LHC bounds on $R_{D(*)}$ motivated Leptoquark models

S_1 & U_1 models

Cyrin Neeraj
cyrin.neeraj@research.iiit.ac.in
International Institute of Information Technology, Hyderabad

with
Arvind Bhaskar, Tanumoy Mandal, Subhadip Mitra, and Swapnil Raz

December 16, 2020
Outline

- Motivation
- Single Leptoquark (LQ) models
 - S_1 Model
 - U_1 Model
- Production Modes
- Recasting, Analysis
- Exclusion Limits
- Conclusions
$R_{D(*)}$ Anomalies

$R_{D(*)} = \frac{Br(B \rightarrow D(*)\tau\nu)}{Br(B \rightarrow D(*)\ell\nu)}$

- SM Expectation:
 $R_D = 0.299 \pm 0.003$
 $R_D^* = 0.258 \pm 0.005$

- Updated values (Experimental average):
 $R_D = 0.340 \pm 0.027 \pm 0.013$
 $R_D^* = 0.295 \pm 0.011 \pm 0.008$, combined excess of $\sim 3.08\sigma$

LQ solution: Processes Involved

Figure: $B \to D^{(*)}\tau\nu$ decay in SM

Figure: $B \to D^{(*)}\tau\nu$ decay in (a) S_1 LQ model, (b) U_1 LQ model
Related Searches

Pair Production searches

- For $\text{Br}(LQ \rightarrow t\tau) = 1$

 Scalar LQ: excluded masses below 900 GeV

- For $\text{Br}(LQ \rightarrow b\nu) = 1$

 Scalar LQ: excluded masses below 1100 GeV
 Vector LQ: excluded masses below 1475 GeV

- For $\text{Br}(LQ \rightarrow t\nu) = 1$

 Scalar LQ: excluded masses below 1020 GeV
 Vector LQ: excluded masses below 1460 GeV

- For vector $LQ \rightarrow t\nu, b\tau$ with $\text{Br}(t\nu) = \text{Br}(b\tau) = 50\%$, LQs with mass below 1115 GeV are excluded.
Objective

Obtain **complimentary exclusion limits** from LHC data that are independent of the other flavour bounds.

How?
By recasting LHC dilepton (i.e. $\tau\tau$, $\tau\nu$) search results.
S_1 Model

The possible interaction terms that would affect the $R_D(\ast)$ observables can be expressed as follows:

$$
\mathcal{L} \supset \left[\lambda^L_{3\alpha} \bar{Q}^c_3 (i\tau_2) L_\alpha + \lambda^L_{23} \bar{Q}^c_2 (i\tau_2) L_3 + \lambda^R_{23} \bar{c}^c \tau_R \right] S_1^\dagger + h.c.
$$

where

- $Q_\alpha (L_\alpha)$ denotes the α-th generation quark (lepton) doublet
- λ^H_{ab} denotes the coupling of S_1 with a charge-conjugate quark from generation a and a lepton of chirality H from generation b
Minimal Scenarios

\[\mathcal{L} \supset \left[\lambda_{3\alpha}^L \bar{Q}_3^c (i\tau_2) L_\alpha + \lambda_{23}^L \bar{Q}_2^c (i\tau_2) L_3 + \lambda_{23}^R \bar{c}^c \tau_R \right] S_1^\dagger + h.c. \]

Scenario 1: \(S_1 \) is aligned to the up-type quark basis

\[\mathcal{L} \supset \lambda_{23}^L \left[\bar{c}^c \tau - (V_{cb} \bar{b}^c + V_{cs} \bar{s}^c + V_{cd} \bar{d}^c) \nu \right] S_1^\dagger + h.c. \]

Scenario 2: \(S_1 \) is aligned to the down-type quark basis

\[\mathcal{L} \supset \lambda_{33}^L \left[(V_{cb} \bar{c}^c + V_{tb} \bar{t}^c + V_{ub} \bar{u}^c) \tau - \bar{b}^c \nu \right] S_1^\dagger + h.c. \]

Interesting for the LHC: A large \(\lambda_{23}^L \) opens up the possibility of producing \(S_1 \) through \(s \)- and/or \(c \)-quark initiated processes (\(s \)- or \(c \)-PDF \(\gg \) \(b \)-PDF).
Direct Production processes: (Scenario 1: λ_{23}^L is non-zero.)

