Structure of magnetic field quantization in viscosity expression for relativistic fluid

Snigdha Ghosh

Government General Degree College at Kharagpur-II,
Madpur, Paschim Medinipur - 721149,
West Bengal, India

DAE-BRNS HEP Symposium, NISER, Jatni
14-18 December 2020
Outline

1. Introduction & Motivation
2. Spectral Function of the EMT
3. Viscous Coefficients from the Spectral Function
4. Results
Outline

1. Introduction & Motivation

2. Spectral Function of the EMT

3. Viscous Coefficients from the Spectral Function

4. Results
Introduction & Motivation

The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades. Where does such a state might exist?

- The microsecond old universe after big-bang.
- The core of a neutron star.

Can we create such a state in the laboratory?

- YES: In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic fields are created ($eB \sim 15 \text{ m}^2\pi$ or $B \sim 5 \times 10^{15}$ Tesla).

Thus, in a HIC, we create hot and dense 'strongly' interacting magnetized matter. Many exotic effects/phenomenon can take place:

- Chiral Magnetic Effect (CME)
- Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
- Superconductivity of the Vacuum.

In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.
- Can we create such a state in the laboratory?
 - YES: In the Heavy ion collision (HIC) experiments.
- In a HIC, we create hot and dense 'strongly' interacting magnetized matter. Many exotic effects/phenomena can take place:
 - Chiral Magnetic Effect (CME)
 - Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
 - Superconductivity of the Vacuum.

In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.
- Where does such a state might exist?

- The microsecond old universe after big-bang.
- The core of a neutron star.
- Can we create such a state in the laboratory?
 - YES: In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic fields are created ($eB\sim15\text{ m}^2\pi$ or $B\sim5\times10^{15}\text{ Tesla}$).

Thus, in a HIC, we create hot and dense 'strongly' interacting magnetized matter. Many exotic effects/phenomenon can take place:

- Chiral Magnetic Effect (CME)
- Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
- Superconductivity of the Vacuum.

In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.
- Where does such a state might exist?
 - The microsecond old universe after big-bang.

In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.

- Can we create such a state in the laboratory?
 - YES: In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic fields are created ($eB \sim 15 \text{ m}^2/\text{π}$ or $B \sim 5 \times 10^{15}$ Tesla).

Thus, in a HIC, we create hot and dense 'strongly' interacting magnetized matter. Many exotic effects/phenomenon can take place:

- Chiral Magnetic Effect (CME)
- Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
- Superconductivity of the Vacuum.

In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

Where does such a state might exist?
- The microsecond old universe after big-bang.
- The core of a neutron star.

Can we create such a state in the laboratory?
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.

- Can we create such a state in the laboratory?
 - **YES**: In the Heavy ion collision (HIC) experiments.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.

- Can we create such a state in the laboratory?
 - **YES**: In the Heavy ion collision (HIC) experiments.

- However, in a non-central or asymmetric HIC, extremely high magnetic fields are created \((eB \sim 15m_\pi^2 \text{ or } B \sim 5 \times 10^{15} \text{ Tesla}) \).
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.

- Can we create such a state in the laboratory?
 - **YES**: In the Heavy ion collision (HIC) experiments.

- However, in a non-central or asymmetric HIC, extremely high magnetic fields are created ($eB \sim 15m^2_\pi$ or $B \sim 5 \times 10^{15}$ Tesla).

- Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized matter. Many exotic effects/phenomenon can take place:
The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

Where does such a state might exist?
* The microsecond old universe after big-bang.
* The core of a neutron star.

Can we create such a state in the laboratory?
* **YES** : In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic fields are created \((eB \sim 15m^2_\pi \text{ or } B \sim 5 \times 10^{15} \text{ Tesla}) \).

Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized matter. Many exotic effects/phenomenon can take place:
* Chiral Magnetic Effect (CME)
The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

Where does such a state might exist?
- The microsecond old universe after big-bang.
- The core of a neutron star.

Can we create such a state in the laboratory?
- **YES**: In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic fields are created \(eB \sim 15m^2_\pi \) or \(B \sim 5 \times 10^{15} \) Tesla.

Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized matter. Many exotic effects/phenomenon can take place:
- Chiral Magnetic Effect (CME)
- Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.
- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.
- Can we create such a state in the laboratory?
 - **YES**: In the Heavy ion collision (HIC) experiments.
- However, in a non-central or asymmetric HIC, extremely high magnetic fields are created \((eB \sim 15m^2_\pi \text{ or } B \sim 5 \times 10^{15} \text{ Tesla}) \).
- Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized matter. Many exotic effects/phenomenon can take place:
 - Chiral Magnetic Effect (CME)
 - Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
 - Superconductivity of the Vacuum.
Introduction & Motivation

- The study of the nuclear matter under extreme conditions of temperature and/or density has been a subject of intense investigation over the past few decades.

- Where does such a state might exist?
 - The microsecond old universe after big-bang.
 - The core of a neutron star.

- Can we create such a state in the laboratory?
 - **YES**: In the Heavy ion collision (HIC) experiments.

- However, in a non-central or asymmetric HIC, extremely high magnetic fields are created \((eB \sim 15m_\pi^2)\) or \(B \sim 5 \times 10^{15}\) Tesla.

- Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized matter. Many exotic effects/phenomenon can take place:
 - Chiral Magnetic Effect (CME)
 - Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
 - Superconductivity of the Vacuum.

- In this work, we aim to study the transport properties (mainly the calculation of the viscous coefficients) of a hot and magnetized Bosonic and Fermionic systems using the Kubo Formalism.
Outline

1. Introduction & Motivation
2. Spectral Function of the EMT
3. Viscous Coefficients from the Spectral Function
4. Results
Spectral Function of the EMT at $B = 0$

The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho_{\mu\nu\alpha\beta}(q)$, given by

$$\rho_{\mu\nu\alpha\beta}(q) = \text{Im} i \int d^4 x e^{iq \cdot x} \langle T_{\mu\nu}(x) T_{\alpha\beta}(0) \rangle_R.$$

$T_{\mu\nu}(x)$: Local Energy Momentum Tensor (EMT)
$\langle \cdot \cdot \cdot \rangle_R$: Ensemble average of the retarded two point correlation function.

Free Lagrangian (densities):
- $L_{\text{Scalar}} = \partial_\mu \phi^\dagger \partial^\mu \phi - m^2 \phi^\dagger \phi$,
- $L_{\text{Dirac}} = i \frac{1}{2} (\psi \gamma_\mu \partial^\mu \psi - \partial^\mu \psi \gamma_\mu \psi) - m \bar{\psi} \psi$.

