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Introduction

(Figure by Steffen A. Bass)
▶ Traditional hydro: Description using macroscopic variables

(T , µ, uµ) and their gradients accompanied by transport coefficients
(η, ζ, σ). Should be distinguished from Israel-Stewart type hydro
(Jaiswal’s talk yesterday).

▶ IS-type hydro [Muller ’67, Israel, Stewart ’76] is remarkably successful in
describing intermediate stages of heavy-ion collisions [Heinz et al.,

Romatschke et al., Dusling and Teaney, Song et al., and several others].

▶ IS-type hydro derived from kinetic theory works even
far-from-equilibrium [Heller et al., Romatschke, Strickland, Noronha, and

others]. However, applicability sensitive to truncation scheme of
moment-equations. How to choose an appropriate truncation
procedure?

Chandrodoy Chattopadhyay ET-HCVM, 2023 2



IS-type hydrodynamics from kinetic theory

▶ Consider a system of weakly interacting classical particles;
description via kinetic theory using phase-space distribution
function, f (x , p).

▶ Evolution of f (x , p) is governed by Boltzmann equation,

pµ∂µf = C [f ],

where the collisional kernel C [f ] denotes interactions.

▶ Conserved curents (Tµν ,Nµ) appearing in hydro are moments of
f (x , p). For example,

Tµν(x) ≡
∫

dP pµ pν f (x , p) = e uµuν − (P +Π)∆µν + πµν ;

here dP ≡ d3p/[(2π)3Ep] and ∆µν = ηµν − uµuν .

▶ If system is in perfect local equilibrium, f → feq (with say
feq = exp(−(u · p)/T )), then Tµν → Tµν

ideal , N
µ → Nµ

ideal .

▶ Off-equilibrium parts of conserved currents stem from δf ≡ f − feq.
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IS-type hydrodynamics from kinetic theory

▶ The bulk viscous pressure and shear stress tensor are:

Π = −1

3
∆µν

∫
dP pµ pν δf , (1)

πµν =

∫
dP p⟨α pβ⟩ δf , (2)

where A⟨µν⟩ ≡ ∆µν
αβ A

αβ with the double-symmetric, traceless, and
orthogonal (to uµ) projector defined as,

∆µν
αβ = (∆µ

α∆
ν
β +∆µ

β∆
ν
α)/2−∆µν∆αβ/3

▶ Applying co-moving time derivative operator (uµ∂µ) on both sides
of Eqs. (1, 2) and using the Boltzmann equation,

pµ∂µf = C [f ],

one gets evolution equations for bulk and shear stresses.
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IS-type hydrodynamics from kinetic theory

▶ For example, consider a massive Boltzmann gas. Also, take a
simplistic collisional kernel given by the relaxation-time
approximation (RTA) [Andersen & Witting ’74],

C [f ] ≈ −u · p
τR

(f − feq) ;

here τR is the time scale for relaxation to local equilibrium.

▶ One then obtains a relaxation-type evolution of Π [Denicol et al. ’12]:

Π̇ +
Π

τR
= −α1 θ + α2 Π θ + α3 π

µν σµν +
m2

3
ρµν(−2) σµν

+
m2

3
∇µ ρ

µ
(−1) +

m4

9
ρ(−2) θ,

where αi = αi (T ,m).

▶ Standard definitions: Π̇ = uµ∂µΠ (time-derivative), θ = ∂µu
µ

(expansion rate), ∇µ = ∆µν ∂ν (space-like derivative), velocity

stress tensor σµν = ∆µν
αβ∇αuβ .
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IS-type hydrodynamics from kinetic theory

▶ However, the equation,

Π̇ +
Π

τR
= −α1 θ + α2 Π θ + α3 π

µν σµν +
m2

3
ρµν(−2) σµν

+
m2

3
∇µ ρ

µ
(−1) +

m4

9
ρ(−2) θ,

is not closed due to couplings to ρ− tensors.

