange multipliers of ME distribution

- 7 Lagrange parameters $\left(\Lambda, \lambda_{\Pi}, \gamma_{\langle\mu \nu\rangle}\right) \Longrightarrow 7$-d inversion problem; numerically expensive.
- However, matching condition implies that shear matrix $\boldsymbol{\pi} \equiv \pi_{\text {LRF }}^{i j}$ is a power-series in $\gamma \equiv \gamma_{\text {LRF }}^{i j} \Longrightarrow[\pi, \gamma]=0$; simultaneously diagonalizable by spatial rotation.
- 3 of 5 d.o.f's of $\gamma^{i j}$ fixed using common eigenvectors of $\pi^{i j}$; 4-d inversion problem.

Backup 3: Simplifying the non-linear problem

- The full (non-linear) problem requires an inversion for 7 parameters ($\Lambda, \lambda, \gamma_{\alpha \beta}$): numerically intractable.
- To match shear stress tensor,

$$
\pi^{i j}=\Delta_{k l}^{i j} \int d P p^{k} p^{\prime} \exp \left(-\Lambda E_{p}-\frac{\lambda_{0}}{E_{p}} p^{2}\right) \exp \left(-\frac{\gamma_{r s} p^{r} p^{s}}{E_{p}}\right)
$$

- We show,

$$
\begin{gathered}
\pi=\Gamma-\frac{1}{3} / \operatorname{tr}(\Gamma), \\
\tilde{c}_{1} \gamma-\tilde{c}_{2} \gamma^{2}+\tilde{c}_{3} \gamma^{3}-\tilde{c}_{4} \gamma^{4}+\cdots \equiv \Gamma,
\end{gathered}
$$

- The shear tensor and $\gamma^{i j}$ commute, $[\pi, \gamma]=0$; Simultaneously diagonalizable.

Backup 4: Simplifying the non-linear problem

- $\pi^{i j}$ is symmetric; has real eigenvalues and admits orthogonal eigenvectors (can be diagonalised by spatial rotation, $\pi_{D}=R^{T} \pi R$).
- Diagonalise π; This diagonalises γ as well.
- Essentially, 3 of 5 independent degrees of freedom in the matrix γ can be fixed using the (common) eigenvectors of $\pi^{i j}$.
- Only two-dimensional root finding required to obtain $\gamma_{D}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2},-\left(\gamma_{1}+\gamma_{2}\right)\right)$ in terms of eigenvalues of $\pi^{i j}$.
- This property greatly simplifies the problem numerically.

Backup 4: Non-equilibrium entropy

- The canonical entropy $S=-\sum_{i} p_{i} \ln \left(p_{i}\right)$ for a continuous distribution:

$$
S=-\int \frac{d^{3 N} x d^{3 N} p}{N!} \rho \ln (\rho),
$$

where,

$$
\rho\left(x_{1}, \cdots, x_{N}, p_{1}, \cdots, p_{N}\right)=\frac{\exp \left(-\beta H_{N}\left(x_{1}, \cdots, x_{N}, p_{1}, \cdots, p_{N}\right)\right)}{Z(T, V, N)}
$$

- Due to weak interaction,

$$
H_{N}=\sum_{i} H_{i}, \quad Z(T, V, N)=Z(T, V, 1)^{N}=V^{N} n^{N} / N!,
$$

where n is number density. Thus,

$$
S=-\frac{\beta V^{N}}{Z(T, V, 1)^{N}} \int d^{3 N_{p}} p H(p) \exp (-\beta H(p))-\ln (Z(T, V, N))
$$

Backup 5: Non-equilibrium entropy

- For large $\mathrm{N}, \ln (Z(T, V, N)) \approx N$. Thus,

$$
S=V \int d^{3} p\left(\beta H(p) f_{e q}+f_{e q}\right)
$$

and the entropy density:

$$
s=-\int d^{3} p f_{e q}\left(\ln \left(f_{e q}\right)-1\right) .
$$

- Out of equilibrium, replace $f_{e q} \rightarrow f$. Relativistic version,

$$
s=-\int d P(u \cdot p) f(\ln (f)-1) .
$$

Backup 6: Conformal Hydrodynamics [R. Loganayagam,

- Equations of hydro are Lorentz covariant: admits rotationally and boost-invariant solutions.
- Hydro equations also have conformal invariance: should admit conformally invariant solutions.
- Under a conformal transformation $g_{\mu \nu} \rightarrow \tilde{g}_{\mu \nu}=e^{-2 \phi} g_{\mu \nu}$
- Weyl covariant derivative $\mathcal{D}_{\mu} T^{\mu \nu} \rightarrow e^{-w \phi} \tilde{\mathcal{D}}_{\mu} \tilde{T}^{\mu \nu}$ if $T^{\mu \nu} \rightarrow e^{-w \phi} \tilde{T}^{\mu \nu}$
- Using definition of \mathcal{D} one can show

$$
\mathcal{D}_{\mu} T^{\mu \nu}=d_{\mu} T^{\mu \nu}+A^{\nu} T_{\mu}^{\mu}
$$

where $A^{\mu}=\dot{u}^{\mu}-(\theta / 3) u^{\mu}$

- Hydro equations are conformal if $T_{\mu}^{\mu}=m^{2} \int d P f=0$.

Backup 7: Gubser symmetries [s.S. Gubser, PRD, 82, 085027 (2010)]

- Instead of translational invariance (whose generators are $\xi_{i}=\frac{\partial}{\partial x^{i}}$), Gubser uses invariance under the group $S O(3)_{q}$ whose generators are $\partial / \partial \phi, \partial / \partial \eta$, and

$$
\xi_{i}=\frac{\partial}{\partial x^{i}}+q^{2}\left[2 x^{i} x^{\mu} \frac{\partial}{\partial x^{\mu}}-x^{\mu} x_{\mu} \frac{\partial}{\partial x^{i}}\right], \quad(i=1,2)
$$

$1 / q \approx$ transverse size

- These generators are easy to understand in $d S_{3} \times R$

$$
d \hat{s}^{2} \equiv \frac{d s^{2}}{\tau^{2}}=d \rho^{2}-\cosh ^{2} \rho\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-d \eta^{2}
$$

where they correspond to rotations in (θ, ϕ) :

$$
\rho=-\sinh ^{-1}\left(\frac{1-q^{2} \tau^{2}+q^{2} r^{2}}{2 q \tau}\right), \theta=\tan ^{-1}\left(\frac{2 q r}{1+q^{2} \tau^{2}-q^{2} r^{2}}\right),
$$

- The only time-like four vector invariant under these transformations $[\xi, \hat{u}]=0$ is $\hat{u}^{\mu}=(1,0,0,0)$.

