Search for Chiral Magnetic Wave (CMW) with ALICE at the LHC

Prottay Das (for the ALICE Collaboration)
National Institute Of Science Education and Research
HBNI

Outline:

- Motivation
- ALICE detectors
- Analysed data, event and track cuts
- Results
- Summary and outlook
Motivation

✔ QCD vacuum: Degenerate

✔ Generates chirality imbalance:
 \[N_L^f - N_R^f = 2Q_W \text{, } Q_W = \text{Winding number} \]

✔ Axial and vector current:

✔ Induces parity odd domains

Chiral Magnetic Effect (CME):
\[j_\nu = \frac{N_c e}{2\pi^2} \mu_A B \]

Chiral Separation Effect (CSE):
\[j_A = \frac{N_c e}{2\pi^2} \mu_\nu B \]

Chiral Magnetic Wave: Combination of electric charge (CME) and chiral charge density (CSE)

Anisotropic flow

✔ Spatial anisotropy of the interacting system results into momentum anisotropy

✔ Characterised by:

\[
E \frac{d^3 N}{d^3 p} = \frac{d^2 N}{2 \pi p_T dp_T dy} \left(1 + \Sigma 2 v_n \cos \left[n \left(\varphi - \Psi_{n,R} \right) \right] \right)
\]

✔ 2nd fourier coefficient \(v_2 \): elliptic flow

Observable for chiral magnetic wave studies

$\Delta v_2 = \frac{A_{ch}}{2}$ with $A_{ch} = \frac{N^+ - N^-}{N^+ + N^-}$

CMW observable: Normalised Slope, $r_{\Delta v_2}^{\text{Norm}} = \frac{d\left(\Delta v_2\right)}{d A_{ch}}$

where $\left<v_2\right> = \frac{v_2^h + v_2^+}{2}$

Possible background: Local charge conservation
Minimise the background: Measurement in low p_T
Probing the background: Similar measurement with v_3

Possible candidate to look at: Pions due to less difference in absorption cross section between particles and antiparticles
ALICE detector

V0: V0A (2.8 < \(\eta \) < 5.1) & V0C (-3.7 < \(\eta \) < -1.7)
✔ Trigger, centrality

TimeProjectionChamber (TPC):
(| \(\eta \) | < 0.9)
✔ Primary vertex and tracking
✔ Momentum measurement
✔ PID through dE/dx
Analysed data, event and track selection

<table>
<thead>
<tr>
<th>Collision system and energy</th>
<th>Pb-Pb, 5.02 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of events</td>
<td>~60M</td>
</tr>
<tr>
<td>PID selection of π</td>
<td>$</td>
</tr>
<tr>
<td>Hadron selection</td>
<td>$0.2 < p_T < 1.0$ GeV/c</td>
</tr>
<tr>
<td>Subevents</td>
<td>$</td>
</tr>
<tr>
<td>Charge Asymmetry (A_{ch})</td>
<td>$0.2 < p_T < 10$ GeV/c, $</td>
</tr>
</tbody>
</table>
v_2 and v_3 vs A_{ch} in 40-50 % centrality for hadrons

$A_{ch} = \frac{N^+ - N^-}{N^+ + N^-}$

$r_{\Delta v_n}^{\text{Norm}} = \frac{d\left(\frac{\Delta v_n}{\langle v_n \rangle}\right)}{dA_{ch}}$

Finite $r_{\Delta v_2}^{\text{Norm}}$ and $r_{\Delta v_3}^{\text{Norm}}$ is observed
$r_{\Delta v_3}^{\text{Norm}}$ has large uncertainties

✓ $r_{\Delta v_2}^{\text{Norm}}$ is compatible with $r_{\Delta v_3}^{\text{Norm}}$ for both hadrons and pions
Comparison of $r_{\Delta v_2}^{\text{Norm}}$ in ALICE, STAR and CMS

Comparison with STAR

<table>
<thead>
<tr>
<th>ALICE Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb, $s_{NN} = 5.02$ TeV</td>
</tr>
<tr>
<td>π, $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAR Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Au, $s_{NN} = 200$ GeV</td>
</tr>
<tr>
<td>π, $</td>
</tr>
</tbody>
</table>

