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Subspaces of B(H)

. C∗-algebra1 is a closed ∗- subalgebra of B(H)

. Operator space2 is a closed subspace of B(H)

. Operator system3 is a unital ∗- closed subspace of B(H)

1Israel Gelfand and Mark Naimark in 1943
2Ruan in 1988
3Choi and Effros in 1977
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C ∗-algebra

Definition (Concrete)

Subalgebras of B(H) which is closed under the operator norm and under adjoints.

Definition (Abstract)

An abstract C∗-algebra (A, ∥.∥) is a Banach algebra with norm satisfying
∥aa∗∥ = ∥a∥2 for all a ∈ A.

Remark

For every C∗-algebra A there exists a Hilbert space H such that A is isometrically
∗-isomorphic to some C∗-subalgebra of B(H).
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Theorem (Gelfand Naimark Segal theorem)

For every C∗-algebra A there exists a Hilbert space H such that A is isometrically
∗-isomorphic to some C∗-subalgebra of B(H).
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Operator space

Definition (Concrete)

Subspaces of B(H).

Definition (Abstract)

An abstract operator space is a normed space V with a sequence of norm
∥.∥n : Mn(V ) → [0,∞) satisfying:

1 ∥v ⊕ w∥n+m ≤ max {∥v∥n, ∥w∥m}
2 ∥αvβ∥m ≤ ∥α∥∥v∥n∥β∥

where v ∈ Mn(V ),w ∈ Mm(V ), α ∈ Mm,n, β ∈ Mn,m.
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Theorem (Ruan)

If V is an abstract operator space, then V is completely isometrically isomorphic
to a closed linear subspace W of B(H) for some Hilbert space H.

Remark (Morphisms)

A linear map ϕ : V → W is said to be completely bounded if

∥ϕ∥cb := Sup{∥ϕn∥ : n ∈ N} <∞

where ϕn : Mn(V ) → Mn(W ) is defined as ϕn((xij)) = (ϕ(xij)).
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Operator system

Definition (Concrete)

Unital self-adjoint subspace of B(H).

Definition (Abstract)

An abstract operator system is a triple (V , {Cn}∞n=1, e) where V is a complex
∗-vector space and {Cn}∞n=1 is a matrix ordering on V and e is Archimedean
matrix order unit.

Surbhi (DU) Tensor products of local operator systems DMHA17 7 / 34



Operator system

Definition (Concrete)

Unital self-adjoint subspace of B(H).

Definition (Abstract)

An abstract operator system is a triple (V , {Cn}∞n=1, e) where V is a complex
∗-vector space and {Cn}∞n=1 is a matrix ordering on V and e is Archimedean
matrix order unit.

Surbhi (DU) Tensor products of local operator systems DMHA17 7 / 34



Definition

An ordered ∗-vector space is a pair (V ,V+) consisting of a ∗-vector space and a
subset V+ ⊆ Vh satisfying the following two properties:

1 V+ is a cone in Vh

2 V+ ∩ −V+ = {0}

Definition

∗-matrix ordering: {Cn}∞n=1 is a matrix ordering on V if

1 Cn is a cone in Mn(V )h for all n ∈ N
2 Cn ∩ −Cn = {0} for all n ∈ N
3 X ∈ Mn,m for each n,m ∈ N we have X ∗CnX ⊆ Cm.

. Order unit : e ∈ Vh if for all v ∈ Vh there exists r > 0 such that re ≥ v .

. Archimedean order unit: v ∈ V and re + v ≥ 0 for all r > 0 implies v ∈ V+.

. Archimedean matrix order unit:
en = diag(e, e, . . . , e)
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Theorem (Choi-Effros)

Every concrete operator system V is an abstract operator system. Conversely, if
(V , {Cn}∞n=1, e) is an abstract operator system, then there exists a Hilbert space
H, a concrete operator system S ⊆ B(H), and a complete order isomorphism
ϕ : V → S with ϕ(e) = I .

