Simulation studies of $R_2(\Delta \eta, \Delta \phi)$ and $P_2(\Delta \eta, \Delta \phi)$ correlation functions in p–p collisions with the PYTHIA and HERWIG models

Baidyanath Sahoo1
Basanta Kumar Nandi1, Prabhat Pujahari2
Sumit Basu3 and Claude A. Pruneau4

1IIT Bombay, 2IIT Madras, 3Lund University and 4WAYNE STATE

B. Sahoo, B.K. Nandi, P. Pujahari, S. Basu and C. Pruneau
Outline

- Motivation
- Definition of Observables: R_2 and P_2
- Analysis Details
- Results
- Summary
Motivation

Why do we study Two-particle Correlations?

These explore the underlying physics phenomena of particle production in collisions of both protons and heavy ions by measuring the distributions in $\Delta \eta \Delta \varphi$ space.

Goal

How do two-particle correlation functions behave in these different p_T regions in small systems?

- Low p_T: 0.2 - 2.0 GeV/c (Underlying Event)
- Mid p_T: 2.0 - 5.0 GeV/c (Quark Coalescences)
- High p_T: 5.0 - 30.0 GeV/c (Jets)
Definition of Observables: R_2 and P_2

- **Single-Particle Density:** $\rho_1(x) = \frac{1}{N} \frac{dN}{dx}$
- **Two-Particle Density:** $\rho_2(x_1, x_2) = \frac{1}{N} \frac{d^2N}{dx_1 dx_2}$

1st Observable:

Two-particle differential number Correlation 1:

$$R_2(\Delta \eta, \Delta \phi) = \frac{\rho_2(\Delta \eta, \Delta \phi)}{\rho_1(\eta_1, \phi_1) \times \rho_1(\eta_2, \phi_2)} - 1$$

✓ Sensitive to particle production mechanisms

2nd Observable:

Two-particle differential transverse momentum Correlation 1:

$$P_2(\Delta \eta, \Delta \phi) = \frac{\left\langle \Delta p_{T,1} \times \Delta p_{T,2} \right\rangle(\Delta \eta, \Delta \phi)}{\left\langle p_T \right\rangle^2}$$

✓ Sensitive to transverse momentum fluctuations

where

- $\left\langle \Delta p_{T,1} \times \Delta p_{T,2} \right\rangle(\Delta \eta, \Delta \phi) = \int \rho_2(x_1, x_2) \Delta p_{T,1} \Delta p_{T,2} dp_{T,1} dp_{T,2} \rho_2(\Delta \eta, \Delta \phi)$
- $\Delta p_{T,i} = p_{T,i} - \left\langle p_T \right\rangle$

Why did we use R_2 & P_2?

1. Dimensionless quantity
2. Robust observable:
 - Independent of detection efficiency for η & ϕ, but dependent on p_T efficiency1.

1 M. Sharma and C. A. Pruneau, PRC 79, 024905 (2009)
Definition of Observables: CI and CD

4 different charge combinations O:

\[O^{(+,-)}, O^{(-,+)}, O^{(+,+)}, O^{(-,-)} \]

where \(O \equiv \{R_2, P_2\} \)

1. US: Unlike-sign pairs
\[O^{US} = \frac{1}{2}(O^{(+,-)} + O^{(-,+)}) \]
- Coulomb Int., Jet, Resonance, flow (in Heavy Ion) etc

2. LS: Like-sign pairs
\[O^{LS} = \frac{1}{2}(O^{(+,+)} + O^{(-,-)}) \]
- B-E corr., Coulomb Int., Jet, Resonance, flow (in Heavy Ion) etc

3. CI: Charge Independent
\[O^{CI} = \frac{1}{2}(O^{US} + O^{LS}) \]
- Measure the average correlation strength between all charge particles

4. CD: Charge Dependent
\[O^{CD} = \frac{1}{2}(O^{US} - O^{LS}) \]
- Keep effects related to balancing pairs

✓ Balance function is proportional to \(R_2^{CD} \) i.e.

\[B(\Delta \eta, \Delta \phi) \equiv \frac{dN}{d\eta} R_2^{CD}(\Delta \eta, \Delta \phi) \]

Analysis Details

Models:
1. HERWIG: Cluster model of hadronization
2. PYTHIA6 Perugia-0: String model of hadronization

- $pp \sqrt{s} = 2.76$ TeV
- # of events = 200M
- Particles Selected: h^{\pm}

Kinematical Cuts:

I) p_T ranges:
1. $0.2 < p_T \leq 2.0$ GeV/c
2. $2.0 < p_T \leq 5.0$ GeV/c
3. $5.0 < p_T \leq 30.0$ GeV/c

II) η range: $|\eta| \leq 1.0$

III) ϕ range: $0 < \phi \leq 2\pi$
Results: $R^\text{CI}_2(\Delta \eta, \Delta \phi)$ and $P^\text{CI}_2(\Delta \eta, \Delta \phi)$

