Measurements of Neutron Stars and the Dense Matter EOS

J. M. Lattimer

Department of Physics & Astronomy

STONY BROOK UNIVERSITY

XXIV DAE-BRNS Virtual High Energy Physics Symposium
National Institute of Science Education and Research
Jatni Odisha, India, 14–28 December 2020
Acknowledgements

Funding Support:

US DOE - Nuclear Physics
US DOE - Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
NASA - Neutron Star Interior Composition ExploreR (NICER)
NSF - Neutrinos, Nuclear Astrophysics and Symmetries (N3AS)

Recent Collaborators:

Duncan Brown & Soumi De (Syracuse), Christian Drischler (Berkeley), Sophia Han (Ohio), Evgeni Kolomeitsev (Matej Bei, Slovakia), Akira Ohnishi (YITP, Kyoto), Madappa Prakash (Ohio), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee), Ingo Tews (Los Alamos) & Tianqi Zhao (SBU)
Main Topics

- Neutron Stars and How They Depend on the Equation of State
- Maximum Mass and Causality Constraints
- Nuclear Physics and Unitary Gas Constraints
- Measuring Neutron Star Properties From Radio, X-ray and Gravitational Wave Observations
- Estimating Neutron Star Properties from Neutron Star Mergers and NICER
A NEUTRON STAR: SURFACE and INTERIOR

CORE:
Homogeneous Matter

CRUST:
Nuclei
Neutron Superfluid

ATMOSPHERE
ENVELOPE
CRUST
OUTER CORE
INNER CORE

Polar cap
Cone of open magnetic field lines

Neutron Superfluid
Neutron Vortex
Nuclei in a lattice
Magnetic Flux Tube

Measurements of Neutron Stars and the Dense Matter EOS
Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

\[
\frac{dp}{dr} = -\frac{G (mc^2 + 4\pi pr^3)(\varepsilon + p)}{c^4 r(r - 2Gm/c^2)} \\
\frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2
\]

Equation of State

Observations
Mass-Radius Diagram and Theoretical Constraints

GR:
\[R > \frac{2GM}{c^2} \]

\[P < \infty : \quad R > \left(\frac{9}{4} \right) \frac{GM}{c^2} \]

causality:
\[R \gtrsim 2.9\frac{GM}{c^2} \]

— normal NS
— SQS

\[R_\infty = \frac{R}{\sqrt{1 - 2\frac{GM}{Rc^2}}} \]
The Radius – Pressure Correlation

$R P^{-1/4} (\text{km fm}^{3/4} \text{MeV}^{-1/4})$

9.52 ± 0.49

7.06 ± 0.24

5.68 ± 0.14
The symmetry energy is the difference between the energies of pure neutron matter \((x = 0)\) and symmetric \((x = 1/2)\) nuclear matter:

\[
S(n) = E(n, x = 0) - E(n, x = 1/2)
\]

Usually approximated as an expansion around the saturation density \((n_s)\) and isospin symmetry \((x = 1/2)\):

\[
E(n, x) = E(n, 1/2) + (1 - 2x)^2 S_2(n) + \ldots
\]

\[
S_2(n) = S_V + \frac{L}{3} \frac{n - n_s}{n_s} + \ldots
\]

\[
S_V \approx 31 \text{ MeV}, \quad L \approx 50 \text{ MeV}
\]

Extrapolated to pure neutron matter:

\[
E(n_s, 0) \approx S_V + E(n_s, 1/2) \equiv S_V - B, \quad p(n_s, 0) = L n_s / 3
\]

Neutron star matter (beta equilibrium) is nearly neutron matter:

\[
\frac{\partial(E + E_e)}{\partial x} = 0, \quad p(n_s, x_\beta) \approx \frac{L n_s}{3} \left[1 - \left(\frac{4S_V}{\hbar c} \right)^3 \frac{4 - 3S_V / L}{3\pi^2 n_s} \right]
\]
The Conjecture: Neutron matter energy is larger than that of the unitary gas \(E_{UG} = \xi_0 (3/5) E_F \), or

\[
E_{UG} \simeq 12.6 \left(\frac{n}{n_s} \right)^{2/3} \text{ MeV}
\]

The unitary gas consists of fermions interacting via a pairwise short-range s-wave interaction with infinite scattering length and zero range. Cold atom experiments show a universal behavior with the Bertsch parameter \(\xi_0 \simeq 0.37 \).

\[
S_v \geq 28.6 \text{ MeV}; \quad L \geq 25.3 \text{ MeV}; \quad p_0(n_s) \geq 1.35 \text{ MeV fm}^{-3}; \quad R_{1.4} \geq 9.7 \text{ km}
\]
Recently developed chiral effective field theory allows a systematic expansion of nuclear forces at low energies based on the symmetries of quantum chromodynamics. It exploits the gap between the pion mass (the pseudo-Goldstone boson of chiral symmetry-breaking) and the energy scale of short-range nuclear interactions established from experimental phase shifts. It provides the only known consistent framework for estimating energy uncertainties.
Surface and volume symmetry energies of nuclei are highly correlated, $L \propto S_V$.