Symmetric EMTs can be constructed out of the above Lagrangians as

$$T_{\mu\nu}^{\text{Scalar}} = \partial_\mu \phi^\dagger \partial_\nu \phi - \frac{1}{2} g_{\mu\nu} L_{\text{Scalar}} + (\mu \leftrightarrow \nu),$$
$$T_{\mu\nu}^{\text{Dirac}} = i \frac{1}{4} (\psi \gamma_\mu \partial_\nu \psi - \partial_\nu \psi \gamma_\mu \psi) - \frac{1}{2} g_{\mu\nu} L_{\text{Dirac}} + (\mu \leftrightarrow \nu).$$
Spectral Function of the EMT at $B = 0$

- The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho^{\mu\nu\alpha\beta}(q)$, given by

$$\rho^{\mu\nu\alpha\beta}(q) = \text{Im } i \int d^4 x e^{i q \cdot x} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle_R.$$
Spectral Function of the EMT at $B = 0$

- The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho^{\mu\nu\alpha\beta}(q)$, given by

$$\rho^{\mu\nu\alpha\beta}(q) = \text{Im} \ i \int d^4x e^{i q \cdot x} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle_R.$$

- $T^{\mu\nu}(x)$: Local Energy Momentum Tensor (EMT)
Spectral Function of the EMT at $B = 0$

- The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho^{\mu\nu\alpha\beta}(q)$, given by

$$
\rho^{\mu\nu\alpha\beta}(q) = \text{Im} \ i \int d^4 x e^{i q \cdot x} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle_R .
$$

- $T^{\mu\nu}(x)$: Local Energy Momentum Tensor (EMT)
- $\langle \cdots \rangle_R$: Ensemble average of the retarded two point correlation function.
The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho^{\mu\nu\alpha\beta}(q)$, given by

$$\rho^{\mu\nu\alpha\beta}(q) = \text{Im} \ i \int d^4 x e^{i q \cdot x} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle_R .$$

- $T^{\mu\nu}(x)$: Local Energy Momentum Tensor (EMT)
- $\langle \cdots \rangle_R$: Ensemble average of the retarded two point correlation function.
- Free Lagrangian (densities):
 $$\mathcal{L}_{\text{Scalar}} = \partial^\mu \phi^\dagger \partial_\mu \phi - m^2 \phi^\dagger \phi ,$$
 $$\mathcal{L}_{\text{Dirac}} = \frac{i}{2} \left(\bar{\psi} \gamma^\mu \partial_\mu \psi - \partial_\mu \bar{\psi} \gamma^\mu \psi \right) - m \bar{\psi} \psi .$$
Spectral Function of the EMT at $B = 0$

- The key microscopic quantity to calculate the viscous coefficients is the in-medium spectral function $\rho_{\mu\nu\alpha\beta}(q)$, given by

$$\rho_{\mu\nu\alpha\beta}(q) = \text{Im} \ i \int d^4 x e^{i q \cdot x} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle_R .$$

- $T^{\mu\nu}(x)$: Local Energy Momentum Tensor (EMT)
- $\langle \cdots \rangle_R$: Ensemble average of the retarded two point correlation function.
- Free Lagrangian (densities):

$$L_{\text{Scalar}} = \partial^\mu \phi^\dagger \partial_\mu \phi - m^2 \phi^\dagger \phi ,$$

$$L_{\text{Dirac}} = \frac{i}{2} (\bar{\psi} \gamma^\mu \partial_\mu \psi - \partial_\mu \bar{\psi} \gamma^\mu \psi) - m \bar{\psi} \psi .$$

- Symmetric EMTs can be constructed out of the above Lagrangians as

$$T^{\mu\nu}_{\text{Scalar}} = \partial^\mu \phi^\dagger \partial^\nu \phi - \frac{1}{2} g^{\mu\nu} L_{\text{Scalar}} + (\mu \leftrightarrow \nu) ,$$

$$T^{\mu\nu}_{\text{Dirac}} = \frac{i}{4} (\bar{\psi} \gamma^\mu \partial^\nu \psi - \partial^\nu \bar{\psi} \gamma^\mu \psi) - \frac{1}{2} g^{\mu\nu} L_{\text{Dirac}} + (\mu \leftrightarrow \nu) .$$
Spectral Function of the EMT at $B = 0$

Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory. In the static limit:

$$S_{\mu\nu\alpha\beta} = \frac{\partial \rho_{\mu\nu\alpha\beta}}{\partial q_0} \bigg| \begin{array}{c} \vec{q} = \vec{0}, q_0 \to 0 \end{array} \right.$$

where,

$$\omega_k = \sqrt{\vec{k}^2 + m^2},$$

$$f_a(x) = \left[e^{x/T} - a \right]^{-1}$$

This interaction is introduced by considering finite values of Γ for a dissipative system. This Γ can be identified as the thermal width or collision rate of the constituent particles.
Spectral Function of the EMT at $B = 0$

- Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory.

\[S_{\mu\nu\alpha\beta} = \frac{\partial \rho_{\mu\nu\alpha\beta}}{\partial q_0} \bigg|_{\vec{q} = \vec{q}_0, q_0 \to 0} = \lim_{\Gamma \to 0} \frac{1}{T} \int d^3 k (2\pi)^3 \frac{1}{4} \omega^2 k \Gamma f_a(\omega_k) \{ a + f_a(\omega_k) \} \times [N_{\mu\nu\alpha\beta}(k,k) \bigg|_{k_0 = \omega k + \frac{N_{\mu\nu\alpha\beta}(k,k)}{k_0 = -\omega k} }] \]

where,

\[\omega_k = \sqrt{\vec{k}^2 + m^2}, \quad f_a(x) = e^{x/T} - 1 \]

This interaction is introduced by considering finite values of Γ for a dissipative system. This Γ can be identified as the thermal width or collision rate of the constituent particles.
Spectral Function of the EMT at $B = 0$

- Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory.
- In the static limit:

$$S^{\mu\nu\alpha\beta} = \left. \frac{\partial \rho^{\mu\nu\alpha\beta}}{\partial q^0} \right|_{\vec{q}=\vec{0}, q^0 \to 0} = \lim_{\Gamma \to 0} \frac{1}{T} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{4\omega_k^2 \Gamma} f_a(\omega_k) \left\{ a + f_a(\omega_k) \right\} \times \left[N^{\mu\nu\alpha\beta}(k, k) \big|_{k^0 = \omega_k} + N^{\mu\nu\alpha\beta}(k, k) \big|_{k^0 = -\omega_k} \right]$$

This interaction is introduced by considering finite values of Γ for a dissipative system. This Γ can be identified as the thermal width or collision rate of the constituent particles.
Spectral Function of the EMT at $B = 0$

- Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory.