- Pair Production

\[
p p \rightarrow \begin{cases}
 S_1 S_1 & \rightarrow \ c\tau \ c\tau \ \equiv \ \tau\tau + 2j \\
 S_1 S_1 & \rightarrow \ c\tau \ s\nu \ \equiv \ \tau + 2j + \not{E}_T \\
 S_1 S_1 & \rightarrow \ s\nu \ s\nu \ \equiv \ \not{2j} + \not{E}_T
\end{cases}
\]
Production Modes, Decays

Direct Production processes: (Scenario 1: λ_{23}^L is non-zero)

- Pair Production

 \[
 pp \rightarrow \begin{cases}
 S_1 S_1 \rightarrow c\tau \ c\tau & \equiv \tau\tau + 2j \\
 S_1 S_1 \rightarrow c\tau \ s\nu & \equiv \tau + 2j + E_T \\
 S_1 S_1 \rightarrow s\nu \ s\nu & \equiv 2j + E_T
 \end{cases}
 \]

- Single Production

 - $\tau\tau +$ jets:

 \[
 pp \rightarrow \begin{cases}
 S_1 \tau \rightarrow \tau j \ \tau \\
 S_1 \tau j \rightarrow \tau j \ \tau j \\
 S_1 \tau jj \rightarrow \tau j \ \tau jj
 \end{cases}
 \]

 - $\tau + E_T +$ jets:

 \[
 pp \rightarrow \begin{cases}
 (S_1 \tau + S_1 \nu) \rightarrow \nu j \ \tau + \tau j \ \nu \\
 (S_1 \tau j + S_1 \nu j) \rightarrow \nu j \ \tau j + j \ \nu j \\
 (S_1 \tau jj + S_1 \nu jj) \rightarrow \nu j \ \tau jj + j \ \nu jj
 \end{cases}
 \]

Weak limits

[1808.04169]
Production Modes, Decays

Indirect processes: (Scenario 1: λ^{L}_{23} is non-zero.)
- t-channel exchange of S_1
- Interferes with SM (destructively)

λ dependence of all productions modes:

$$\sigma^{S_1}_{total} = \sigma_{p} + \sigma^{incl}_{s} + \sigma_{t} - \sigma_{\times}$$

$$\approx \lambda^{0} \quad \lambda^{2} \quad \lambda^{4} \quad \lambda^{2}$$
ATLAS $\tau\tau$ search. 36 fb$^{-1}$, 13 TeV

Latest $pp \rightarrow Z' \rightarrow \tau\tau$ data is used. [1709.07242]

Event Selection Criteria:

- **$\tau\tau$ search: $\tau_{had}\tau_{had}$ channel**
 1. Two τ_{had}'s are tagged, no electrons or muons
 2. Two τ_{had}'s have $p_T(\tau_{had}) > 65$ GeV, they are oppositely charged, in the azimuthal plane by $|\Delta\phi(p_T^{\tau_1}, p_T^{\tau_2})| < 2.7$ rad.

- **$\tau\tau$ search: $\tau_{lep}\tau_{had}$ channel**
 1. Any event has one τ_{had}, one $\ell = e, \mu$
 2. $p_T(\tau_{had}) > 25$ GeV, $|\eta(\tau_{had})| < 2.3$ (excluding $1.37 < |\eta| < 1.52$)
 3. if $\ell = e$, $|\eta| < 2.4$ (excluding $1.37 < |\eta| < 1.52$), if $\ell = \mu$, $|\eta| < 1.52$
 4. $p_T(\ell) > 30$ GeV, $|\Delta\phi(p_T^{\tau_1}, p_T^{\tau_2})| < 2.4$ rad.
 5. $m_T(p_T^\ell, \not{E}_T) > 40$ GeV, where

$$m_T(p_T^A, p_T^B) = \left[2p_T^Ap_T^B\left\{1 - \cos\Delta\phi(p_T^A, p_T^B)\right\}\right]^{1/2}$$

Total transverse mass, m_T^{tot} is binned which is defined

$$m_T^{tot}(\tau_1, \tau_2, \not{E}_T) = \left[m_T^2(p_T^{\tau_1}, p_T^{\tau_2}) + m_T^2(p_T^{\tau_1}, \not{E}_T) + m_T^2(p_T^{\tau_2}, \not{E}_T)\right]^{1/2}$$
ATLAS $\tau\nu$ search, $36 \text{ fb}^{-1}, 13 \text{ TeV}$