HERWIG, pp $\sqrt{s} = 2.76$ TeV

(a) $0.2 < p_T \leq 2.0$ GeV/c

(b) $2.0 < p_T \leq 5.0$ GeV/c

(c) $5.0 < p_T \leq 30.0$ GeV/c

Increasing p_T

$P^\text{CI}_2(\Delta \eta, \Delta \phi) = \frac{\langle \Delta p_{T,1} \times \Delta p_{T,2} \rangle(\Delta \eta, \Delta \phi)}{\langle p_T \rangle^2}$

Narrowing of the near-side peak with increasing p_T for CI in HERWIG due to angular ordering.
Results: Projection on $\Delta \eta$

$R_{2}^{\text{CI}}(\Delta \eta)$

- (a) $0.2 < p_{T} \leq 2.0 \text{ GeV}/c$
- p_{T} distribution for $|\Delta \phi| \leq \pi/2$
- h^{z}
- $R_{2}^{\text{CI}}(\Delta \eta)$ for $N_{pp} = 2.76 \text{ TeV}$

$P_{2}^{\text{CI}}(\Delta \eta)$

- (a) $0.2 < p_{T} \leq 2.0 \text{ GeV}/c$
- p_{T} distribution for $|\Delta \phi| \leq \pi/2$
- h^{z}
- $P_{2}^{\text{CI}}(\Delta \eta)$ for $N_{pp} = 2.76 \text{ TeV}$

- $P_{2}^{\text{CI}}(\Delta \eta)$ is narrower than $R_{2}^{\text{CI}}(\Delta \eta)$ due to angular ordering which implies P_{2} is more precise observable to probe the internal structure of jet.

- The shift observed in HERWIG events likely results from larger event-by-event multiplicity fluctuations in $P_{2}^{\text{CI}}(\Delta \eta)$.

Jet
What will happen for narrower p_T bins in CI?

- $P_2^{CI}(\Delta \eta)$ is narrower than $R_2^{CI}(\Delta \eta)$ due to angular ordering which implies P_2 is more precise observable to probe the internal structure of jet.
- The shift observed in HERWIG events likely results from larger event-by-event multiplicity fluctuations in $P_2^{CI}(\Delta \eta)$.
Smooth fall of widths with increasing p_T.

P_2 is narrower than R_2, although for some p_T bins, it is broader.
Narrowing of the near-side peak with increasing \(p_T \) for CD in HERWIG due to angular ordering.

\(R^\text{CD}_2(\Delta \eta, \Delta \phi) \) features an isolated peak centered at \((\Delta \eta, \Delta \phi) = (0, 0)\) resulting from the fact that correlated charged particle production occurs almost exclusively within the confines of a single jet.

Back-to-back gluon jets should yield no contributions to the away-side of \(P^\text{CD}_2 \) correlation functions but quark-quark jet pairs should have a finite CD correlation as quark jets are charge correlated.
$P_{2}^{CD}(\Delta \eta)$ is narrower than $R_{2}^{CD}(\Delta \eta)$ due to angular ordering which implies P_{2} is more precise observable to probe the internal structure of jet.
Results: Projection on $\Delta \eta$

$P_{2CD}^{\Delta \eta}$ is narrower than $R_{2CD}^{\Delta \eta}$ due to angular ordering which implies P_2 is more precise observable to probe the internal structure of jet.
Results: Width for narrower p_T bins in CD

- Smooth fall of widths with increasing p_T in PYTHIA.
- Irregular p_T dependence of widths in HERWIG.
- P_2 is narrower than R_2, although for some p_T bins, it is broader.
Result: Multiplicity wise study for CI

\(\sigma_{\Delta \eta} \)

(a) \(0.2 < p_T \leq 2.0\) GeV/c

- PYTHIA6 Perugia-0
- HERWIG

(b) \(2.0 < p_T \leq 5.0\) GeV/c

- \(R_2^{C}(\Delta \eta)\)
- \(P_2^{C}(\Delta \eta)\)

(c) \(5.0 < p_T \leq 30.0\) GeV/c

\(\times 10^{-3}\)

(a) \(2.0 < p_T \leq 5.0\) GeV/c

HERWIG

pp \(\sqrt{s} = 2.76\) TeV, \(|\Delta \phi| \leq \pi/2\)

- \(N_{\text{total}} > 0\)
- \(N_{\text{total}} > 25\)
- \(N_{\text{total}} > 50\)

\(\sum_{\Delta \eta}^{\Delta \eta} \eta\)

\(h^+\)

\(\Delta \eta\)

- Quark Jet
- Gluon Jet

\(\checkmark\) High-multiplicity events favour gluon jets.

\(\checkmark\) Exhibit a discontinuity near or above \(N_{\text{total}} = 30\).
We study the predictions of the PYTHIA and HERWIG models relative to their dependence on the particle momenta, the particle species, and we focus, in particular, on the differences between R_2 and P_2 correlation functions.

P_2 is narrower than R_2 due to angular ordering, although in some p_T bins, P_{CD}^2 is broader than R_{CD}^2.