▶ The ρ− tensors are non-hydrodynamic moments of f . For example,

ρµ(−1) ≡ ∆µ
α

∫
dP (u · p)−1 pα δf ,

ρµν(−2) ≡
∫

dP (u · p)−2 p⟨µ pν⟩ δf ,

▶ Similar feature exists for shear stress evolution equation.

▶ Needs truncation, i.e., to express δf in terms of quantities appearing
in Tµν .
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Standard truncation procedures

▶ Expanding δf (x , p) ≡ feq ϕ in powers of momenta. For example,
Grad’s ‘14-moment’ expansion [Dusling, Teaney ’08],

ϕ(x , p) ≈ pµpν

2(e + P)T 2

(
πµν +

2

5
Π∆µν

)
.

▶ δf motivated by Chapman-Enskog (CE) like expansion of a
simplistic Boltzmann collisonal kernel [Bhalerao, Jaiswal et al. ’14]:

ϕ(x , p) ≈ − β

3βΠ

(
3c2s (u · p)2 + p⟨µ⟩p

⟨µ⟩
) Π

u · p
+

β

2βπ

pµpνπ
µν

u · p
,

where p⟨µ⟩ = ∆µ
α pα. The above two δf ’s are linear in viscous

stresses.

▶ Approximating f (x , p) by an anisotropic ansatz [Romatschke and

Strickland ’03]:

f (x , p) ≈ feq

(
1

λ

√
pµ pν Ξµν

)
, Ξµν = uµuν + ξµν −∆µν ψ
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Why a new truncation scheme?

▶ Grad assumes δf to be quadratic in momenta (ad-hoc);
Chapman-Enskog δf should not be valid far-from-equilibrium. Both
become negative (unphysical) at large momenta. Resulting
hydrodynamics breaks down in certain flow profiles.

▶ The aHydro ansatz does not become negative and can handle large
shear deformations at early stages of heavy-ion collisions.

▶ But: its form is ad-hoc. Not possible to describe large negative
bulk viscous pressures, especially, for small masses of particles.

▶ May not be the most suitable distribution to model arbitrary
flow profiles.

▶ We want to implement a truncation scheme that (i) leads to a

framework which may work both near and far from local equilibrium

and ii) does not invoke uncontrolled assumptions about the

microscopic physics.
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The ‘least-biased’ distribution [E. Jaynes, Phys. Rev. 106, 620 (1957)]

▶ We want δf to be expressed solely in terms of quantities appearing
in Tµν .

▶ The ‘least-biased’ distribution that uses all of, and only the
information provided by Tµν is one that maximizes the
non-equilibrium entropy,

s[f ] = −
∫

dP (u · p) Φ[f ], Φ[f ] ≡ f ln(f )− 1 + a f

a
ln(1 + a f ),

(a = (−1, 0, 1) for FD, MB, BE statistics),

▶ subject to constraints,∫
dP (u · p)2 f = e, −1

3

∫
dP p⟨µ⟩p

⟨µ⟩ f = P +Π,∫
dP p⟨µpν⟩ f = πµν ,

where p⟨µpν⟩ = ∆µν
αβ p

α pβ .
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The idea behind ‘least-biasedness’

▶ Consider a system in a macrostate specified by (E ,V ,N). The
system can be in a variety of microstates consistent with the
macrostate.

▶ One may, in general, assign any probability distribution to these
microstates.

▶ But, the probability distribution where all such microstates are
assumed to be equally probable is the ‘least-biased’ one.

▶ Such a distribution also maximizes the Shannon (or information)
entropy, S = −

∑
i pi ln(pi ).
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Lagrange’s method of undetermined multipliers

▶ Introduce Lagrange multipliers,

s[f ] =−
∫

dP (u · p) Φ[f ] + Λ

[
e −

∫
dP (u · p)2 f

]
+ λΠ

[
P +Π+

1

3
∆αβ

∫
dP pα pβ f

]
+ γ⟨αβ⟩

[
παβ −

∫
dP p⟨αpβ⟩f

]
.

▶ Functional derivative w.r.t. f : δs[f ]
δf = 0.