Latest $pp \rightarrow W' \rightarrow \tau\nu$ data is used. [1801.06992]

Event Selection Criteria:

- **$\tau\nu$ search:**
 1. At least one τ_{had} with $p_T(\tau_{had}) > 25$ GeV, $|\eta(\tau_{had})| < 2.4$
 2. $\slashed{E}_T > 150$ GeV with $0.7 < p_T(\tau_{had})/\slashed{E}_T < 1.3$
 3. $\Delta \phi(p_T^{\tau_1}, \slashed{E}_T) < 2.4$
 4. Events are rejected if they contain any $\ell = e, \mu$ with $p_T(\ell) > 20$ GeV, $|\eta(\ell)| < 2.47$ (excluding barrel-endcap region)

- For Scenario 1, CMS $2j + \slashed{E}_T$ limits are also considered - assuming the jets originate from s quarks (pair production)

- For Scenario 2, CMS searches for the pair production of third generation LQ with $tt\tau\tau$ and $bb + \slashed{E}_T$ are used for recasting.
Process Contributions

S_1 model

<table>
<thead>
<tr>
<th>M_{S_1} (TeV)</th>
<th>Pair (NLO) ($\lambda \approx 0$)</th>
<th>Indirect (λ^2, $\lambda = 1$)</th>
<th>BSM (λ^4, $\lambda = 1$)</th>
<th>Inclusive single (λ^2, $\lambda = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_p</td>
<td>ε_p</td>
<td>N_p</td>
<td>$-\sigma_X$</td>
</tr>
<tr>
<td>1.0</td>
<td>1.329</td>
<td>3.4</td>
<td>1.63</td>
<td>-58.37</td>
</tr>
<tr>
<td>1.5</td>
<td>0.052</td>
<td>3.2</td>
<td>0.06</td>
<td>-26.86</td>
</tr>
<tr>
<td>2.0</td>
<td>0.003</td>
<td>3.1</td>
<td>0.00</td>
<td>-15.30</td>
</tr>
</tbody>
</table>

Interference contribution (σ_X) \gg other modes
Data Recast, Exclusion Limits

- Chi-square test is performed, with the test statistic:

\[
\chi^2 = \sum_i \left[\frac{N^i_T - N^i_D}{\Delta N^i} \right]^2
\]

Events are combined as follows:

\[
N^i_T = N^i_{S_1} + N^i_{BG} = \left[N_p + N_{incl}^s + N_t - N_x \right]^i + N^i_{BG}
\]

using total uncertainty,

\[
\Delta N^i = \sqrt{(\Delta N^i_{Stat})^2 + (\Delta N^i_{Syst})^2}
\]

where, \(\Delta N^i_{stat} = \sqrt{N^i_D}\) and we assume \(\Delta N^i_{sys} = \delta^i \times N^i_D\)
LHC Exclusion Limits

\(\lambda_{23}^L \) is non-zero

Figure: The 1\(\sigma \) and 2\(\sigma \) CL exclusion limits on \(\lambda = \lambda_{23}^L \) in Scenario-I as functions of \(M_{S_1} \) using the ATLAS (a) \(\tau\tau \) and (b) \(\tau\nu \) resonance search data. The coloured regions are excluded. We keep \(\lambda \leq 3.5 \) to ensure \(\lambda^2 / 4\pi < 1 \).
LHC + flavour

\(\lambda_{23}^L \) is non-zero

\(\lambda_{33}^L \) is non-zero

(a) Scenario-I

(b) Scenario-II

Figure: The 95% CL (2\(\sigma \)) exclusion limits from the LHC in the \(M_{S_1} - \lambda \) plane for the three scenarios in the minimal model with \(S_1 \) and the preferred regions by the \(R_{D(*)} \) anomalies with (a) \(\lambda = \lambda_{23}^L, \lambda_{33}^L = 0 \) (Scenario-I), (b) \(\lambda_{23}^L = 0, \lambda = \lambda_{33}^L \) (Scenario-II)
LHC + flavour: Combined Scenario

\[\lambda_{33}^L = 0.5 \]

\[\lambda_{33}^L = 1 \]