- In the static limit:

$$S^{\mu\nu\alpha\beta} = \frac{\partial \rho^{\mu\nu\alpha\beta}}{\partial q^0} \bigg|_{\vec{q} = \vec{0}} = \frac{1}{T} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{4\omega_k^2 \Gamma} f_a(\omega_k) \left\{ a + f_a(\omega_k) \right\}$$

$$\times \left[N^{\mu\nu\alpha\beta}(k, k) \bigg|_{k^0 = \omega_k} + N^{\mu\nu\alpha\beta}(k, k) \bigg|_{k^0 = -\omega_k} \right]$$

- where, $\omega_k = \sqrt{k^2 + m^2}$, $f_a(x) = [e^{x/T} - a]^{-1}$ and

$$N^{\mu\nu\alpha\beta}_{\text{Scalar}}(k, k) = 4k^\mu k^\nu k^\alpha k^\beta - 2(k^2 - m^2) g^{\mu\nu} k^\alpha k^\beta + g^{\alpha\beta} k^\mu k^\nu + (k^2 - m^2)^2 g^{\mu\nu} g^{\alpha\beta},$$

$$N^{\mu\nu\alpha\beta}_{\text{Dirac}}(k, k) = -8k^\mu k^\nu k^\alpha k^\beta + (k^2 - m^2) \left\{ g^{\mu\alpha} k^\nu k^\beta + g^{\nu\alpha} k^\mu k^\beta + g^{\mu\beta} k^\nu k^\alpha + g^{\nu\beta} k^\mu k^\alpha + 4g^{\mu\nu} k^\alpha k^\beta + 4g^{\alpha\beta} k^\mu k^\nu \right\} - 4(k^2 - m^2)^2 g^{\mu\nu} g^{\alpha\beta}.$$
Spectral Function of the EMT at $B = 0$

- Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory.
- In the static limit:
 \[
 S^{\mu\nu\alpha\beta} = \frac{\partial \rho^{\mu\nu\alpha\beta}}{\partial q^0} \bigg|_{q = \delta, q^0 \to 0} = \lim_{\Gamma \to 0} \frac{1}{T} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{4\omega_k^2 \Gamma} f_a(\omega_k) \{ a + f_a(\omega_k) \} \times \left[N^{\mu\nu\alpha\beta}(k, k) \bigg|_{k^0 = \omega_k} + N^{\mu\nu\alpha\beta}(k, k) \bigg|_{k^0 = -\omega_k} \right]
 \]

- where, $\omega_k = \sqrt{k^2 + m^2}$, $f_a(x) = [e^{x/T} - a]^{-1}$ and
 \[
 N^{\mu\nu\alpha\beta}_{\text{Scalar}}(k, k) = 4k^\mu k^\nu k^\alpha k^\beta + 2(k^2 - m^2)g^{\mu\nu} k^\alpha k^\beta + g^{\alpha\beta} k^\mu k^\nu + (k^2 - m^2)^2 g^{\mu\nu} g^{\alpha\beta},
 \]
 \[
 N^{\mu\nu\alpha\beta}_{\text{Dirac}}(k, k) = -8k^\mu k^\nu k^\alpha k^\beta + (k^2 - m^2) \{ g^{\mu\alpha} k^\nu k^\beta + g^{\nu\alpha} k^\mu k^\beta + g^{\mu\beta} k^\nu k^\alpha + g^{\nu\beta} k^\mu k^\alpha + 4g^{\mu\nu} k^\alpha k^\beta + 4g^{\alpha\beta} k^\mu k^\nu \} - 4(k^2 - m^2)^2 g^{\mu\nu} g^{\alpha\beta}.
 \]

- This is interaction is introduced by considering finite values of Γ for a dissipative system.
Spectral Function of the EMT at $B = 0$

Calculation of the spectral function at finite temperature is done employing the Real Time Formalism of Finite Temperature Field Theory.

In the static limit:

$$S^{\mu \nu \alpha \beta} = \frac{\partial \rho^{\mu \nu \alpha \beta}}{\partial q^0} \bigg|_{q=0, q^0 \to 0} = \lim_{\Gamma \to 0} \frac{1}{T} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{4\omega_k^2 \Gamma} f_a(\omega_k) \{ a + f_a(\omega_k) \}$$

$$\times \left[N^{\mu \nu \alpha \beta}(k, k) \bigg|_{k^0=\omega_k} + N^{\mu \nu \alpha \beta}(k, k) \bigg|_{k^0=-\omega_k} \right]$$

where, $\omega_k = \sqrt{k^2 + m^2}$, $f_a(x) = [e^{x/\Gamma} - a]^{-1}$ and

$$N^{\mu \nu \alpha \beta}_{\text{Scalar}}(k, k) = 4k^\mu k^\nu k^\alpha k^\beta - 2(k^2 - m^2) g^{\mu \nu} k^\alpha k^\beta + g^{\alpha \beta} k^\mu k^\nu + (k^2 - m^2)^2 g^{\mu \nu} g^{\alpha \beta},$$

$$N^{\mu \nu \alpha \beta}_{\text{Dirac}}(k, k) = -8k^\mu k^\nu k^\alpha k^\beta + (k^2 - m^2) \{ g^{\mu \alpha} k^\nu k^\beta + g^{\nu \alpha} k^\mu k^\beta + g^{\mu \beta} k^\nu k^\alpha + g^{\nu \beta} k^\mu k^\alpha$$

$$+ 4g^{\mu \nu} k^\alpha k^\beta + 4g^{\alpha \beta} k^\mu k^\nu \} - 4(k^2 - m^2)^2 g^{\mu \nu} g^{\alpha \beta}.$$

This is interaction is introduced by considering finite values of Γ for a dissipative system.

This Γ can be identified as the thermal width or collision rate of the constituent particles.
Spectral Function of the EMT at $B \neq 0$

In presence of external electromagnetic field, described by the four-potential $A^{\mu}_{\text{ext}}(x)$, the Lagrangians:

- **Scalar Lagrangian**:
 $$L_{\text{Scalar}} = \bar{\phi} D^{\mu} \phi - m^2 \phi$$

- **Dirac Lagrangian**:
 $$L_{\text{Dirac}} = i \frac{2}{4} \left(\bar{\psi} \gamma^{\mu} D_{\mu} \psi - D^{\mu} \bar{\psi} \gamma^{\mu} \psi \right) - m \bar{\psi} \psi$$

$D^{\mu} = \partial^{\mu} + ie A^{\mu}_{\text{ext}}(x)$ and $D^{\ast \mu} = \partial^{\mu} - ie A^{\mu}_{\text{ext}}(x)$ are the covariant derivatives.