▶ The solution for distribution function,

fME(x , p) =
[
exp

(
Λ
(
u · p

)
− λΠ

u · p
p⟨α⟩p

⟨α⟩ +
γ⟨αβ⟩

u · p
p⟨αpβ⟩

)
− a

]−1

,

▶ Note that in absence of information about dissipative fluxes,
fME → feq.
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A pleasant surprise

▶ Expand fME around equilibrium:

fME ≈ feq
[
1−

(
cλλΠ+cµνγ

⟨µν⟩)(u · p)+λΠ p⟨µ⟩p⟨µ⟩
u · p

−γ⟨µν⟩
p⟨µpν⟩
u · p

]
.

▶ Plug δfME in definitions for shear and bulk,

πµν = ∆µν
αβ

∫
dP pα pβ δfME , Π = −1

3
∆µν

∫
dP pµ pν δfME ,

and invert.

▶ δfME to linear order in dissipative quantities,

δfME = feq

[
β

3βΠ

(
(1−3c2s )(u · p)2 −m2

) Π

u · p
+

β

2βπ

pµpνπ
µν

u · p

]
.

▶ Solve RTA BE: pµ∂µf = −(u · p)δf /τR in the small Knudsen

number approximation (Chapman-Enskog like iteration); the δfCE
obtained matches exactly with δfME ! Mere coincidence?
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Features of maximum-entropy distribution

▶ Positive-definite for all momenta.

▶ Non-linear dependence on (Π, πµν); exact matching to Tµν for
entire range of viscous stresses allowed by kinetic theory.

▶ Reduces to linearized Chapman-Enskog δf of Boltzmann eq. in the
relaxation-time approximation for weak dissipative stresses.

▶ Can be systematically improved by adding information of
higher-order moments via other Lagrange multipliers.
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Application I: Bjorken flow [J.D. Bjorken, PRD, 27, 140 (1983)]

▶ Bjorken flow is valid during the early stages of ultra-relativistic
heavy-ion collisions.

▶ The fluid is assumed to be homogeneous in (x − y) direction.

▶ The medium expands boost-invariantly along beam (z−) direction:
v x = 0, v y = 0, v z = z/t.

▶ Switch to Milne coordinates
(τ, x⊥, ϕ, ηs) where τ ≡

√
t2 − z2, and

ηs ≡ tanh−1(z/t).

▶ Fluid appears static, uµ = (1, 0, 0, 0).

However, has finite expansion rate,

θ = 1/τ .
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Consequences of Bjorken symmetries

▶ Tµν = diag(e,PT ,PT ,PL), has 3 independent variables where
PT = P +Π+ π/2, PL = P +Π− π. All functions depend only on
proper time τ .

▶ Bjorken symmetries constrain phase-space dependence of
distribution: f (x , p) = f (τ ; pT , pη) [Baym ’84, Florkowski, Strickland et

al. ’13, ’14].

▶ The maximum-entropy distribution has 3 Lagrange parameters:

fME = exp
(
−Λpτ − λΠ

pτ
(
p2T + p2η

)
−
γ
(
p2T/2− p2η

)
pτ

)
,

where pτ =
√
p2T + p2η +m2.
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Bjorken flow: evolution equations

▶ As before, consider a simplified RTA Boltzmann collisional kernel,

∂f

∂τ
= − 1

τR
(f − feq) ,

and use it to obtain the evolution of energy and effective pressures:

de

dτ
= −e + PL

τ
, where e =

∫
dP (pτ )2 f ,

dPL

dτ
= −PL − P

τR
+
ζ̄Lz
τ
,

dPT

dτ
= −PT − P

τR
+
ζ̄⊥z
τ

▶ The couplings ζ̄Lz and ζ̄⊥z involve non-hydro moments:

ζ̄Lz = −3PL +

∫
dP (pτ )−2 p4η f , ζ̄⊥z = −PT +

1

2

∫
dP (pτ )−2 p2η p2T f ,

▶ To truncate, we replace f → fME. This makes ζ̄Lz and ζ̄⊥z functions
of (e,PL,PT ). Now, solve 3 equations; same complexity as hydro.
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Case I: conformal dynamics (manuscript in preparation)

▶ In conformal case, e = 3P, Π = 0, and τR = 5(η/s)/T .
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P

)
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Navier-Stokes

conformal

dashed: Max-Ent

▶ Good agreement between Max-Ent
truncated BE and exact solution of BE
even far-off-equilibrium.