Figure: The 95% CL (2\(\sigma\)) exclusion limits from the LHC in the \(M_{S_1} - \lambda\) plane for the three scenarios in the minimal model with \(S_1\) and the preferred regions by the \(R_{D(*)}\) anomalies with (a) \(\lambda = \lambda_{23}^L, \lambda_{33}^L = 0.5\) (Scenario-III) and (b) \(\lambda = \lambda_{23}^L, \lambda_{33}^L = 1\) (Scenario-III).
The interaction between U_1 and the SM quarks and leptons can be expressed as:

$$
\mathcal{L} \supset \lambda^L_{23} \bar{Q}^2 \gamma_\mu U^\mu_1 P_L \ell^3 + \lambda^L_{33} \bar{Q}^3 \gamma_\mu U^\mu_1 P_L \ell^3 + \lambda^R_{33} \bar{b} \gamma_\mu U^\mu_1 \tau_R + \text{H.c.}
$$

where

- Q^i and ℓ^j - SM left-handed quark and lepton doublets
- $i, j = \{1, 2, 3\}$ stand for the generation indices
Production Modes, Decays

For example, considering λ_{23}^L is non-zero (Scenario RD1A)

- Pair Production

\[
pp \rightarrow \begin{cases}
U_1 U_1 \rightarrow s\tau s\tau \equiv \tau\tau + 2j \\
U_1 U_1 \rightarrow s\tau c\nu \equiv \tau + E_T + 2j \\
U_1 U_1 \rightarrow c\nu c\nu \equiv E_T + 2j
\end{cases}
\]

- Single Production

\[
pp \rightarrow \begin{cases}
U_1 \tau + U_1 \tau j \rightarrow (s\tau)\tau + (s\tau)\tau j \equiv \tau\tau + n_j \\
U_1 \nu + U_1 \nu j \rightarrow (c\nu)\nu + (c\nu)\nu j \equiv E_T + n_j \\
U_1 \tau + U_1 \tau j \rightarrow (c\nu)\tau + (c\nu)\tau j \equiv \tau + E_T + n_j \\
U_1 \nu + U_1 \nu j \rightarrow (s\tau)\nu + (s\tau)\nu j \equiv \tau + E_T + n_j
\end{cases}
\]

- Contributions from the exclusive modes are considered in the $\tau\tau$ channels
LHC Exclusion + $R_D(*)$ plots - RD1A, RD1B

Figure: The 95% CL (2σ) exclusion limits from the LHC in the $M_{U1} - \lambda$ plane for the one coupling scenarios in the minimal model with U_1 and the preferred regions by the $R_D(*)$ anomalies with (a) $\lambda = \lambda^L_{23}, \lambda^L_{33} = 0$ (Scenario-I), (b) $\lambda^L_{23} = 0, \lambda = \lambda^L_{33}$ (Scenario-II). $R_D(*)$ is ruled out at 2σ for both scenarios.
LHC Exclusion + $R_D(\ast)$ plots - RD2A

$\lambda_{23}^L, \lambda_{33}^L$ is non-zero

Figure: The 95% CL (2σ) allowed regions from the LHC in the $\lambda_{23}^L - \lambda_{33}^L$ plane for the two coupling scenarios, (a) $M_{U_1} = 1500$ GeV, (b) $M_{U_1} = 2000$ GeV
LHC Exclusion + $R_D^{(*)}$ plots - RD2B

$\lambda_{23}^L, \lambda_{33}^R$ is non-zero

Figure: The 95% CL (2σ) allowed regions from the LHC in the λ_{23}^L - λ_{33}^R plane, for the two coupling scenarios, (a) $M_{U_1} = 1500$ GeV, (b) $M_{U_1} = 2000$ GeV
LHC puts competitive and stringent (model dependant) bounds on S_1, U_1 LQs.

Contributions from interference (σ_\times) dominates over other production modes.

For U_1, multiple couplings are needed to account for $R_{D(\ast)}$ anomalies.
Thank You for Your Attention!
σ vs mass plot

The graph shows the cross section \(\sigma \) as a function of mass \(M_{S_1} \), with different lines representing different scenarios.

