Cosmology and high-redshift universe with the redshifted 21 cm line

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

XXIV DAE-BRNS High Energy Physics Symposium (ONLINE)
NISER, Odisha, India
17 December 2020
The early Universe: a laboratory for high-energy physics
Cosmology & high-energy physics

- The early Universe: a laboratory for high-energy physics
- Cosmological observations constrain parameters of particle physics models, e.g., neutrino mass
Cosmology & high-energy physics

- The early Universe: a laboratory for high-energy physics
- Cosmological observations constrain parameters of particle physics models, e.g., neutrino mass
- Dark matter and energy
Cosmology & high-energy physics

- The early Universe: a laboratory for high-energy physics
- Cosmological observations constrain parameters of particle physics models, e.g., neutrino mass
- Dark matter and energy
- This talk: 21 cm experiments
The 21 cm line of neutral hydrogen (HI)

- Hydrogen 1s ground state split by the interaction between the electron spin and the nuclear spin.

\[
\begin{align*}
\text{unperturbed} & \quad \text{triplet} \\
1s & \quad \begin{cases}
|\uparrow \uparrow\rangle \\
\frac{1}{\sqrt{2}} (|\uparrow \downarrow\rangle + |\downarrow \uparrow\rangle) \\
|\downarrow \downarrow\rangle
\end{cases} \\
& \quad \begin{cases}
|\uparrow \downarrow\rangle \\
\frac{1}{\sqrt{2}} (|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)
\end{cases} \\
& \quad \text{singlet}
\end{align*}
\]

\(\nu = 1420\text{ MHz, } \lambda = 21\text{ cm}\)

Line transition \(\rightarrow\) a transition originating at \(z\) will be observed at \(\nu_{\text{obs}} = 1420/(1 + z)\) MHz.

- It is a magnetic dipole transition, with transition probability \(A_{21} = 2.85 \times 10^{-15} \text{ s}^{-1}\) \(\rightarrow\) an atom in the upper level is expected to make a downward transition once in \(10^7\) yr.

- For instance, 21 cm radiation from galaxies allowed inference of dark matter (the rotation curves).
How to observe the cosmological 21 cm signal?

\[\frac{n_2}{n_1} = 3 e^{-T_{\text{spin}}/T_{21}} \]

The signal:
\[\delta l_\nu \propto \rho_{\text{HI}} \left(1 - \frac{T_{\text{CMB}}}{T_{\text{spin}}} \right) \]
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.
- For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4$ GHz and $z = 20$ at $\nu_{\text{obs}} \approx 70$ MHz.
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.

- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.

- For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4$ GHz and $z = 20$ at $\nu_{\text{obs}} \approx 70$ MHz.

- The signal can be probed either as the evolution of the globally averaged signal or as evolution and spatial structures of the fluctuations.
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.
- For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4$ GHz and $z = 20$ at $\nu_{\text{obs}} \sim 70$ MHz.
- The signal can be probed either as the evolution of the globally averaged signal or as evolution and spatial structures of the fluctuations.
- A large number of low-frequency experiments are being planned to study the high-redshift universe.
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows studying several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line. For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4$ GHz and $z = 20$ at $\nu_{\text{obs}} \approx 70$ MHz.
- The signal can be probed either as the evolution of the globally averaged signal or as evolution and spatial structures of the fluctuations.
- A large number of low-frequency experiments are being planned to study the high-redshift universe.
- Two examples:
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.
- For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4$ GHz and $z = 20$ at $\nu_{\text{obs}} \approx 70$ MHz.
- The signal can be probed either as the evolution of the globally averaged signal or as evolution and spatial structures of the fluctuations.
- A large number of low-frequency experiments are being planned to study the high-redshift universe.
- Two examples:
 1. Mass of light dark matter particles using the global signal at $z \approx 18$ (the “cosmic dawn”).
Some comments on the 21 cm signal

