THE SINGLE CHANNEL DAQ MODULE DEVELOPED FOR DARK MATTER SEARCH EXPERIMENT USING SUPERHEATED LIQUID

Niraj Chaddha
VECC, Kolkata
Overview

- Detection
- DAQ System
- Hardware
- Firmware
- Experiment & Results
- Future Plans
Detection of particle

Detector
SED (Superheated Emulsion Detector)
R-134a \(\text{C}_2\text{H}_2\text{F}_4 \) (tetrafluoroethane) \(\text{b. p.} \ - 26.3^0\text{C} \)
suspended in inactive polymerized gel

Sensor
Piezo-electric Transducer

Technique
Production of acoustic emission by SED due to the bubble nucleation

Detector response
Depends on the type and energy of particle
DAQ System requirement

Gain
Largely dependent on the sensor and its physical contact with detector (4K/3K/2K)

Bandwidth
Lower cut-off : 150 Hz
(Pow supp. ripples, Material handling vibration)
Higher cut-off : 100 kHz

Sampling rate
400 kSPS

Data length
25 ms (10,000 samples @ 400kSPS)

No of channels
One
DAQ System

- Sensor (Piezo)
- 2-stage Amplifier (A = 3000) + 2-stage bandpass filter
- ADC (12 bit) unipolar
- Line Driver
- DAC
- PSOC-5
Hardware

Op-Amp (*First Stage*)

Device specs

- **Bias Current**: 3 fA (FET based input)
- **Noise**: 6.5 nV/√Hz
- **Offset**: ±26 µV
- **GBW**: 17 MHz

- **Voltage Gain**: 54 (34.6dB)
- **Corr. BW**: 400kHz
Hardware

Op-Amp (Second Stage)

Device specs

Offset : ±150 µV (ADC LSB = 500 µV)

GBW : 20 MHz

Noise : 7 nV/√Hz

Voltage Gain : 54 (34.6dB)

Corr. BW : 350kHz

DC shift : +1V
(for using unipolar ADC as bipolar)
Hardware

Embedded System

- PSOC-5 (Programmable System-on-Chip)
- ARM based 32 bit system @ 90MHz
- 2 x 12 bit built-in ADC (1 MSPS)
- ADC with internal reference (100 ppm stability)
- Unipolar analog input (2V ≡ ± 1V)
Firmware

Acquisition in a circular queue

Buffer size : 10000
Trigger type : Level (20% above mid-level)
Pre-triggered data : 1200 (3 ms)
Post triggered data : 8800 (22 ms)
Final assembly
Detector and sensor
DAQ Setup
Noise
Signal
Signal

Amplitude (mV)

Frequency (Hz)

FFT
Conclusion

- The single channel DAQ system is performing well with Piezo sensor
- Different gains were tried to avoid amplifier saturation at different temperature
- Basic methodology of the main experiment, having higher number of sensors, was verified
- Dead time between events could not be minimised due to RAM size
Future plans

• A module is being developed with 10 analog channels
• Acquisition will be done using FPGA with time stamping to correlate the data from all channels for a particular event
• Dead time will be equal to the sampling interval (2µs @ 500kSPS)
• This instrument will be used at Jaduguda (JUSL) for the main experiment
Acknowledgement

Dr. Mala Das1
Dr. Sarbajit Pal2

Mr. Nilanjan Biswas1
Ms. Sunita Sahoo1

1. Saha Institute of Nuclear Physics
2. Variable energy Cyclotron Centre
Thank you