Neutron skin thicknesses depend primarily on L:
$$\Delta r_{np}^{208}(\text{fm}) = 0.00147L + 0.101 \pm 0.022.$$
$R_{1.4} = (9.52 \pm 0.49) \left(\frac{p_s}{\text{MeV fm}^{-3}} \right)^{1/4} \text{ km}$

$p_s \approx n_s L/3$

$30 \text{ MeV} \lesssim L \lesssim 70 \text{ MeV}.$

Causality and $M_{\text{max}} \gtrsim 2.0 M_\odot$: $R_{1.4} \gtrsim 8.2 \text{ km}$

Imposing the unitary gas conjecture: $R_{1.4} \gtrsim 9.7 \text{ km}$

Theoretical neutron matter studies:

$10.3 \text{ km} \lesssim R_{1.4} \lesssim 13.5 \text{ km}.$
Pulsar timing can accurately (> 0.0001\(M_\odot\)) measure masses. Most are between 1.2\(M_\odot\) and 1.5\(M_\odot\); lowest is 1.174 ± 0.004\(M_\odot\), highest are 2.14\(^{+0.10}_{-0.09}\)\(M_\odot\) and 2.01 ± 0.04\(M_\odot\). Higher estimates have large uncertainties.

Thermal and bursting observations of X-rays yield radii, but uncertain to a few km.

- Quiescent sources in globular clusters
- Thermonuclear explosions on accreting neutron stars in binaries
- Pulse profile modeling of hot spots on rapidly rotating neutron stars (NICER experiment)

Gravitational waves from merging neutron stars measure masses and tidal deformabilities. GW170817 suggests \(R = 10.5 \pm 1.5\) km
LIGO-Virgo (LVC) detected a signal consistent with a BNS merger, followed 1.7 s later by a weak sGRB.

10100 orbits observed over 317 s.

\[M = 1.186 \pm 0.001 \, M_\odot \]

\[M_{T,\text{min}} = 2^{6/5} M = 2.725 M_\odot \]

\[E_{GW} > 0.025 M_\odot c^2 \]

\[D_L = 40^{+8}_{-14} \, \text{Mpc} \]

\[75 < \tilde{\Lambda} < 560 \, (90\%) \]

\[M_{\text{ejecta}} \sim 0.06 \pm 0.02 \, M_\odot \]

Blue ejecta: \sim 0.01 M_\odot

Red ejecta: \sim 0.05 M_\odot

Possible r-process production

Ejecta + GRB: \[M_{\text{max}} \lesssim 2.22 M_\odot \]
Properties of Known Double Neutron Star Binaries

- Both component masses are accurately measured (11)
 — Only the total binary mass is accurately measured (6)

Binaries with \(\tau_{GW} > t_{\text{universe}} \) (7)

- \(q = \frac{M_2}{M_1} \) is the binary mass ratio for a system
- \(\chi = \frac{cJ}{(GM^2)} \) is the dimensionless spin parameter for individual pulsars

\[\mathcal{M} = \left(\frac{M_1 M_2}{M_1 + M_2} \right)^{3/5} \] is the chirp mass
There are 13 parameters in third PN order \((v/c)^6\) models which include finite-size effects. LVC17 used a 13-parameter model; De et al. (2018) used a 9-10 parameter model.

- Sky location (2) EM data
- Distance (1) EM data
- Inclination (1)
- Coalescence time (1)
- Coalescence phase (1)
- Polarization (1)
- Component masses (2)
- Spin parameters (2)
- Tidal deformabilities (2) correlated with masses

Extrinsic

Intrinsic
Tidal Deformability

The tidal deformability λ is the ratio of the induced dipole moment Q_{ij} to the external tidal field E_{ij}, $Q_{ij} \equiv -\lambda E_{ij}$.

We use the dimensionless quantity $\Lambda = \frac{\lambda c^{10}}{G^4 M^5} \equiv \frac{2}{3} k_2 \left(\frac{Rc^2}{GM} \right)^5$

k_2 is the dimensionless Love number.

For a neutron star binary the mass-weighted $\tilde{\Lambda}$ is the relevant parameter:

$$\tilde{\Lambda} = \frac{16}{13} \frac{(1 + 12q)\Lambda_1 + (12 + q)q^4\Lambda_2}{(1 + q)^5}, \quad q = \frac{M_2}{M_1} \leq 1$$
The Effect of Tides

Tides accelerate the inspiral and produce a phase shift compared to the case of two point masses.

\[\delta \Phi_t = -\frac{117}{256} \frac{(1 + q)^4}{q^2} \left(\frac{\pi f_{GW} GM}{c^3} \right)^{5/3} \tilde{\Lambda} + \cdots. \]

credit: Jocelyn Read
\(\Lambda \) is Highly Correlated With \(M \) and \(R \)

- \(\Lambda = a \beta^{-6} \)
 \(\beta = GM/Rc^2 \)
- \(a = 0.0086 \pm 0.0011 \)
 for
 \(M = (1.35 \pm 0.25) M_\odot \)
- If \(R_1 \sim R_2 \sim R_{1.4} \)
 it follows that
 \(\Lambda_2 \sim q^{-6} \Lambda_1 \).