Remark (Morphisms)

. ϕ : V → W is positive if ϕ(V+) ⊆ W+.

. If ϕn : Mn(V ) → Mn(W ) is positive for all n then ϕ is said to be completely
positive.

. ϕ is called complete order isomorphism if ϕ is invertible and both ϕ and ϕ−1

are completely positive.
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Projective limit

Definition

Let {Aα : α ∈ Λ} be a family of objects of a category C, where (Λ,≤) is a directed
set. Also we have family of morphism {fαβ : Aβ → Aα : α ≤ β} such that

1 fαα is the identity on Aα,

2 fαβ = fαγ ◦ fγβ , for all α ≤ γ ≤ β

The projective limit of ({Aα∈Λ}, {fαγ : α ≤ γ}) is denoted by A = lim
←

Aα and

also, as a set, A equals to:

A = {(xα) ∈ Πα∈ΛAα : fαγ(xγ) = xα ∀α ≤ γ}
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Pro C*-algebras

. The categories of C∗-algebras, Operator spaces, Operator systems are not
closed under projective limits.

. Inoue in 1972 introduced locally C∗-algebras abstractly as complete locally
∗-algebra with C∗ condition where topology is defined by a family of C∗-semi
norms.

. Arveson called these algebras as Pro C∗-algebra which can be represented as
projective limit of C∗-algebras.
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Local operator spaces and local operator systems

. Local operator spaces are projective limits of operator spaces, Webster and
Effros did a systematic study on local operator spaces.

. Dosiev gave a representation theorem for local operator spaces that extends
Ruan’s representation theorem for operator spaces.

. Dosiev also introduced the locally convex version of operator system called as
concrete local operator system.
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For a fixed Hilbert space H, an upward filtered family of closed subspaces
E = {Hα}α∈Λ such that their union D is a dense subspace in H with p = {Pα}α∈Λ
family of projections in B(H) onto the subspaces Hα, α ∈ Λ. The algebra CE(D)
of all non-commutative continuous functions on a quantized domain E is given by

CE(D) = {T ∈ L(D) : TPα = PαTPα ∈ B(H), α ∈ Λ},

where L(D) is the associative algebra of all linear transformations on D. Thus
each T ∈ CE(D) is an unbounded operator on H with domain D such that
T (Hα) ⊆ Hα and T |Hα

∈ B(Hα), and CE(D) is a subalgebra in L(D). The set

C∗E (D) = {T ∈ CE(D) : PαT ⊆ TPα, α ∈ Λ}

of all non-commutative continuous functions on E is a unital ∗-subalgebra of
CE(D), with the involution T ∗ = T⋆|D ∈ C∗E (D) for all T ∈ C∗E (D) where T⋆ is
unbounded dual of T such that D ⊆ dom(T⋆) and T⋆(D) ⊆ D.
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Concrete structures

1 Pro C∗-algebra is a ∗-closed subalgebra of C∗E (D).

2 Local operator space is a subspace of CE(D).

3 Local operator system is a unital self adjoint subspace of C∗E (D).
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Abstract(Pro C ∗-algebras)

Definition (Abstract)

An abstract Pro C∗-algebra is a ∗-algebra with family of separating C∗-seminorms.

Remark

The ∗-algebra C∗E (D) equipped with the topology defined by the family of
C∗-seminorms pα(T ) = ∥T |Hα

∥ is a Pro C∗-algebra.
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Abstract (Local operator spaces)

Definition

Let V be a vector space and {pnα : α ∈ Λ} be a family of separating seminorms for
each n ∈ N satisfying following properties:

1 pn+m
α (v ⊕ w) ≤ max {pnα(v), pmα (w)} for each α

2 pmα (PvQ) ≤ ∥P∥pnα(v)∥Q∥ for each α

where v ∈ Mn(V ), w ∈ Mm(V ), P ∈ Mm,n,Q ∈ Mn,m.
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Local operator systems

Definition

Let V be a ∗-vector space consisting of downward filtered family of cones {Cα :
α ∈ Γ} satisfying two properties Cα is a cone (need not be proper) in V where

Cα ⊆ Vh = {v ∈ V : v∗ = v} and
⋂
α

(Cα ∩ −Cα) = {0}.