Symmetric EMTs are:

- **Scalar EMT**:
 $$T^{\mu \nu}_{\text{Scalar}} = \bar{\phi} D^{\ast \mu} \phi D^{\nu} \phi - \frac{1}{2} g^{\mu \nu} L_{\text{Scalar}} + (\mu \leftrightarrow \nu)$$

- **Dirac EMT**:
 $$T^{\mu \nu}_{\text{Dirac}} = i \frac{2}{4} \left(\bar{\psi} \gamma^{\mu} D_{\nu} \psi - D^{\nu} \bar{\psi} \gamma^{\mu} \psi \right) - \frac{1}{2} g^{\mu \nu} L_{\text{Dirac}} + (\mu \leftrightarrow \nu)$$
In presence of external electromagnetic field, described by the four-potential \(A^\mu_{\text{ext}}(x) \), the Lagrangians:

\[
\mathcal{L}_{\text{Scalar}} = D^*\phi^\dagger D_\mu \phi - m^2 \phi^\dagger \phi , \\
\mathcal{L}_{\text{Dirac}} = \frac{i}{2} \left(\bar{\psi} \gamma^\mu D_\mu \psi - D^*\mu \bar{\psi} \gamma^\mu \psi \right) - m\bar{\psi}\psi .
\]
In presence of external electromagnetic field, described by the four-potential $A^\mu_{\text{ext}}(x)$, the Lagrangians:

$$\mathcal{L}_{\text{Scalar}} = D^*\mu \phi^\dagger D_\mu \phi - m^2 \phi^\dagger \phi ,$$

$$\mathcal{L}_{\text{Dirac}} = \frac{i}{2} \left(\overline{\psi} \gamma^\mu D_\mu \psi - D^*\mu \overline{\psi} \gamma^\mu \psi \right) - m \overline{\psi} \psi .$$

$D^\mu = \partial^\mu + ie A^\mu_{\text{ext}}(x)$ and $D^*\mu = \partial^\mu - ie A^\mu_{\text{ext}}(x)$ are the covariant derivatives.
Spectral Function of the EMT at $B \neq 0$

- In presence of external electromagnetic field, described by the four-potential $A^\mu_{\text{ext}}(x)$, the Lagrangians:

\[
\mathcal{L}_{\text{Scalar}} = D^*\mu \phi^\dagger D_\mu \phi - m^2 \phi^\dagger \phi ,
\]
\[
\mathcal{L}_{\text{Dirac}} = \frac{i}{2} \left(\overline{\psi} \gamma^\mu D_\mu \psi - D^*\mu \overline{\psi} \gamma^\mu \psi \right) - m \overline{\psi} \psi .
\]

- $D^\mu = \partial^\mu + ieA^\mu_{\text{ext}}(x)$ and $D^*\mu = \partial^\mu - ieA^\mu_{\text{ext}}(x)$ are the covariant derivatives.

- Symmetric EMTs are:

\[
T^{\mu\nu}_{\text{Scalar}} = D^*\mu \phi^\dagger D^\nu \phi - \frac{1}{2} g^{\mu\nu} \mathcal{L}_{\text{Scalar}} + (\mu \leftrightarrow \nu) ,
\]
\[
T^{\mu\nu}_{\text{Dirac}} = \frac{i}{4} \left(\overline{\psi} \gamma^\mu D^\nu \psi - D^*\nu \overline{\psi} \gamma^\mu \psi \right) - \frac{1}{2} g^{\mu\nu} \mathcal{L}_{\text{Dirac}} + (\mu \leftrightarrow \nu) .
\]
Calculation of the spectral function at finite magnetic field is done employing the Schwinger Proper-time Formalism. In the static limit:

\[S_{\mu\nu\alpha\beta} = \lim_{\Gamma \to 0} \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{2} T \int d^3k (2\pi)^3 \frac{1}{2} \left(\omega_{kl} - \omega_{kn} \right)^2 + \Gamma^2 \left\{ a f_a \left(\omega_{kl} \right) + a f_a \left(\omega_{kn} \right) + 2 f_a \left(\omega_{kl} \right) f_a \left(\omega_{kn} \right) \right\} \]

\[N_{\mu\nu\alpha\beta} \ln \left(\frac{k}{k_0} \right) \mid \left| k_0 = \omega_{kl} + N_{\mu\nu\alpha\beta} \ln \left(\frac{k}{k_0} \right) \mid \right| k_0 = -\omega_{kl} \]

where, \(\omega_{kl} = \sqrt{k^2 z + (2l + 1 - 2s) eB + m^2} \) and \(N_{\mu\nu\alpha\beta} \); Scalar \((k,k) = 4A \ln \left(\frac{k_2}{k_\perp} \right) \{
\begin{align*}
4k_\mu k_\nu k_\alpha k_\beta &- 2(k^2 - m^2)(g_\mu\nu k_\alpha k_\beta + g_\alpha\beta k_\mu k_\nu) + (k^2 - m^2)^2 g_\mu\nu g_\alpha\beta \\
&+ g_\mu\nu g_\alpha\beta k^2_{\perp} (k_\alpha - k_\parallel) - g_\alpha\beta k_\nu k_\mu_{\perp} (k_\alpha - k_\parallel) + 2 g_\mu\nu g_\alpha\beta k^2_{\perp}
\end{align*}\}
\]

\(N_{\mu\nu\alpha\beta} \); Dirac \((k,k) = -16B \ln \left(\frac{k_2}{k_\perp} \right) \{
\begin{align*}
k_\nu k_\beta (2k_\mu k_\perp k_\alpha - g_\mu\nu k_\perp (k_\alpha - k_\parallel)) &- g_\mu\nu k_\beta k^2_{\perp} (k_\alpha - k_\parallel) - g_\alpha\beta k_\nu k_\mu_{\perp} (k_\alpha - k_\parallel) + 2 g_\mu\nu g_\alpha\beta k^2_{\perp} \\
&+ (k_2 - m^2) g_\mu\nu g_\alpha\beta k^2_{\perp}
\end{align*}\}
\]

\(-2C \ln \left(\frac{k_2}{k_\perp} \right) \{
\begin{align*}
k_\nu k_\beta (2k_\mu_{\perp} k_\alpha - g_\mu\nu k_\perp (k_\alpha - k_\parallel)) &- g_\mu\nu k_\beta k^2_{\perp} (k_\alpha - k_\parallel) - g_\alpha\beta k_\nu k_\mu_{\perp} (k_\alpha - k_\parallel) + 2 g_\mu\nu g_\alpha\beta k^2_{\perp} \\
&+ (k_2 - m^2) g_\mu\nu g_\alpha\beta k^2_{\perp}
\end{align*}\}
\]
Spectral Function of the EMT at $B \neq 0$

- Calculation of the spectral function at finite magnetic field is done employing the Schwinger Proper-time Formalism.
Spectral Function of the EMT at $B \neq 0$

- Calculation of the spectral function at finite magnetic field is done employing the Schwinger Proper-time Formalism.
- In the static limit:

$$S_{\mu \nu \alpha \beta} = \lim_{\Gamma \to 0} \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{2T} \int \frac{d^3k}{(2\pi)^3} \frac{1}{4\omega_{kl}\omega_{kn}} \frac{\Gamma}{(\omega_{kl} - \omega_{kn})^2 + \Gamma^2} \left\{ a f_a(\omega_{kl}) + a f_a(\omega_{kn})
ight\}$$

$$+ 2 f_a(\omega_{kl}) f_a(\omega_{kn}) \left[N_{ln}^{\mu \nu \alpha \beta}(k, k) \bigg|_{k^0 = \omega_{kl}} + N_{ln}^{\mu \nu \alpha \beta}(k, k) \bigg|_{k^0 = -\omega_{kl}} \right]$$
Spectral Function of the EMT at $B \neq 0$