R_2 correlation function receives positive definite contributions from all particle pairs of a jet and is thus not sensitive to the ordering of the particles of the pair but only the overall width of the jet.

High-multiplicity events favour gluon jets.

P_{CI}^2 is a more precise observable to probe the internal structure of jet than R_{CI}^2.

Analysis is on going with ALICE data with $pp@13$ TeV.
Thank you for your attention
Definition of CI

- 4 different charge combinations: (+ -), (- +), (+ +), (- -)

Unlike-Sign (US) pairs

\[O^{US} = \frac{1}{2}(O^{(+,-)} + O^{(-,+)}) \]

Like-Sign (LS) pairs

\[O^{LS} = \frac{1}{2}(O^{(+,+)} + O^{(-,-)}) \]

Charge Independent (CI)

\[O^{CI} = \frac{1}{2}(O^{US} + O^{LS}) \]

\[O \equiv (R_2, P_2) \]

- Measure the average correlation strength between all charge particles.

\[\rightarrow \text{Coulomb Int., Jet, Resonance, flow(In Heavy Ion) etc} \]

\[\rightarrow \text{Coulomb Int., Jet, B-E corr., flow(In Heavy Ion) etc} \]
Definition of CD

- 4 different charge combinations: (+ -), (- +), (+ +), (- -)

Unlike-Sign (US) pairs

\[O^{US} = \frac{1}{2} (O^{(+,-)} + O^{(-,+)}). \]

Like-Sign (LS) pairs

\[O^{LS} = \frac{1}{2} (O^{(+,+)} + O^{(-,-)}). \]

Charge Dependent (CD)

\[O^{CD} = \frac{1}{2} (O^{US} - O^{LS}). \]

Coulomb Int., Jet, Resonance, flow (In Heavy Ion) etc

Keep effects related to balancing pairs

Angular Ordering: probe the internal structure of jets
$P^\text{CD}(\Delta \eta, \Delta \varphi)$ for K^\pm

- **Delta Eta Cut:**
 - Range: -2.0 to 2.0
 - # of Bins = 79
 - Bin Width = 0.05

- **Delta Phi Cut:**
 - Range: -0.5 to 1.5
 - # of Bins = 72
 - Bin Width = 0.087

Increasing p_T

$\phi^- > k^+ k^- - \text{Decay On}$

$\phi^- > k^+ k^- - \text{Decay Off}$

$$0.2 \leq p_T \leq 2$$

$$2 \leq p_T \leq 5$$

$$5 \leq p_T \leq 30$$
\(\langle p_T \rangle \) (GeV/c)

(a) \(0.2 < p_T \leq 2.0 \) GeV/c

(b) \(2.0 < p_T \leq 5.0 \) GeV/c

(c) \(5.0 < p_T \leq 30.0 \) GeV/c

PPHERWIG

\(\langle p_T \rangle \) (GeV/c)
pp $\sqrt{s} = 2.76$ TeV

- h^+ PYTHIA6 Perugia-0, pp
- h^- PYTHIA6 Perugia-0, pp
- h^+ HERWIG, pp
- h^- HERWIG, pp
Result (VIII): $R_{2}^{CI}(\Delta \eta)$ & $P_{2}^{CI}(\Delta \eta)$ for identified species

- $R_{2}^{CI}(\Delta \eta)$
 - $pp \sqrt{s} = 2.76$ TeV
 - $0.2 < p_{T} \leq 2.0$ GeV/c
 - $|\Delta \phi| \leq \pi/2$

- $P_{2}^{CI}(\Delta \eta)$
 - $pp \sqrt{s} = 2.76$ TeV
 - $0.2 < p_{T} \leq 2.0$ GeV/c
 - $|\Delta \phi| \leq \pi/2$

Resonance plays a vital role for kaons!
Result (IX) : \(R_{2}^{CD}(\Delta \eta) \) & \(P_{2}^{CD}(\Delta \eta) \) for identified species

- (a) \(h^{\pm} \)
- (b) \(\pi^{\pm} \)
- (c) \(K^{\pm} \)
- (d) \(p\bar{p} \)

PP, \(\sqrt{s} = 2.76 \) TeV, \(0.2 < p_T \leq 2.0 \) GeV/c, \(|\Delta \phi| \leq \pi/2 \)

Resonance plays a vital role for kaons!
pp $\sqrt{s} = 2.76$ TeV, $|\Delta \eta| \leq \pi/2$

(a) $0.2 < p_T \leq 2.0$ GeV/c

PYTHIA6 Perugia-0

- \triangle $R_{2}^{CD}(\Delta \eta)$
- \bigcirc $R_2^{CD}(\Delta \eta)$
- \blacktriangle $P_{2}^{CD}(\Delta \eta)$
- \bullet $P_2^{CD}(\Delta \eta)$

HERWIG

(b) $2.0 < p_T \leq 5.0$ GeV/c

(c) $5.0 < p_T \leq 30.0$ GeV/c

$\sigma_{\Delta \eta}$

N_{ch}

$\sigma_{\Delta \phi}$ (rad)

N_{ch}