Then V is called local ∗-ordered vector space and the elements of Cα are called
local positive elements, denoted by v ≥α 0. Also, we write v1 ≥α v2 if
v1 − v2 ≥α 0 in V .

Definition

For a local ∗-ordered vector space (V , {Cα : α ∈ Γ}), an element e ∈ Vh is called
an ordered unit for V if for all v ∈ Vh and for every α ∈ Γ there exists rα>0 such
that rαe ≥α v . If, in addition whenever re + v ≥α 0 for all r > 0 and α ∈ Γ and
v ∈ Vh implies v ∈ Cα we call e is an Archimedean order unit and the triple
(V , {Cα : α ∈ Γ}, e) an Archimedean local ∗-ordered vector space or in short
A.L.O.U space.
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Definition

Let V be a ∗-vector space. We say that the family {{Cn
α}∞n=1 : α ∈ Γ} is a local

matrix ordering on V if

1 (Mn(V ), {Cn
α : α ∈ Γ}) is a local ∗-ordered vector space for each n ∈ N,

2 for each n,m ∈ N and X ∈ Mn,m and all α, we have that X ∗Cn
αX ⊆ Cm

α .

In this case, we call (V , {{Cn
α}∞n=1 : α ∈ Γ}) a local matrix ∗-ordered vector

space.

For e ∈ Vh, let en = diag(e, e, . . . , e) be the corresponding diagonal matrix in
Mn(V ). We say that e is a matrix order unit for V if en is an order unit for
(Mn(V ), {{Cn

α : α ∈ Γ}}) for each n. We say that e is an Archimedean matrix
order unit if en is an Archimedean order unit for (Mn(V ), {{Cn

α : α ∈ Γ}}) for
each n.
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Definition

An abstract local operator system is a triple (V , {{Cn
α}∞n=1;α ∈ Γ} , e), where V is

a local ∗-ordered vector space, {{Cn
α}∞n=1 : α ∈ Γ}} is a local matrix ordering on

V and e is an Archimedean matrix order unit.

Remark

Every concrete local operator system is abstract local operator system.
Proof: Let V be concrete local operator system, so there exists H a Hilbert space
and a quantized domain in H of upward filtered family E = {Hα}α∈Γ of closed
subspaces in H whose union D=∪Hα is dense in H. Here we have family of cones
as Cα={T ∈ C∗E (D) ∩ V : T |Hα

≥ 0}.
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Examples

1 Every operator system is a local operator system.

2 Consider the set C (R), the space of all complex valued continuous functions
defined on R.For every compact subset K of R, we define a family of cones
as CK = {f ∈ C (R)h : f (x) ≥ 0∀x ∈ K} and Archimedean matrix order unit
is I(x)=1 ∀x ∈ R, then (C (R), {{C n

K} : K ⊆ R,K is compact} , I ) is a local
operator system.

3 Let H be Hilbert space, D is dense subspace in H. Take T ∈ C∗E (D) we have
LOS(T ) = span{I ,T ,T ∗} is a local operator subsystem of C∗E (D).
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Remark
. Every local operator system is projective limit of operator systems.

Proposition

Let V be a local operator system with family of cones {{Cn
α}∞n=1 : α ∈ Γ}} and e

is Archimedean matrix order unit and for each X ∈ Mn(V ) set

∥X∥nα = inf

{
r ≥ 0 :

(
ren X
X ∗ ren

)
∈ C2n

α

}
, then ∥ · ∥nα is a separating family of

∗-seminorms on Mn(V ) and Cn
α is a closed subset of Mn(V ) in the topology

induced by this separating family of ∗-seminorms. Hence, {V , {∥ · ∥nα}
∞
n=1} is a

local operator space.
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Definition

Let V and W be two abstract local operator systems with {Cα : α ∈ Γ} and {Dβ

: β ∈ Ω} family of cones, respectively. A linear map Φ: V −→ W is called local
positive if for each β ∈ Ω there corresponds α ∈ Γ such that Φ(Cα) ⊆ Dβ . If in
addition, Φ(e) = f where e and f are the Archimedean local matrix units of V
and W , respectively then Φ will be called unital local positive. Moreover, if Φ is
unital local positive at each matrix level, we call it unital local completely positive
map, in short ULCP.