- Calculation of the spectral function at finite magnetic field is done employing the Schwinger Proper-time Formalism.
- In the static limit:

$$S^{\mu\nu\alpha\beta} = \lim_{\Gamma \to 0} \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{2T} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{4\omega_{kl}\omega_{kn}} \frac{\Gamma}{(\omega_{kl} - \omega_{kn})^2 + \Gamma^2} \{ a f_a(\omega_{kl}) + a f_a(\omega_{kn}) $$

$$+ 2 f_a(\omega_{kl}) f_a(\omega_{kn}) \} \left[N^{\mu\nu\alpha\beta}_{ln}(k,k) \bigg|_{k^0=\omega_{kl}} + N^{\mu\nu\alpha\beta}_{ln}(k,k) \bigg|_{k^0=-\omega_{kl}} \right]$$

- where, $\omega_{kl} = \sqrt{k^2_z + (2l + 1 - 2s)eB + m^2}$ and

$$N^{\mu\nu\alpha\beta}_{ln;\text{Scalar}}(k,k) = 4 A_{ln}(k^2_\perp) \left\{ 4 k^\mu k^\nu k^\alpha k^\beta - 2(k^2 - m^2)(g^{\mu\nu} k^\alpha k^\beta + g^{\alpha\beta} k^\mu k^\nu) $$

$$+ (k^2 - m^2)^2 g^{\mu\nu} g^{\alpha\beta} \right\}$$

$$N^{\mu\nu\alpha\beta}_{ln;\text{Dirac}}(k,k) = -16 B_{ln}(k^2_\perp) \left[k^\nu k^\beta (2 k^\mu_\perp k^\alpha_\perp - k^2_\perp g^{\mu\alpha}) - g^{\mu\nu} k^\alpha k^\beta_\perp (k^\perp_\alpha - k^\alpha_\perp) - g^{\alpha\beta} k^\nu k^\beta k^\perp_\alpha (k^\mu_\perp - k^\mu_\perp) $$

$$+ g^{\mu\nu} g^{\alpha\beta} k^\mu_\perp k^\perp_\alpha (k^2_\perp - k^2_\perp + m^2) \right] - 2 C_{ln}(k^2_\perp) \left[k^\nu k^\beta \{ 2 k^\mu_\perp k^\alpha_\perp - (k^2 - m^2) g^{\mu\alpha} \} - (k^2 - m^2) g^{\mu\nu} k^\alpha k^\beta_\perp $$

$$- (k^2 - m^2) g^{\alpha\beta} k^\nu k^\perp_\mu + g^{\mu\nu} g^{\alpha\beta} (k^2_\perp - m^2)^2 \right] - 2 D_{ln}(k^2_\perp)(k^2_\perp - m^2) \left[k^\nu k^\beta g^{\mu\alpha}_\perp - g^{\mu\nu} k^\beta k^\perp_\alpha $$

$$- g^{\alpha\beta} k^\nu k^\mu_\perp + g^{\mu\nu} g^{\alpha\beta} k^2_\perp \right] - 4 E_{ln}(k^2_\perp) \left[k^\nu k^\beta (k^\mu_\perp k^\alpha_\perp + k^\mu_\perp k^\alpha_\perp) - g^{\mu\nu} k^\beta \{ (k^2_\perp - m^2) k^\alpha_\perp + k^2_\perp k^\alpha_\perp \} $$

$$- g^{\alpha\beta} k^\nu \{ (k^2_\perp - m^2) k^\mu_\perp + k^2_\perp k^\mu_\perp \} + 2 g^{\mu\nu} g^{\alpha\beta} k^2_\perp (k^2_\perp - m^2) \right] + (\mu \leftrightarrow \nu) + (\alpha \leftrightarrow \beta) + (\mu \leftrightarrow \nu, \alpha \leftrightarrow \beta)$
Outline

1. Introduction & Motivation

2. Spectral Function of the EMT

3. Viscous Coefficients from the Spectral Function

4. Results
Viscosities at $B = 0$

Owing to the Kubo relation the viscous coefficients (shear and bulk) can be calculated from the spectral functions of the EMT.

The shear viscosity (η) and the bulk viscosity (ζ) are obtained from

$$\nu = P(\nu)_{\mu \nu \alpha \beta} S_{\mu \nu \alpha \beta};$$

where,

$$P(\eta)_{\mu \nu \alpha \beta} = \frac{1}{10} (\Delta \sigma_{\mu} \Delta \rho_{\nu} - \frac{1}{3} \Delta \sigma_{\rho} \Delta \mu_{\nu}) (\Delta \sigma_{\alpha} \Delta \rho_{\beta} - \frac{1}{3} \Delta \sigma_{\rho} \Delta \alpha_{\beta}),$$

$$P(\zeta)_{\mu \nu \alpha \beta} = \left(\frac{1}{3} \Delta \rho_{\mu} \rho_{\nu} + \theta u_{\mu} u_{\nu} \right) \left(\frac{1}{3} \Delta \rho_{\alpha} \rho_{\beta} + \theta u_{\alpha} u_{\beta} \right),$$

in which $\Delta_{\mu \nu} = (g_{\mu \nu} - u_{\mu} u_{\nu})$, $\theta = \left(\frac{\partial P}{\partial \epsilon} \right)$, P is the pressure and ϵ is the energy density of the system being considered.
Owing to the Kubo relation the viscous coefficients (shear and bulk) can be calculated from the spectral functions of the EMT.
Viscosities at $B = 0$

- Owing to the Kubo relation the viscous coefficients (shear and bulk) can be calculated from the spectral functions of the EMT.
- The shear viscosity (η) and the bulk viscosity (ζ) are obtained from

$$\nu = \mathcal{P}^{(\nu)}_{\mu\nu\alpha\beta} S^{\mu\nu\alpha\beta} \quad ; \quad \nu \in \{\eta, \zeta\}$$
Viscosities at $B = 0$

- Owing to the Kubo relation the viscous coefficients (shear and bulk) can be calculated from the spectral functions of the EMT.