- Since hydrogen is the most abundant element in the Universe, the 21 cm line allows study several different aspects of cosmology and galaxy formation.
- One can probe the neutral hydrogen (HI) over a wide range of redshifts using the 21 cm line.
- For example, probing $z = 0$ requires observations at $\nu_{\text{obs}} \approx 1.4 \, \text{GHz}$ and $z = 20$ at $\nu_{\text{obs}} \approx 70 \, \text{MHz}$.
- The signal can be probed either as the evolution of the globally averaged signal or as evolution and spatial structures of the fluctuations.
- A large number of low-frequency experiments are being planned to study the high-redshift universe.
- Two examples:
 1. Mass of light dark matter particles using the global signal at $z \approx 18$ (the “cosmic dawn”).
 2. Dark energy constraints using large-scale fluctuations in the HI density at $z \approx 0 - 2$.
Global 21 cm signal: probe of the very first stars

\[\delta T_b \propto \frac{T_s - T_{\text{CMB}}(z)}{T_s} \rho_{\text{HI}}, \quad T_s^{-1} = \frac{T_{\text{CMB}}^{-1} + x_c T_k^{-1} + x_\alpha T_k^{-1}}{1 + x_c + x_\alpha} \]

Expected signal for a fiducial model of galaxy formation Pritchard & Loeb (2012)
Global 21 cm signal: probe of the very first stars

\[\delta T_b \propto \frac{T_s - T_{\text{CMB}}(z)}{T_s} \rho_{\text{HI}}, \quad T_s^{-1} = \frac{T_{\text{CMB}}^{-1} + x_c T_k^{-1} + x_\alpha T_k^{-1}}{1 + x_c + x_\alpha}. \]

Expected signal for a fiducial model of galaxy formation Pritchard & Loeb (2012)

Presence of UV radiation, arising from the first stars.
Gas is colder than CMB, so absorption.
Global 21 cm signal: probe of the very first stars

\[\delta T_b \propto \frac{T_s - T_{\text{CMB}}(z)}{T_s} \rho_{\text{HI}}, \quad T_s^{-1} = \frac{T_{\text{CMB}}^{-1} + x_c T_k^{-1} + x_\alpha T_k^{-1}}{1 + x_c + x_\alpha} \]

Expected signal for a fiducial model of galaxy formation Pritchard & Loeb (2012)

Efficient heating of the gas, most likely by X-rays.
Formation of accreting black holes, supernova shocks.
Recent detection of the global 21 cm signal

EDGES experiment **Bowman et al (2018)**
The signal can be used to put constraints on the mass of (thermal) warm dark matter particles.
Power spectra for WDM models

\[\delta(x) = \frac{\rho(x)}{\bar{\rho}} - 1 \]
\[\delta(k) = \text{FT} \left\{ \delta(x) \right\} \]
\[P(k) \propto |\delta(k)|^2 \]

Light keV mass dark matter particles have less fluctuations at small scales.
\[\delta(x) = \frac{\rho(x)}{\bar{\rho}} - 1 \]
\[\delta(k) = \text{FT}\{\delta(x)\} \]
\[P(k) \propto |\delta(k)|^2 \]

Light keV mass dark matter particles have less fluctuations at small scales.
Warm dark matter particles ($m \sim \text{keV}$) suppress matter fluctuations at small scales.

Constraints from Lyman-forest $m \gtrsim 3.5 \text{keV}$ Murgia et al (2019).

However, constraints are degenerate with astrophysics (e.g., gas temperature) Garzilli et al (2019).

There are other similar dark matter candidates which exhibit similar behaviour (e.g., axion-like particles or “Fuzzy” dark matter).

Model-independent approach of parametrizing the suppression:

$$T(k) = [P(k)/P_{CDM}(k)]^{1/2} = 1 + (k)$$

Small-scale suppression

- Warm dark matter particles \((m \sim \text{keV})\) suppress matter fluctuations at small scales.
- Constraints from Lyman-\(\alpha\) forest \(m \gtrsim 3 - 5\ \text{keV}\)

There are other similar dark matter candidates which exhibit similar behaviour (e.g., axion-like particles or “Fuzzy” dark matter).

Model-independent approach of parametrizing the suppression:

\[T(k) \left[\frac{P(k)}{P_{\text{CDM}}(k)} \right]^{1/2} = \left[1 + (k) \right]^{2} \]

Constrain; from observations, agnostic to the dark matter model

\[\Delta^2(k) \]

\[k(h/\text{Mpc}) \]

\[\text{CDM} \]

\[1 \text{ keV} \]

\[2 \text{ keV} \]
Warm dark matter particles \((m \sim \text{keV})\) suppress matter fluctuations at small scales.

Constraints from Lyman-\(\alpha\) forest \(m \gtrsim 3 - 5 \text{ keV}\)

However, constraints are degenerate with astrophysics (e.g., gas temperature)

Model-independent approach of parametrizing the suppression:

\[
T(k) = \left[\frac{P(k)}{P_{\text{CDM}}(k)} \right]^{1/2} = 1 + (k)\]

Constrain; agnostic to the dark matter model

Warm dark matter particles \((m \sim \text{keV})\) suppress matter fluctuations at small scales.