- \(S_1S_1 \) (red solid line)
- \(S_1\tau \) (orange dashed line)
- \(S_1\tau j \) (green dotted line)
- \(S_1\nu \) (blue dot-dashed line)
- \(S_1\nu j \) (purple dash-dot line)
- \(\tau\tau \) (brown dotted line)
- \(\tau\nu \) (brown dash-dot line)

The x-axis represents the mass \(M_{S_1} \) in TeV, ranging from 0.5 to 3.0 TeV. The y-axis shows the cross section \(\sigma \) in fb (femtobarns), with a logarithmic scale ranging from \(10^{-2} \) to \(10^3 \) fb.
Pair Production Diagrams

Figure: pair production diagrams
\(r_{D^(*)} \) calculations

For \(S_1 \) and single coupling scenarios of \(U_1 \),

\[
\begin{align*}
 r_{D^*} &= \frac{R_{D^*}^i}{R_{SM}^i} = \left| 1 + C_V^i \right|^2 \\
 C_V^i &= \frac{1}{2 \sqrt{2} G_F V_{cb}} \frac{V_{cb} (\lambda^i)^2}{2 M_{S_1/U_1}^2} = \frac{(\lambda^i)^2}{4 \sqrt{2} G_F M_{S_1/U_1}^2}
\end{align*}
\]

where \(i = \{1, 2\} \) indicates scenarios.
2-coupling scenarios

In 2-coupling scenarios of U_1,

$$r_D \equiv \frac{R_D}{R_{SM}^D} \approx \left| 1 + C_{V_L}^{U_1} \right|^2 + 1.02 \left| C_{S_L}^{U_1} \right|^2 + 1.49 \Re \left[(1 + C_{V_L}^{U_1})C_{S_L}^{U_1*} \right],$$

$$r_{D^*} \equiv \frac{R_{D^*}}{R_{SM}^D} \approx \left| 1 + C_{V_L}^{U_1} \right|^2 + 0.04 \left| C_{S_L}^{U_1} \right|^2 - 0.11 \Re \left[(1 + C_{V_L}^{U_1})C_{S_L}^{U_1*} \right]$$

where,

$$C_{V_L}^{U_1} = \frac{1}{2\sqrt{2} G_F V_{cb}} \frac{\lambda_{23}^{L*} \lambda_{33}^{L}}{M_{U_1}^2},$$

$$C_{S_L}^{U_1} = -\frac{1}{2\sqrt{2} G_F V_{cb}} \frac{2\lambda_{23}^{L*} \lambda_{33}^{R}}{M_{U_1}^2}.$$
U_1 model: One coupling Scenarios

- Scenario RD1A: $\lambda^L_{23} = 1, \lambda^L_{33} = \lambda^R_{33} = 0$

 \[\mathcal{L} \supset \lambda^L_{23} [\bar{c}_L \gamma_{\mu} \nu_L + (V_{cd} \bar{d}_L + V_{cs} \bar{s}_L + V_{cb} \bar{b}_L) \gamma_{\mu} \tau_L)] U_1^{\mu} \] (1)

- Scenario RD1B: $\lambda^L_{33} = 1, \lambda^R_{33} = \lambda^L_{23} = 0$

 \[\mathcal{L} \supset \lambda^L_{33} [(V^*_{ub} \bar{u}_L + V^*_{cb} \bar{c}_L + V^*_{tb} \bar{t}_L) \gamma_{\mu} \nu_L) + \bar{b}_L \gamma_{\mu} \tau_L] U_1^{\mu} \] (2)
U₁ model: Two coupling Scenarios

- **Scenario RD2A:** $\lambda_{23}^L = \lambda_{33}^L = 1$

\[
\mathcal{L} \supset [\lambda_{23}^L (\bar{c}_L \gamma_{\mu} \nu_L + \bar{s}_L \gamma_{\mu} \tau_L) + \lambda_{33}^L (\bar{t}_L \gamma_{\mu} \nu_L + \bar{b}_L \gamma_{\mu} \tau_L)]U_1^\mu
\]

\[
= [\lambda_{23}^L (V_{us} \bar{u}_L \gamma_{\mu} \nu_L + V_{cs} \bar{c}_L \gamma_{\mu} \nu_L + V_{ts} \bar{t}_L \gamma_{\mu} \nu_L + \bar{s}_L \gamma_{\mu} \tau_L)]U_1^\mu
\]

\[
+ \lambda_{33}^L (V_{ub} \bar{u}_L \gamma_{\mu} \nu_L + V_{cb} \bar{c}_L \gamma_{\mu} \nu_L + V_{cb} \bar{t}_L \gamma_{\mu} \nu_L + \bar{b}_L \gamma_{\mu} \tau_L)]U_1^\mu
\]