\[\Lambda = a \beta^{-6} \]

\[\beta = GM/Rc^2 \]

\[a = 0.0086 \pm 0.0011 \]

for

\[M = (1.35 \pm 0.25) M_\odot \]

Zhao & Lattimer (2018)
Binary Deformability and the Radius

\[\tilde{\Lambda} = \frac{16}{13} \left(1 + 12q \right) \Lambda_1 + q^4 \left(12 + q \right) \Lambda_2 \]

\[\sim \frac{16a}{13} \left(\frac{R_{1.4}c^2}{G \mathcal{M}} \right)^6 q^{8/5} (12 - 11q + 12q^2) \]

\[(1 + q)^{26/5} \]

- For \(\tilde{\Lambda} \): \(a' = 0.0035 \pm 0.0006 \)
- For \(\tilde{\Lambda} \): \(a' = 0.00375 \pm 0.00025 \)
- \(R_{1.4} = \) \[(11.5 \pm 0.3) \frac{\mathcal{M}}{M_\odot} \left(\frac{\tilde{\Lambda}}{800} \right)^{1/6} \] km
- For GW170817: \(R_{1.4} = (13.4 \pm 0.1) \left(\frac{\tilde{\Lambda}}{800} \right)^{1/6} \) km

Zhao & Lattimer (2018)

GW170817: \(M_{\text{max}} > 2.01 M_\odot \)
68.3%, 90%, 95.4% and 99.7% Confidence Bounds

Zhao and Lattimer (2019)

Uniform Λ_s

Zhao and Lattimer (2019)
Pulsar observations imply non-rotating $M_{\text{max}} \gtrsim 2M_\odot$.

Remnant differential rotation uniformizes within ~ 0.1 s.

Inspiralling mass $M_T = M q^{-3/5} (1 + q)^{6/5}$ is $2.73M_\odot$ ($q = 1$) to $2.78M_\odot$ ($q = 0.7$), smaller than $M_{\text{max,d}}$.

Maximally uniformly rotating stars have $M_{\text{max,u}} = \xi M_{\text{max}}$ with $1.17 \lesssim \xi \lesssim 1.21$. *Hypermassive* stars, with $M_T > M_{\text{max,u}}$, promptly collapse to a BH.

Supermassive stars, with $M_{\text{max}} \leq M_T \leq M_{\text{max,u}}$, are metastable but have much longer lifetimes. Such a remnant pumps too much energy into the ejecta to be consistent with observations.

Taking into account gravitational binding energy, the condition $M_T > M_{\text{max,u}}$ implies $M_{\text{max}} \leq 2.22M_\odot$.
Neutron Star Interior Composition ExploreR (NICER)

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness \((M/R) \) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...
... while phase-resolved spectroscopy promises a direct constraint of radius R.

PSR J0437–4715

$M = 1.67 ~ M_\odot$

$R = 12 ~ km, 13.25 ~ km$

$T_{\text{exp}} = 1 ~ M\text{sec}$
LVC O3 Detections

36 BBH mergers, plus 3 mergers potentially containing a neutron star:

- GW190425 (156 ± 41 Mpc, FAR = 4.5 \cdot 10^{-13}, \mathcal{M} = 1.44 \pm 0.02 M_\odot)
 Either a BNS with \(m_1 = 1.85_{-0.19}^{+0.27} M_\odot \) and \(m_2 = 1.47_{-0.08}^{+0.16} M_\odot \), or
 a BHNS with \(m_{BH} = 2.19_{-0.17}^{+0.21} M_\odot \) and \(m_{NS} = 1.26_{-0.08}^{+0.10} M_\odot \).

- GW190426 (377 ± 100 Mpc, FAR = 1.9 \cdot 10^{-8}, \mathcal{M} = 2.41_{-0.18}^{+0.08} M_\odot)
 A likely BHNS with \(m_{BH} = 5.7_{-2.3}^{+4.0} M_\odot \) and \(m_{NS} = 1.5_{-0.5}^{+0.8} M_\odot \).

- GW190814 (267 ± 52 Mpc, FAR=2.0 \cdot 10^{-33}, \mathcal{M} = 6.09 \pm 0.06 M_\odot, q = 0.112 \pm 0.009)
 Either a BHNS or a BBH with \(m_1 = 23.2_{-1.0}^{+1.1} M_\odot \) and
 \(m_2 = 2.59_{-0.09}^{+0.08} M_\odot \).
GW170817 provided R and EOS information compatible with expectations from nuclear theory, experiment and other astrophysical observations, considering existing systematic uncertainties.

GW170817 also hints that M_{max} is not far above the $2M_\odot$ minimum provided by pulsar timing, supported by possible identification of low-mass black holes with $M < 3M_\odot$.

NICER provides masses and radii from pulse-profile models of rapidly rotating X-ray pulsars. It will measure radii of both typical and also $2 - 2.1M_\odot$ stars.

Future GW measurements of BNS will be additive since sources should be similar.

There is some tension between PREX neutron skin measurements and other nuclear experiments and astrophysical observations concerning L.