Constraints from Lyman-\(\alpha\) forest \(m \gtrsim 3 - 5\ \text{keV}\)

However, constraints are degenerate with astrophysics (e.g., gas temperature) Garzilli et al (2019).

There are other similar dark matter candidates which exhibit similar behaviour (e.g., axion-like particles or "Fuzzy" dark matter).
Small-scale suppression

- Warm dark matter particles \((m \sim \text{keV})\) suppress matter fluctuations at small scales.
- Constraints from Lyman-\(\alpha\) forest \(m \gtrsim 3 - 5 \text{ keV}\)
- However, constraints are degenerate with astrophysics (e.g., gas temperature) Garzilli et al (2019).
- There are other similar dark matter candidates which exhibit similar behaviour (e.g., axion-like particles or “Fuzzy” dark matter).
- Model-independent approach of parametrizing the suppression:

\[
T(k) \equiv \left[\frac{P(k)}{P_{CDM}(k)} \right]^{1/2} = [1 + (\alpha k)^\beta]^\gamma.
\]

Constrain \(\alpha, \beta, \gamma\) from observations, agnostic to the dark matter model Murgia et al (2018).
Halo mass function for WDM models

$z = 9.0$

fitting functions from Schneider et al (2012)
Halo mass function for WDM models

fitting functions from Schneider et al (2012)
Galaxy formation models

Present observations detect only the very bright galaxies, hence unable to distinguish between different DM models.

WDM effects degenerate with astrophysical effects (feedback).

Dayal, TRC, Bromm & Pacucci (2017)
Hierarchical structure formation: CDM

- Time progression:
 - No stars
 - First stars
 - Normal

Diagram:

- First stars branch:
 - No stars
 - First stars
- Normal branch:
 - First stars
 - First stars
 - First stars

Tirthankar Roy Choudhury
Hierarchical structure formation: WDM

First stars

Time
WDM models vs EDGES data

Observations require $m_{DM} \geq 3$ keV Chatterjee, Dayal, TRC & Hutter (2019)

Tirthankar Roy Choudhury
Future

- The signal detected by EDGES needs to be confirmed. Other independent experiments include SARAS-2 (RRI, India)
Future

- The signal detected by EDGES needs to be confirmed. Other independent experiments include SARAS-2 (RRI, India)

- More information in 21 cm fluctuations using interferometers, e.g., GMRT (near Pune) and SKA (international project with India as a partner)

Based on TRC & Paranjape (2018)
The uGMRT

- The upgraded Giant Metrewave Radio Telescope
- 30 antennas, 45 m diameter each. works in frequency range $\approx 150 - 1400$ MHz
- situated at Narayangaon, about 80 km from Pune.
The Square Kilometre Array

- dishes in South Africa, called SKA-MID (250 MHz – 20 GHz)
- dipoles in Australia, called SKA-LOW (50 – 250 MHz)
- largest distance between antenna elements: ~ 60 – 150 km
- effective collecting area ~ 5 – 10 times more collecting area than any existing telescope!
- possible observations from 2027-2030.
India has been associated with the SKA from the beginning

- India formally joined the SKA on Oct 5, 2015
- The activities within India are coordinated by the SKA-India Consortium
- ~20 organizations are members of the Consortium
- Science activities coordinated by eight SKA-India Science Working Groups
- India involved in all the key science projects in the SKA
HI intensity mapping

Based on ideas presented in Bharadwaj & Sethi (2001)

Probe the distribution only at large scales, adequate for cosmology.
Cosmology with HI intensity mapping

Santos et al (2015)
Take-home messages

- 21 cm signal from neutral hydrogen is a useful probe of cosmology
- The recently detected global signal, if confirmed, contain clues on the nature of light dark matter particles.
- In the future, fluctuations will be detected with the SKA. Should allow us to constrain cosmological parameters and any non-standard extensions to the ΛCDM model.
- Caveat: astrophysics can affect the conclusions!
Take-home messages

- 21 cm signal from neutral hydrogen is a useful probe of cosmology
- The recently detected global signal, if confirmed, contain clues on the nature of light dark matter particles.
- In the future, fluctuations will be detected with the SKA. Should allow us to constrain cosmological parameters and any non-standard extensions to the \(\Lambda \)CDM model.
- Caveat: astrophysics can affect the conclusions!

Thank you