- The shear viscosity (η) and the bulk viscosity (ζ) are obtained from

$$\nu = \mathcal{P}^{(\nu)}_{\mu\nu\alpha\beta} S^{\mu\nu\alpha\beta} ; \; \nu \in \{\eta, \zeta\}$$

- where,

$$\mathcal{P}^{(\eta)}_{\mu\nu\alpha\beta} = \frac{1}{10} \left(\Delta^\sigma \Delta^\rho - \frac{1}{3} \Delta^\sigma \Delta_{\mu\nu} \right) \left(\Delta_{\sigma\alpha} \Delta_{\rho\beta} - \frac{1}{3} \Delta_{\sigma\rho} \Delta_{\alpha\beta} \right),$$

$$\mathcal{P}^{(\zeta)}_{\mu\nu\alpha\beta} = \left(\frac{1}{3} \Delta_{\mu\nu} + \theta u_{\mu} u_{\nu} \right) \left(\frac{1}{3} \Delta_{\alpha\beta} + \theta u_{\alpha} u_{\beta} \right),$$
Viscosities at $B = 0$

- Owing to the Kubo relation the viscous coefficients (shear and bulk) can be calculated from the spectral functions of the EMT.
- The shear viscosity (η) and the bulk viscosity (ζ) are obtained from

$$\nu = P_{\mu\nu\alpha\beta}^{(\nu)} S^{\mu\nu\alpha\beta} \quad ; \quad \nu \in \{\eta, \zeta\}$$

- where,

$$P_{\mu\nu\alpha\beta}^{(\eta)} = \frac{1}{10} \left(\Delta^\sigma \Delta^\rho - \frac{1}{3} \Delta^\sigma \Delta_{\mu\nu} \right) \left(\Delta_{\sigma\alpha} \Delta_{\rho\beta} - \frac{1}{3} \Delta_{\sigma\rho} \Delta_{\alpha\beta} \right),$$

$$P_{\mu\nu\alpha\beta}^{(\zeta)} = \left(\frac{1}{3} \Delta_{\mu\nu} + \theta u_\mu u_\nu \right) \left(\frac{1}{3} \Delta_{\alpha\beta} + \theta u_\alpha u_\beta \right),$$

- in which $\Delta^{\mu\nu} = (g^{\mu\nu} - u^{\mu} u^{\nu})$, $\theta = \left(\frac{\partial P}{\partial \varepsilon} \right)$, P is the pressure and ε is the energy density of the system being considered.
Viscosities at $B = 0$

Simplifications yields the final well known expressions:

\[\eta_{\text{Scalar}} = 2 \frac{1}{15} T \int \frac{d^3k}{(2\pi)^3} \frac{\vec{k}^4}{\omega^2 k \Gamma f(\omega k)} \left\{ 1 + f(\omega k) \right\}, \]

\[\eta_{\text{Dirac}} = 4 \frac{1}{15} T \int \frac{d^3k}{(2\pi)^3} \frac{\vec{k}^4}{\omega^2 k \Gamma \tilde{f}(\omega k)} \left\{ 1 - \tilde{f}(\omega k) \right\}, \]

\[\zeta_{\text{Scalar}} = 2 \frac{2}{9} T \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega^2 k \Gamma} \left\{ m^2 + (3\theta - 1) \omega^2 k \right\}^2 f(\omega k) \left\{ 1 + f(\omega k) \right\}, \]

\[\zeta_{\text{Dirac}} = 4 \frac{2}{9} T \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega^2 k \Gamma} \left\{ m^2 + (3\theta - 1) \omega^2 k \right\}^2 \tilde{f}(\omega k) \left\{ 1 - \tilde{f}(\omega k) \right\}. \]
Viscosities at \(B = 0 \)

- Simplifications yields the final well known expressions:

\[
\eta_{\text{Scalar}} = \frac{2}{15T} \int \frac{d^3k}{(2\pi)^3} \frac{\vec{k}^4}{\omega_k^2 \Gamma} f(\omega_k) \left\{ 1 + f(\omega_k) \right\},
\]

\[
\eta_{\text{Dirac}} = \frac{4}{15T} \int \frac{d^3k}{(2\pi)^3} \frac{\vec{k}^4}{\omega_k^2 \Gamma} \tilde{f}(\omega_k) \left\{ 1 - \tilde{f}(\omega_k) \right\},
\]

\[
\zeta_{\text{Scalar}} = \frac{2}{9T} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k^2 \Gamma} \left\{ m^2 + (3\theta - 1)\omega_k^2 \right\}^2 f(\omega_k) \left\{ 1 + f(\omega_k) \right\},
\]

\[
\zeta_{\text{Dirac}} = \frac{4}{9T} \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k^2 \Gamma} \left\{ m^2 + (3\theta - 1)\omega_k^2 \right\}^2 \tilde{f}(\omega_k) \left\{ 1 - \tilde{f}(\omega_k) \right\}.
\]
Viscosities at $B \neq 0$

At $B \neq 0$, one can get five shear viscosity coefficients $\eta_n (n = 0, 1, 2, 3, 4)$ and two bulk viscosity coefficients $\zeta_\perp, \zeta_\parallel$. The shear and the bulk viscous coefficients are obtained from

$$\nu = -\xi(\nu) \eta_0 + P(\nu) \mu_{\alpha\beta} S_{\mu\nu\alpha\beta};$$

where,

$$\xi(\nu) = \begin{cases}
4/3 & \text{if } \nu = \eta_1 \\
1 & \text{if } \nu = \eta_2 \\
0 & \text{otherwise}
\end{cases}$$

and $P(\nu)_{\mu\nu\alpha\beta}$ are given by

$$P(\eta_0)_{\mu\nu\alpha\beta} = \frac{1}{4} (\xi_{\sigma\mu} \xi_{\rho\nu} - \frac{1}{2} \xi_{\sigma\rho} \xi_{\mu\nu}) (\xi_{\sigma\alpha} \xi_{\rho\beta} - \frac{1}{2} \xi_{\sigma\rho} \xi_{\alpha\beta})$$,

$$P(\eta_1)_{\mu\nu\alpha\beta} = 2 (b_{\mu} b_{\nu} - \theta u_{\mu} u_{\nu}) (\frac{1}{2} \xi_{\alpha\beta} + (\theta + \phi) u_{\alpha} u_{\beta})$$,

$$P(\eta_2)_{\mu\nu\alpha\beta} = -\frac{1}{2} \xi_{\sigma\mu} b_{\nu} \xi_{\sigma\alpha} b_{\beta}$$,

$$P(\eta_3)_{\mu\nu\alpha\beta} = -\frac{1}{8} (\xi_{\sigma\mu} \xi_{\rho\nu} - \frac{1}{2} \xi_{\sigma\rho} \xi_{\mu\nu}) b_{\lambda} \sigma (\xi_{\lambda\alpha} \xi_{\rho\beta} - \frac{1}{2} \xi_{\lambda\rho} \xi_{\alpha\beta})$$,

$$P(\eta_4)_{\mu\nu\alpha\beta} = \frac{1}{2} b_{\rho} \sigma \xi_{\rho\mu} b_{\nu} \xi_{\sigma\alpha} b_{\beta}$$,

$$P(\zeta_\perp)_{\mu\nu\alpha\beta} = \frac{1}{3} (\Delta_{\mu\nu} + (3 \theta + 2 \phi) u_{\mu} u_{\nu}) (\frac{1}{2} \xi_{\alpha\beta} + (\theta + \phi) u_{\alpha} u_{\beta})$$,

$$P(\zeta_\parallel)_{\mu\nu\alpha\beta} = -\frac{1}{3} (\Delta_{\mu\nu} + (\theta + 2 \phi) u_{\mu} u_{\nu}) (b_{\alpha} b_{\beta} - \theta u_{\alpha} u_{\beta})$$.
Viscosities at $B \neq 0$