- ✔ $r_{\Delta v_2}^{\text{Norm}}$, π(ALICE) $\approx r_{\Delta v_2}^{\text{Norm}}$, π(CMS)
- ✔ $r_{\Delta v_2}^{\text{Norm}}$, h(ALICE) $< r_{\Delta v_2}^{\text{Norm}}$, h(STAR)

Comparison with CMS

<table>
<thead>
<tr>
<th>ALICE Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb, $s_{NN} = 5.02$ TeV</td>
</tr>
<tr>
<td>π, $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMS, Pb-Pb, $s_{NN} = 5.02$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>h, $</td>
</tr>
</tbody>
</table>

P.Das - CMW

DAE-HEP, 2020
No observed discrepancies in \(r_{\Delta v_3}^{\text{Norm}} \) between ALICE, STAR and CMS, but uncertainties are large.
Summary

✔ First measurement of normalised Δv_2 and Δv_3 slope of pions and of charged hadrons in Pb-Pb collision in ALICE.

✔ $r_{\Delta v_2}^{\text{ALICE}} \approx r_{\Delta v_2}^{\text{CMS}}$ (ALICE)

✔ $r_{\Delta v_2}^{\text{ALICE}} < r_{\Delta v_2}^{\text{STAR}}$ (STAR)

✔ $r_{\Delta v_3}^{\text{ALICE}}$ has large uncertainties

✔ $r_{\Delta v_2}^{\text{ALICE}}$ is compatible with $r_{\Delta v_3}^{\text{ALICE}}$

Outlook

✔ Analysis to be done in high statistics data taken in 2018
Comparison of $r^{\text{Norm}}_{\Delta v_n}$ between hadrons, pions

ALICE Preliminary

$Pb-Pb \ \| s_{NN} = 5.02$ TeV

π, $0.2 < p_T < 0.5$ GeV/c

h, $0.2 < p_T < 1.0$ GeV/c

$r^{\text{Norm}}_{\Delta v_2}$

$r^{\text{Norm}}_{\Delta v_3}$

has large uncertainties

$r^{\text{Norm}}_{\Delta v_3}$ h is compatible with $r^{\text{Norm}}_{\Delta v_3} \pi$

$r^{\text{Norm}}_{\Delta v_2} h \approx r^{\text{Norm}}_{\Delta v_2} \pi$

P.Das - CMW

DAE-HEP, 2020

13
\(v_2 \) and \(v_3 \) vs \(A_{ch} \) in 40-50 \% centrality for pions

\[
A_{ch} = \frac{N^+ - N^-}{N^+ + N^-}
\]

\[
r_{\Delta v_n}^{Norm} = \frac{d \left(\frac{\Delta v_n}{\langle v_n \rangle} \right)}{d A_{ch}}
\]

Finite \(r_{\Delta v_2}^{Norm} \) and \(r_{\Delta v_3}^{Norm} \) is observed.
The strong magnetic field along with non zero electric and axial charge density leads to vector and axial currents called **Chiral Magnetic Effect** and **Chiral Separation Effect** respectively.

Chiral Magnetic Effect:
\[j_v = \frac{N_c e}{2\pi^2} \mu_A B \]

Chiral Separation Effect:
\[j_A = \frac{N_c e}{2\pi^2} \mu_v B \]

Chiral Magnetic Wave:
Combination of electric charge and chiral charge density.
Motivation

✔ QCD vacuum: Degenerate

✔ Generates chirality imbalance:
\[N_L^f - N_R^f = 2 Q_W, \quad Q_W = \text{Winding number} \]

✔ Axial current:
\[
\partial_\mu j_A^\mu = -\frac{e^2}{16\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} - \frac{g^2}{16\pi^2} \text{tr} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} G_{\rho\sigma}
\]

✔ Induces parity odd domains

Chiral Magnetic Effect (CME): \[j_\nu = \frac{N_c e}{2\pi^2} u_A B \]

Chiral Separation Effect (CSE): \[j_A = \frac{N_c e}{2\pi^2} u_\nu B \]

Chiral Magnetic Wave: Combination of electric charge (CME) and chiral charge density (CSE)