- **Scenario RD2B:** $\lambda_{23}^L = \lambda_{33}^L = 1$

\[
\mathcal{L} \supset [\lambda_{23}^L (\bar{c}_L \gamma_{\mu} \nu_L + \bar{s}_L \gamma_{\mu} \tau_L) + \lambda_{33}^R \bar{b}_R \gamma_{\mu} \tau_R]U_1^\mu
\]

\[
= [\lambda_{23}^L (V_{us} \bar{u}_L \gamma_{\mu} \nu_L + V_{cs} \bar{c}_L \gamma_{\mu} \nu_L + V_{ts} \bar{t}_L \gamma_{\mu} \nu_L + \bar{s}_L \gamma_{\mu} \tau_L)]U_1^\mu
\]

\[
+ \lambda_{33}^R \bar{b}_R \gamma_{\mu} \tau_R]U_1^\mu
\]
Cross-section Parametrization: Pair Production

Total cross section:

\[
\sigma^p (M_{U_1}, \lambda) = \sigma^{p_0} (M_{U_1}) + \sum_{i}^{n} \lambda_i^2 \sigma^{p_2}_i (M_{U_1}) + \sum_{i \geq j}^{n} \lambda_i^2 \lambda_j^2 \sigma^{p_4}_{ij} (M_{U_1})
\]

No. of surviving events:

\[
\mathcal{N}^p = \sigma^p \circ \epsilon^p (M_{U_1}, \lambda) \times B^2 (M_{U_1}, \lambda)
\]

\[
= \left\{ \sigma^{p_0} \times \epsilon^{p_0} + \sum_{i}^{n} \lambda_i^2 \sigma^{p_2}_i \times \epsilon^{p_2}_i + \sum_{i \geq j}^{n} \lambda_i^2 \lambda_j^2 \sigma^{p_4}_{ij} \times \epsilon^{p_4}_{ij} \right\} \\
\times B^2 (M_{U_1}, \lambda) \times L
\]
Cross-section Parametrization: Single Production

Total cross section:

\[
\sigma^S(M, \lambda_i) = \sum_{i}^{n} \lambda_i^2 \sigma^s_i(M_{U_1}) + \sum_{i \geq j \geq k}^{n} \lambda_i^2 \lambda_j^2 \lambda_k^2 \sigma^s_{ijk}(M_{U_1})
\]

No. of surviving events:

\[
\mathcal{N}^S = \sigma^S \circ \epsilon^S (M_{U_1}, \lambda) \times \mathcal{B}(M_{U_1}, \lambda) \times L
\]

\[
= \left\{ \sum_{i}^{n} \lambda_i^2 \sigma^s_i(M_{U_1}) \times \epsilon^s_i(M_{U_1}) + \sum_{i \geq j \geq k}^{n} \lambda_i^2 \lambda_j^2 \lambda_k^2 \sigma^s_{ijk}(M_{U_1}) \times \epsilon^s_{ijk}(M_{U_1}) \right\}
\]

\[
\times \mathcal{B}(M_{U_1}, \lambda_i) \times L
\]
Cross-section Parametrization: Non-resonant Production

Total cross section:

\[
\sigma^{nr}(M_{U_1}, \lambda) = \sum_{i}^{n} \lambda_i^2 \sigma_i^{nr2}(M_{U_1}) + \sum_{i \geq j}^{n} \lambda_i^2 \lambda_j^2 \sigma_{ij}^{nr4}(M_{U_1})
\]

No. of surviving events:

\[
\mathcal{N}^{nr} = \sigma^{nr} \circ \epsilon^{nr}(M_{U_1}, \lambda) \times L
\]

\[
= \left\{ \sum_{i}^{n} \lambda_i^2 \sigma_i^{nr2}(M_{U_1}) \times \epsilon_i^{nr2}(M_{U_1}) + \sum_{i \geq j}^{n} \lambda_i^2 \lambda_j^2 \sigma_{ij}^{nr4}(M_{U_1}) \times \epsilon_{ij}^{nr4}(M_{U_1}) \right\} \times L
\]