Definition

A linear map Φ: V −→ W is called local order isomorphism if Φ is bijective,
Γ = Ω and Φ(Cα) = Dα for all α ∈ Γ.
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Theorem (Representation theorem)

Let V be an abstract local operator system, then there exists a unital complete
local order embedding Φ from V into C∗E (D). Hence abstract local operator
systems are equivalent to concrete local operator systems.

Surbhi (DU) Tensor products of local operator systems DMHA17 23 / 34



LOMIN and LOMAX structures

. Let (V , {V+
α : α ∈ Γ}, e) be an Archimedean local order unit space. For each

n ∈ N and each α ∈ Γ, define

(Cn
α)

min(V ) := {(vij) ∈ Mn(V ) :
n∑

i,j=1

λ̄iλjvij ∈ Cα∀λ1, ....λn ∈ C.}

Definition

Let (V , {Cα : α ∈ Γ}, e) be an Archimedean local ordered unit space. We define
LOMIN(V ) to be the local operator system

(
V ,

{
{(Cn

α)
min(V )}∞n=1 : α ∈ Γ

}
, e
)
.

Remark

Let (V , {V+
α }:α ∈ Γ, e) be an A.L.O.U space. If (V , {{Cn

α}∞n=1 : α ∈ Γ} , e) is
any local operator system on V with C1

α=V+
α , for each α, then Cn

α ⊆ (Cn
α)

min(V )
for all n and all α. Thus LOMIN(V ) is the weakest local operator system.
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Cont.

. Let (V , {V+
α : α ∈ Γ}, e) be a local order ∗-vector space. Define

(Dn
α)

max(V )={
k∑

i=1

ai ⊗ vi ; vi ∈ V+
α , ai ∈ M+

n , i = 1, 2, ..., k ; k ∈ N} and

Dmax
α (V )={(Dn

α)
max(V )}∞n=1 for each α.

Proposition

Let (V , {V+
α : α ∈ Γ}, e) be an Archimedean local order unit space, then the

cones (Dn
α)

max(V ) are given by

(Dn
α)

max(V ) = {γdiag(v1, v2, . . . , vm)γ∗ : γ ∈ Mn,m, vi ∈ V+
α , i = 1, 2, . . . ,m;m ∈ N}.

Remark

With the above cones; we get the strongest local operator system LOMAX (V ).
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Tensor products

Definition

Given local operator systems (V , {{Cn
α}∞n=1 : α ∈ Γ} , eV ) and(

W ,
{
{Dn

β}∞n=1 : β ∈ Λ
}
, eW

)
, a local operator system structure lτ on V ⊗W

is a matricial cone structure given by
{
{T n

γ }∞n=1 : γ ∈ Ω
}
where Ω ∼= Γ× Λ such

that:
.

(
V ⊗W ,

{
{T n

γ }∞n=1 : γ ∈ Ω}
}
, eV ⊗ eW

)
is a local operator system.

. For every α ∈ Γ and β ∈ Λ, there exists a γ ∈ Ω such that Cn
α ⊗Dm

β ⊆ T nm
γ

for all n,m ∈ N and for every γ ∈ Ω, there exist α ∈ Γ and β ∈ Λ such that
Cn
α ⊗Dm

β ⊆ T nm
γ for all n,m ∈ N.