- At $B \neq 0$, one can get five shear viscosity coefficients η_n ($n = 0, 1, 2, 3, 4$) and two bulk viscosity coefficients $\zeta_{\perp, \parallel}$.
Viscosities at $B \neq 0$

- At $B \neq 0$, one can get five shear viscosity coefficients η_n \(n = 0, 1, 2, 3, 4\) and two bulk viscosity coefficients $\zeta_{\perp, \parallel}$.
- The shear and the bulk viscous coefficients are obtained from

\[
u = -\xi^{(v)} \eta_0 + P^{(v)}_{\mu\nu\alpha\beta} S^{\mu\nu\alpha\beta}; \quad v \in \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_4, \zeta_{\perp}, \zeta_{\parallel}\}
\]
Viscosities at $B \neq 0$

- At $B \neq 0$, one can get five shear viscosity coefficients $\eta_n \ (n = 0, 1, 2, 3, 4)$ and two bulk viscosity coefficients $\zeta_\perp, \zeta_\parallel$.
- The shear and the bulk viscous coefficients are obtained from

$$
\nu = -\xi^{(v)} \eta_0 + \mathcal{P}^{(v)}_{\mu\nu\alpha\beta} \mathcal{S}^{\mu\nu\alpha\beta} \ ; \ \nu \in \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_4, \zeta_\perp, \zeta_\parallel\}
$$

where, $\xi^{(v)} = \begin{cases}
4/3 \text{ if } \nu = \eta_1 \\
1 \text{ if } \nu = \eta_2 \\
0 \text{ otherwise }
\end{cases}$ and $\mathcal{P}^{(v)}_{\mu\nu\alpha\beta}$ are given by

$$
\begin{align*}
\mathcal{P}^{(\eta_0)}_{\mu\nu\alpha\beta} &= \frac{1}{4} \left(\Xi^{\sigma\rho} \Xi_{\nu}^{\sigma\rho} - \frac{1}{2} \Xi^{\sigma\rho} \Xi_{\mu\nu}^{\sigma\rho} \right) \left(\Xi^{\sigma\alpha} \Xi_{\rho\beta}^{\sigma\rho} - \frac{1}{2} \Xi^{\sigma\rho} \Xi_{\alpha\beta}^{\sigma\rho} \right), \\
\mathcal{P}^{(\eta_1)}_{\mu\nu\alpha\beta} &= 2 \left(b_{\mu} b_{\nu} - \theta \ u_{\mu} u_{\nu} \right) \left(\frac{1}{2} \Xi_{\alpha\beta}^{\sigma\rho} + (\theta + \phi) \ u_{\alpha} u_{\beta} \right), \\
\mathcal{P}^{(\eta_2)}_{\mu\nu\alpha\beta} &= -\frac{1}{2} \Xi^{\sigma\rho} b_{\nu} \Xi^{\gamma\alpha} b_{\alpha}, \\
\mathcal{P}^{(\eta_3)}_{\mu\nu\alpha\beta} &= -\frac{1}{8} \left(\Xi^{\sigma\rho} \Xi_{\nu}^{\sigma\rho} - \frac{1}{2} \Xi^{\sigma\rho} \Xi_{\mu\nu}^{\sigma\rho} \right) b_{\lambda} \left(\Xi^{\lambda\alpha} \Xi_{\rho\beta}^{\lambda\rho} - \frac{1}{2} \Xi^{\lambda\rho} \Xi_{\alpha\beta}^{\lambda\rho} \right), \\
\mathcal{P}^{(\eta_4)}_{\mu\nu\alpha\beta} &= \frac{1}{2} b_{\rho\sigma} \Xi^{\rho\beta} \Xi^{\sigma\alpha} b_{\alpha}, \\
\mathcal{P}^{(\zeta_\perp)}_{\mu\nu\alpha\beta} &= \frac{1}{3} \left(\Delta_{\mu\nu} + (3\theta + 2\phi) \ u_{\mu} u_{\nu} \right) \left(\frac{1}{2} \Xi_{\alpha\beta}^{\sigma\rho} + (\theta + \phi) \ u_{\alpha} u_{\beta} \right), \\
\mathcal{P}^{(\zeta_\parallel)}_{\mu\nu\alpha\beta} &= -\frac{1}{3} \left(\Delta_{\mu\nu} + (\theta + 2\phi) \ u_{\mu} u_{\nu} \right) \left(b_{\alpha} b_{\beta} - \theta \ u_{\alpha} u_{\beta} \right).
\end{align*}
$$
Viscosities at $B \neq 0$

The viscous coefficients $\nu \in \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_4, \zeta_\perp, \zeta_\parallel\}$ at $B \neq 0$ are:

$$
\nu = \xi(\nu) \eta_0 + \infty \sum_{l=0}^{\infty} \sum_{n=0}^{1} T \int_{-\infty}^{\infty} dk z(2\pi)^{1/4} \omega_{kl} \omega_{kn} \Gamma(\omega_{kl} - \omega_{kn})^2 + \Gamma^2 \times \{ a_f a(\omega_{kl}) + a_f a(\omega_{kn}) + 2 f a(\omega_{kl}) f a(\omega_{kn}) \}
\tilde{N}(\nu) \ln(k z)
$$
Viscosities at $B \neq 0$

The viscous coefficients $\nu \in \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_4, \zeta_\perp, \zeta_\parallel\}$ at $B \neq 0$ are:

$$\nu = \xi^{(\nu)} \eta_0 + \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{T} \int_{-\infty}^{\infty} \frac{dk_z}{(2\pi)^{1/4}} \frac{1}{4\omega_{kl}\omega_{kn}} \frac{\Gamma}{(\omega_{kl} - \omega_{kn})^2 + \Gamma^2}$$

$$\times \{ a f_a(\omega_{kl}) + a f_a(\omega_{kn}) + 2 f_a(\omega_{kl}) f_a(\omega_{kn}) \} \tilde{N}^{(\nu)}_{ln}(k_z)$$
Viscosities at $B \neq 0$