▶ At late times, slope(Λ) ≈ slope(1/T ),

and anisotropy γ → 0.

▶ Evolution of Lagrange parameters:
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Case IIa: non-conformal CE hydro [S. Jaiswal, C.C., et al. ’22 ]
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▶ CE hydrodynamics not in good

agreement for shear and bulk inverse

Reynolds numbers far-off-equilibrium.

▶ Can generate dissipative stresses outside the

domain allowed by KT:
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does not describe early-time universality in PL/P.
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Case IIb: Max-Ent truncated kinetic theory (in preparation)
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▶ Max-Ent truncated kinetic theory

provides good agreement for shear and

bulk inverse Reynolds numbers

throughout evolution.

▶ Generates dissipative stresses within domain

allowed by KT.
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Accurately describes early-time universality in

PL/P.
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Evolution of Lagrange parameters (in preparation)

▶ In far-off-
equilibrium
regimes, Λ < 0!

▶ Should not be
identified with
∼ inverse
temperature at
early times.

▶ At late times,

Λ > 0 and

(λΠ, γ) → 0.
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▶ The quantity σ ≡ Λ + λΠ − |min(γ/2,−γ)| is positive definite.

▶ Ensures fME (p⃗) → 0 at large momenta.
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Large negative bulk pressure and Λ < 0

▶ The total isotropic pressure Pr is,

P +Π =
1

3

∫
dP p⃗2 f

▶ Π ∼ −P can be attained by populating low momentum states with
large number of particles, f ∼ A δ(|p⃗|)/p⃗2.

▶ At low momenta fME ≈ exp(−Λm). Enhancement of occupation in
low momentum modes is facilitated by Λ < 0.

▶ The aHydro ansatz, fa = exp(−
√
p2T/α

2
T + p2η/α

2
L +m2/λ), cannot

generate Π ∼ −P for m/T ≲ 1; requires the introduction of a
fugacity factor [C.C., S. Jaiswal et al, PLB 2020].
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Application II: Gubser Flow [S.S. Gubser, PRD, 82, 085027 (2010)]

▶ Gubser flow is longitudinally boost-invariant: v z = z/t, and has
uϕ = 0. But it has transverse dynamics: ur (x) ̸= 0.

▶ Re-scale metric, ds2 → dŝ2 = ds2/τ 2, followed by coordinate
transform: (τ, r , ϕ, η) → (ρ, θ, ϕ, η),

ρ = − sinh−1

(
1− q2τ 2 + q2r2

2qτ

)
, θ = tan−1

(
2qr

1 + q2τ 2 − q2r2

)
,

such that ûµ = (1, 0, 0, 0).

Weyl rescaled unitless
quantities,

e(τ, r) =
ê(ρ)

τ 4
,

πµν(τ, r) =
1

τ 2
∂x̂α

∂xµ
∂x̂β

∂xν
π̂αβ(ρ).

Du et al. [2019]
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Evolution equations: Gubser flow

▶ The evolution of two independent components (ê, P̂T ) are given by:

dê

dρ
= −2 tanh ρ

(
ê + P̂T

)
,

dP̂T

dρ
= − 1

τ̂R

(
P̂T − P̂

)
− 2 tanh ρ ζ̂⊥, where τ̂R =

5(η/s)

T̂
.

▶ Similar to the Bjorken case, the equations are not closed:

ζ̂⊥ = 2 P̂T − 1

4

∫
dP̂ (p̂ρ)−2

(
p̂Ω

cosh ρ

)4

f ;

here p̂Ω =
√
p̂2θ + p̂2ϕ/ sin

2 θ and p̂ρ =
√
p̂2Ω/ cosh

2 ρ+ p̂2η.