. If ϕ ∈ ULCP(V ,Mn) and ψ ∈ ULCP(W ,Mm) w.r.t Cα and Dβ respectively,
then ϕ⊗ ψ ∈ ULCP(V ⊗W ,Mnm) w.r.t T(α,β) for all n,m ∈ N.
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Cont.

Let τ1 and τ2 be two local operator system structure on S ⊗ T . τ1 is greater than
τ2 if the identity map from S ⊗τ1 T to S ⊗τ2 T is local completely positive map.

. lτ is functorial if for any four local operator systems V1,V2,W1,W2;
ϕ ∈ ULCP(V1,V2) and ψ ∈ ULCP(W1,W2) implies the linear map
ϕ⊗ ψ : V1 ⊗W1 → V2 ⊗W2 belongs to ULCP(V1 ⊗lτ W1,V2 ⊗lτ W2)

. lτ is a symmetric if the map θ : v ⊗ w → w ⊗ v extends to a unital local
complete order isomorphism from V ⊗lτ W onto W ⊗lτ V

. Given local operator systems V1 ⊆ V2 and W1 ⊆ W2, if the inclusion map
V1 ⊗lτ W1 ⊆ V2 ⊗lτ W2 is a local complete order isomorphism onto its range
then lτ is injective local operator system tensor product.
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Proposition

Let V and W be two local operator systems such that V = lim
←−

Vα and

W = lim
←−

Wβ . Then corresponding to any operator system tensor product η, we

have a local tensor product ηl such that V ⊗ηl
W=lim

←−
Vα ⊗η Wβ .
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Minimal tensor product

Let (V , {{Cn
α}∞n=1 : α ∈ Γ} , eV ) and

(
W ,

{
{Dn

β}∞n=1 : β ∈ Λ
}
, eW

)
be local

operator systems. For each α ∈ Γ, β ∈ Λ, n ∈ N, define

T n(lmin)
(α,β) :=

{
(pij) ∈ Mn(V ⊗W ) : ((ϕ⊗ ψ)(pij)) ∈ M+

nkm, for all ϕ : V → Mk

and ψ : W → Mm, unital local completely positive maps w.r.t. cones

Cα and Dβ resp. for all k ,m ∈ N
}

Definition

We call
(
V ⊗W ,

{
{T n(lmin)

(α,β) }∞n=1 : (α, β) ∈ Γ× Λ
}
, eV ⊗ eW

)
the minimal local

tensor product of V and W and denote it by V ⊗lmin W .
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Theorem

The mapping lmin: LO×LO → LO sending (V ,W ) to V ⊗lminW is an injective,
associative, symmetric, functorial, minimal local operator system tensor product.

Remark

V ⊗lmin W = lim
←−

Vα ⊗min Wβ = V ⊗minl W
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Maximal tensor product

Let (V , {{Cn
α}∞n=1 : α ∈ Γ} , eV ) and

(
W ,

{
{Dn

β}∞n=1 : β ∈ Λ
}
, eW

)
be two

local operator systems. For each n ∈ N and (α, β) ∈ Γ× Λ, define

Kn(lmax)
(α,β) := {L(P ⊗ Q)L∗ : P ∈ Ck

α and Q ∈ Dm
β , L ∈ Mn,km, k,m ∈ N}.

Definition

We call the local operator system(
V ⊗W ,

{
{T n(lmax)

(α,β) }∞n=1 : (α, β) ∈ Γ× Λ
}
, eV ⊗ eW

)
the maximal local

operator system tensor product of V and W and denote it by V ⊗lmax W .
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Theorem

The mapping lmax : LO × LO → LO sending (V ,W ) to V ⊗lmax W is a
symmetric, associative, functorial, maximal local operator system tensor product.

Remark

V ⊗lmax W = lim
←−

Vα ⊗max Wβ = V ⊗maxl W

. For local operator system tensor products lη and lγ, V is (lη, lγ)-nuclear if
the identity map between V ⊗lη W and V ⊗lγ W is a local complete order
isomorphism for every local operator system W .
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