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\eta_0)}(\vec{k}) = 2A_{\ln}^{(4)}, \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\eta_1)}(\vec{k}) = 8\left[A_{\ln}^{(0)} \{ (1 - \theta)\omega_{kl}^2 + k_z^2 \} - (1 - \theta - \phi)\omega_{kl}^2 + (1 + \theta + \phi)(k_z^2 + m^2) \right] + A_{\ln}^{(2)} \{ - (1 + \theta - 2\theta^2 - 2\theta\phi)\omega_{kl}^2(1 + \theta + 2\theta^2 + 2\theta\phi)k_z^2 + (1 + \theta + 1)(1 + 2\theta + 2\phi)m^2 \} - A_{\ln}^{(4)} (1 + \theta)(6) \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\eta_2)}(\vec{k}) = -8A_{\ln}^{(2)} k_z^2, \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\eta_3)}(\vec{k}) = 0, \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\eta_4)}(\vec{k}) = 0, \]

\[\text{Looks Very Nasty} \]

\[\text{.... DOES NOT EVEN FIT IN THE SLIDE} \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\zeta_{\perp})}(\vec{k}) = \frac{1}{3} \left[4A_{\ln}^{(0)} \{ (1 - \theta - \phi)\omega_{kl}^2 - (1 + \theta + \phi)(k_z^2 + m^2) \} \{ (3 - 3\theta - 2\phi)\omega_{kl}^2 - (1 + 3\theta + 2\phi)k_z^2 - (3 + 3\theta + 2\phi) \} + A_{\ln}^{(2)} \{ 4(1 + 10\theta + 4\phi - 6\theta^2 - 10\theta\phi - 4\phi^2)\omega_{kl}^2 - 4(1 + 2\theta + 2\phi)(1 + 3\theta + 2\phi)k_z^2 - 4(1 + 7\theta + 6\phi + 6\theta^2 + 10\theta\phi + 4\phi^2)m^2 \} + 4A_{\ln}^{(4)} (\theta + \phi)(1 + 3\theta + 2\phi) \right], \]

\[\tilde{\mathcal{N}}_{\ln;\text{Scalar}}^{(\zeta_{\parallel})}(\vec{k}) = \frac{4}{3} \left[A_{\ln}^{(0)} \{ (1 - \theta)(\omega_{kl}^2 + k_z^2) - (1 + \theta)m^2 \} \{ (3 - 3\theta - 2\phi)\omega_{kl}^2 - (1 + 3\theta + 2\phi)k_z^2 - (3 + 3\theta + 2\phi) \} + 2A_{\ln}^{(2)} \{ (2 + \theta - 3\theta^2 - 2\theta\phi)\omega_{kl}^2 - \theta(1 + 3\theta + 2\phi)k_z^2 - (1 + \theta)(2 + 3\theta + 2\phi)m^2 \} + A_{\ln}^{(4)} (1 + \theta)(1 + 3\theta + 2\phi) \right]. \]
Viscosities at $B \neq 0$

No Approximation on the strength of the magnetic field. Large Number of Landau Levels ($\sim 10^4$) are summed up so that the results are valid for low as well as high magnetic field strength.

Numerical consistency check: Numerical limit $B \to 0$ of the viscous coefficients at $B \neq 0 \Rightarrow$ for sufficiently small values of B, $\eta_0 \to \eta$, $\eta_1 \to 0$, $\eta_2 \to 0$, $\zeta_{\perp} \to \zeta$ and $\zeta_{\parallel} \to \zeta$.

η and ζ are respectively the shear and bulk viscosities at $B = 0$. Hence, for sufficiently small values of B, a large number of Landau levels contribute to ν in (the Landau levels become infinitesimally close to each other reaching the continuum), which in turn numerically reproduce the exact continuum results of $B = 0$.
Viscosities at $B \neq 0$

- **No Approximation** on the strength of the magnetic field.

Large Number of Landau Levels ($\sim 10^4$) are summed up so that the results are valid for low as well as high magnetic field strength. Numerical consistency check: Numerical limit $B \rightarrow 0$ of the viscous coefficients at $B \neq 0 = \Rightarrow$ for sufficiently small values of B, $\eta_0 \rightarrow \eta$, $\eta_1 \rightarrow 0$, $\eta_2 \rightarrow 0$, $\zeta_{\perp} \rightarrow \zeta$ and $\zeta_{\parallel} \rightarrow \zeta$. η and ζ are respectively the shear and bulk viscosities at $B = 0$. Hence, for sufficiently small values of B, a large number of Landau levels contribute to ν in (the Landau levels become infinitesimally close to each other reaching the continuum), which in turn numerically reproduce the exact continuum results of $B = 0$.
Viscosities at $B \neq 0$

- **No Approximation** on the strength of the magnetic field.
- Large Number of Landau Levels (~ 10000) are summed up so that the results are valid for low as well as high magnetic field strength.
Viscosities at $B \neq 0$

- **No Approximation** on the strength of the magnetic field.
- Large Number of Landau Levels (~ 10000) are summed up so that the results are valid for low as well as high magnetic field strength.
- Numerical consistency check: Numerical limit $B \to 0$ of the viscous coefficients at $B \neq 0 \implies$ for sufficiently small values of B, $\eta_0 \to \eta$, $\eta_1 \to 0$, $\eta_2 \to 0$, $\zeta_\perp \to \zeta$ and $\zeta_\parallel \to \zeta$.

η and ζ are respectively the shear and bulk viscosities at $B = 0$. Hence, for sufficiently small values of B, a large number of Landau levels contribute to ν in (the Landau levels become infinitesimally close to each other reaching the continuum), which in turn numerically reproduce the exact continuum results of $B = 0$.
Viscosities at $B \neq 0$

- **No Approximation** on the strength of the magnetic field.
- Large Number of Landau Levels (~ 10000) are summed up so that the results are valid for low as well as high magnetic field strength.
- Numerical consistency check: Numerical limit $B \to 0$ of the viscous coefficients at $B \neq 0 \implies$ for sufficiently small values of B, $\eta_0 \to \eta$, $\eta_1 \to 0$, $\eta_2 \to 0$, $\zeta_\perp \to \zeta$ and $\zeta_\parallel \to \zeta$.
- η and ζ are respectively the shear and bulk viscosities at $B = 0$.
Viscosities at $B \neq 0$

- **No Approximation** on the strength of the magnetic field.
- Large Number of Landau Levels (~ 10000) are summed up so that the results are valid for low as well as high magnetic field strength.
- Numerical consistency check: Numerical limit $B \to 0$ of the viscous coefficients at $B \neq 0 \implies$ for sufficiently small values of $B, \eta_0 \to \eta, \eta_1 \to 0, \eta_2 \to 0, \zeta_\perp \to \zeta$ and $\zeta_\parallel \to \zeta$.
- η and ζ are respectively the shear and bulk viscosities at $B = 0$.
- Hence, for sufficiently small values of B, a large number of Landau levels contribute to ν in (the Landau levels become infinitesimally close to each other reaching the continuum), which in turn **numerically** reproduce the exact continuum results of $B = 0$.

Outline

1. Introduction & Motivation
2. Spectral Function of the EMT
3. Viscous Coefficients from the Spectral Function
4. Results
Shear Viscosities

Figure: (Color Online) The variation of scaled shear viscosities as a function of T for system of massless charged Dirac Fermions (spin-$\frac{1}{2}$) with relaxation time $\tau_c = 1/\Gamma = 1$ fm.
Figure: (Color Online) The variation of scaled bulk viscosities as a function of T for system of massless charged Dirac Fermions (spin-$\frac{1}{2}$) with relaxation time $\tau_c = 1/\Gamma = 1$ fm.
Collaborators

- Dr. Sabyasachi Ghosh, Indian Institute of Technology Bhilai

Thank You