Electron gun based magnetic probe

Srinidhi Bheesette, Marcos Turqueti

December 16, 2020
Existing magnetic probe technologies

Objectives:

● Accurate magnetic field measurements are fundamental to the construction, testing, and certification of magnetic systems.

● One such example is undulators for light sources. Undulators require several magnetic measurements at different stages during its construction.

● Every magnet block, composed of several magnetic poles, must be measured individually and sorted based on the magnetic moment results.

● The final process of fine-tuning the undulators requires the magnetic measurements of the whole assembly.
Existing measurement methods and limitations

Two existing technologies-

- **Hall probe:**
 - Widely used for local field mapping and are the sensor of the choice for most magnetic characterizations.
 - Have limitations such as DC offset, nonlinearity, temperature drift, sensor aging, and the planar Hall effect.
 - Their long-term gain and offset drift with time and temperature, requiring frequent re-calibrations.

- **Single Stretched Wire:**
 - This method is used for straight geometries and is not generally suited for local magnetic field measurements.

- **Nuclear Magnetic Resonance:**
 - This method of magnetic measurement is accurate for the main field but is seen to be unsuitable for field gradient measurements.
Electron Beam Magnetic Probe (eProbe)

- A novel technology that will provide - **local magnetic measurement capability**, along with **overlapping range** and **field accuracy** for several existing solutions.
- It will facilitate faster and simpler verification, construction, testing, and tuning complex magnetic systems such as undulators, wigglers, and magnets.
- The proposed eProbe is based on a very short micro Cathode Ray Tube (mCRT) integrated with an imaging sensor based on Charge-Coupled Devices (CCD).
- An electron gun fires a low energy electron beam into the image sensor, which is mounted perpendicularly to the beam and located at the opposite end of the probe.
- Electrostatic deflecting plates continually manipulate the electric field and thus project a pattern onto the imaging sensor.
eProbe prototype
Simulating the eProbe

- Each component of the eProbe was simulated in GEANT\(^1\), a toolkit for simulating particles' passage through matter.
- The CMOS digital image sensor was modeled as a 0.25 mm thick silicon layer with an active area of 2.46 mm by 1.85 mm.
- The active sensor area was divided into 1296 by 976 pixels, each of size 1.9 microns.
- The source used was an electron source of energy 100eV with a gaussian spread of 5eV dispersion placed at a 1 mm distance from the detector.
- The deviation in the centroid of the beam can be measured by introducing different magnetic fields in the x and y plane, considering the detector is on the z plane.

Introduction of magnetic field
Gaussian beam profile as seen on the detector

Particle hit map

Average energy hit map
Optimizing the eProbe parameters

- Simulations run for two different orientation (case A and B) for different magnetic and electric fields with the accelerating plates at 400, 2000, and 4000V.
- The deviation observed from the center of the detector was studied for different magnetic fields for both the cases.
- The intercept obtained from a relation between the derivation will help calibrate and measure various magnetic fields.
- The deviation would also give us an idea of the lowest magnetic field that could be measured by the electron gun.
Model orientation in Case A and Case B

Case A: Accelerating plates in front of the detector

Case B: Accelerating plates behind the detector
Vertical centroid deviation comparison for Case A and B

Delta Vertical centroid deviation for Case A

Delta Vertical centroid deviation for Case B
Vertical centroid peak deviation in Case A and B
Validation with previous measurements

- Real-time field measurements were carried with a magnetic probe placed at 10 mm from the source.
- For case C, the source-to-detector distance was changed, keeping the other parameters the same as case A.
- Simulations were run and the k-mean clustering algorithm was used to calculate the centroid at various magnetic fields.
- Results from measurement and simulations were compared and validated.
Simulating the measurement setup
Centroid determination using k-means clustering
Validating eProbe measurements

Graph 1: CGy (microns) vs. Magnetic field (Tesla)

- Trendline for series 1 $R^2 = 0.996$

Graph 2: B field in (uT) versus Electron Beam Centroid

Values range from 0 to 70 on the y-axis and 0 to 20 on the x-axis.
Vertical centroid deviation comparison for Case A, B and C
Minimum magnetic field measurable

<table>
<thead>
<tr>
<th>Case</th>
<th>Source to detector distance</th>
<th>Position of the accelerating plate</th>
<th>Magnetic field until which no deflection is seen at different accelerating plate voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>1 mm</td>
<td>Front of the sensor</td>
<td>200uT, 900uT, 900uT</td>
</tr>
<tr>
<td>Case B</td>
<td>1 mm</td>
<td>Behind the sensor</td>
<td>100uT, 200uT, 200uT</td>
</tr>
<tr>
<td>Case C</td>
<td>10 mm</td>
<td>Front of the sensor</td>
<td>10uT, 9uT, 70uT</td>
</tr>
</tbody>
</table>
Future tasks

- Calibrating the various sections of the CMOS detector using one beam deflected using the magnetic field.

![Diagram](image)

- Simulated and validate model for different source to detector distance eProbe configurations.

- Simulated the measurement using a custom made CCD to be designed at LBNL, so we can operate at even lower energies (~1-10 eV).
Conclusion

- Our studies indicate that an eProbe could be successfully simulated with various magnetic and electric fields using the GEANT4 simulation tool.
- Previously existing measurements were compared with the similar model simulated in GEANT4, and the results were seen to be consistent with those obtained from the actual measurements.
- The results from the simulations will allow us to develop different eProbe orientation by optimizing different parameters (distance, thickness, position of accelerating plate, etc.).
Thank You

Thanks to Jordan Taylor, LBNL, for his contribution to the project. Also thanks to the Department of Energy (DOE) for their support.
Slope coefficient for the three cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Source to detector distance</th>
<th>Position of the accelerating plate</th>
<th>Vertical deflection vs Magnetic field slope at different accelerating plate voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>1 mm</td>
<td>Front of the sensor</td>
<td>0.584 0.841 1.103</td>
</tr>
<tr>
<td>Case B</td>
<td>1 mm</td>
<td>Behind the sensor</td>
<td>0.478 0.554 0.575</td>
</tr>
<tr>
<td>Case C</td>
<td>10 mm</td>
<td>Front of the sensor</td>
<td>0.308 0.353 0.347</td>
</tr>
</tbody>
</table>