▶ As before, we truncate by replacing f → fME:

fME = exp

(
−Λ̂ p̂ρ − γ̂

p̂ρ

(
p̂2Ω

cosh2 ρ
− p̂2η

))
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Results: Breakdown of CE hydrodynamics I

▶ Evolution of normalised shear and pressure anisotropy using

second-order CE hydro (identical to Denicol et al. or DNMR):
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red: CE-hydro (2nd-order)

▶ Rapid transverse expansion in Gubser flow at late times prevents
system from thermalizing; fluid approaches transverse
free-streaming : P̂T → 0; not described by CE hydro.

▶ Second-order CE and DNMR yield negative P̂L and P̂T .
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Results: Breakdown of CE hydrodynamics II

▶ Evolution of normalised shear and pressure anisotropy using

third-order CE hydro [C.C., Heinz, et al. ’18]:
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▶ Third-order CE yields incorrect asymptotic value of π̂/(4P̂) ≈ −0.4.

▶ For initialisations π̂/(4P̂) ≲ −0.4, third-order CE equations become

numerically unstable.
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Results: Max-Ent truncated BE (in preparation)

▶ Evolution of shear inverse Reynolds number and pressure anisotropy

using Max-Ent truncated kinetic theory:

-10 -5 0 5 10
ρ

-0.4

-0.2

0

0.2

^ π
/(

4
^ P

)

4π η/s = 10

4π η/s = 3

4π η/s = 1

-10 -5 0 5 10
ρ

10
-3

10
-1

10
0

10
1

10
3

^ P
L
/^  P

T

green: RTA Boltzmann

blue: Max-Ent

▶ Max-Ent truncated BE correctly describes both longitudinal
(ˆ̄π ≈ 0.25) and transverse free-streaming (ˆ̄π ≈ −0.5) domains.
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Conclusions

▶ In order to derive macroscopic evolution equations from a
Boltzmann equation, we propose a ‘least-biased’ distribution
function to truncate the infinite tower of moment equations.

▶ This scheme does not introduce ad-hoc assumptions about the
microscopic physics or the flow profile being modeled; uses
information contained only within the hydrodynamic moments of
the distribution function.

▶ Relaxation-type dynamics obtained with this procedure was shown
to accurately predict the kinetic theory evolution of Tµν in both
free-streaming and hydrodynamic regimes for certain flow profiles.

▶ The description of Tµν within this approach for flow profiles with
less restricted symmetries remains to be seen.
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Backup Slide 1: Applicability of classical kinetic theory [Jeon

and Heinz, arXiv:1503.03931 (2015)]

▶ Hydro formulated as a series in velocity gradients:
πij ∼ η∂iv j , Π ∼ −ζ∂ · v .

▶ Three scales: Two microscopic: lmfp ∼ 1/(σ vn), thermal
wavelength lth ∼ 1/T , one macroscopic 1/L ∼ ∂ · u.

▶ lmfp/lth ∼ η/s, ζ/s, Tκ/s

▶ Hydro applicable whenever microscopic and macroscopic
scales are well-separated: lmfp ∂ · u ≡ Kn < 1
▶ Dilute gas regime: lmfp/lth ∼ η/s ≫ 1; Weakly coupled regime,

Boltzmann equation applicable (on-shell particles).

▶ Dense gas regime: η/s ∼ 1; quasi-particle description in terms
of Wigner functions.

▶ Liquid regime: η/s ≪ 1; strong-coupling regime, no valid
kinetic description.
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Backup slide 2: Lagrange multipliers of ME distribution

▶ 7 Lagrange parameters (Λ, λΠ, γ⟨µν⟩) =⇒ 7-d inversion problem;
numerically expensive.

▶ However, matching condition implies that shear matrix π ≡ πij
LRF is

a power-series in γ ≡ γ ijLRF =⇒ [π,γ] = 0; simultaneously
diagonalizable by spatial rotation.

▶ 3 of 5 d.o.f’s of γ ij fixed using common eigenvectors of πij ; 4-d
inversion problem.
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Backup 3: Simplifying the non-linear problem

▶ The full (non-linear) problem requires an inversion for 7
parameters (Λ, λ, γαβ): numerically intractable.

▶ To match shear stress tensor,

πij = ∆ij
kl

∫
dPpkpl exp

(
−ΛEp −

λ0
Ep

p2
)
exp

(
−γrsp

rps

Ep

)
▶ We show,

π = Γ− 1

3
I tr(Γ),

c̃1 γ − c̃2 γ
2 + c̃3 γ

3 − c̃4 γ
4 + · · · ≡ Γ,

▶ The shear tensor and γ ij commute, [π, γ] = 0; Simultaneously
diagonalizable.
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Backup 4: Simplifying the non-linear problem

▶ πij is symmetric; has real eigenvalues and admits orthogonal
eigenvectors (can be diagonalised by spatial rotation,
πD = RT π R).

▶ Diagonalise π; This diagonalises γ as well.

▶ Essentially, 3 of 5 independent degrees of freedom in the
matrix γ can be fixed using the (common) eigenvectors of πij .

▶ Only two-dimensional root finding required to obtain
γD = diag(γ1, γ2,−(γ1 + γ2)) in terms of eigenvalues of πij .

▶ This property greatly simplifies the problem numerically.
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Backup 4: Non-equilibrium entropy

▶ The canonical entropy S = −
∑

i pi ln(pi ) for a continuous
distribution:

S = −
∫

d3Nx d3Np

N!
ρ ln(ρ),

where,

ρ(x1, · · · , xN , p1, · · · , pN) =
exp(−βHN(x1, · · · , xN , p1, · · · , pN))

Z (T ,V ,N)

▶ Due to weak interaction,

HN =
∑
i

Hi , Z (T ,V ,N) = Z (T ,V , 1)N = V NnN/N!,

where n is number density. Thus,

S = − β V N

Z (T ,V , 1)N

∫
d3Np H(p) exp(−βH(p))− ln(Z (T ,V ,N))
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Backup 5: Non-equilibrium entropy

▶ For large N, ln(Z (T ,V ,N)) ≈ N. Thus,

S = V

∫
d3p (β H(p) feq + feq) ,

and the entropy density:

s = −
∫

d3p feq (ln(feq)− 1) .

▶ Out of equilibrium, replace feq → f . Relativistic version,

s = −
∫

dP (u · p) f (ln(f )− 1) .
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Backup 6: Conformal Hydrodynamics [R. Loganayagam,

arXiv:0801.3701 (2008) ]

▶ Equations of hydro are Lorentz covariant: admits rotationally
and boost-invariant solutions.

▶ Hydro equations also have conformal invariance: should admit
conformally invariant solutions.

▶ Under a conformal transformation gµν → g̃µν = e−2ϕgµν

▶ Weyl covariant derivative DµT
µν → e−wϕD̃µT̃

µν if
Tµν → e−wϕT̃µν

▶ Using definition of D one can show

DµT
µν = dµT

µν + AνTµ
µ

where Aµ = u̇µ − (θ/3)uµ

▶ Hydro equations are conformal if Tµ
µ = m2

∫
dP f = 0.
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Backup 7: Gubser symmetries [S.S. Gubser, PRD, 82, 085027 (2010) ]

▶ Instead of translational invariance (whose generators are ξi =
∂
∂x i ),

Gubser uses invariance under the group SO(3)q whose generators
are ∂/∂ϕ, ∂/∂η, and

ξi =
∂

∂x i
+ q2

[
2x ixµ

∂

∂xµ
− xµxµ

∂

∂x i

]
, (i = 1, 2)

1/q ≈ transverse size

▶ These generators are easy to understand in dS3 × R

dŝ2 ≡ ds2

τ 2
= dρ2 − cosh2 ρ

(
dθ2 + sin2 θdϕ2

)
− dη2,

where they correspond to rotations in (θ, ϕ):

ρ = − sinh−1

(
1− q2τ 2 + q2r2

2qτ

)
, θ = tan−1

(
2qr

1 + q2τ 2 − q2r2

)
,

▶ The only time-like four vector invariant under these transformations
[ξ, û] = 0 is ûµ = (1, 0, 0, 0).
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